
WINDOWBUILDER

 PRO

Tutorial and Reference Guide

INSTANTIATIONS , INC
SMALLTALK SYSTEMS DIVISION

ii WindowBuilder Pro

Instantiations License Agreement
This is a legal agreement between you, the end user, and Instantiations. Having opened the sealed software packet you
have agreed to be bound by the terms of this Agreement. If you do not agree to the terms of this Agreement, promptly
return the software packet and the accompanying items (including written materials and other containers) to the place
from which you obtained them to receive a full refund.

Grant of License. Instantiations grants you (i) a non-exclusive, nontransferable license to use one copy of the enclosed
StS software program (the “Software”) on a single computer for your personal use on the understanding that a single
person uses each copy, and (ii) a non-exclusive, nontransferable license to use one copy of the related written materials
enclosed (“Documentation”). Purchasers of the Software are therefore licensed to use it themselves on one computer at a
time, and to make a single backup copy for their own use. No other license is given. In particular, The Software may not
be installed on a computer network for use by more than one person. The Software may not be rented or leased to others,
and the conditions of this sale apply to the purchaser in any resale.

Limited Warranty. Instantiations warrants the media and documentation to be free of defects in materials and
workmanship for 90 days from the date of purchase. Defective products returned to Instantiations during this period will
be replaced without charge and are subject to the original warranty. Furnishing such replacements is Instantiations’ only
obligation under the terms of this sale.

Although Instantiations has made all efforts to ensure that the Software performs as stated in this manual, no
representation is made and no guarantee is given regarding the Software’s merchantability, performance, or its fitness for
any purpose. It is sold as-is and purchasers assume all risks regarding its suitability for their purposes.

Instantiations is not liable for any loss of profit or other commercial damages, including but not limited to, special,
incidental, consequential or other damages, including the loss of data, resulting from the use of the Software.

This is the sole and exclusive statement of Instantiations’ warranty, and no one is authorized to alter it in any way either
orally or in writing.

Copyright . The Software and Documentation are owned by Instantiations and are protected by US and International
copyright laws. You may not copy the Software or Documentation, except that you may make one copy of the Software
solely for backup or archival purposes. No part of the Documentation may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including but not limited to photocopying, without prior written permission from
Instantiations. Copying or duplicating the Documentation or any part thereof is a violation of the law.

Runtime Rights and Limitations. You have a royalty-free right to reproduce and distribute executable files created by
using the Software that include the runtime environment portions of the Software (the “Runtime Files”) which are
identified in the Documentation as being required to execute programs. The executable you distribute must not contain
any part of the development environment portions of the Software (the “Development Files”) which are identified in the
Documentation as being required to develop programs using the Software. You may not distribute any portion of the
source code of the Software. You may not distribute executable files whose functionality is similar to that of the Software.

Governing Law. This Agreement shall be governed and construed under the laws of the State of Oregon and subject to
the exclusive jurisdiction of the courts therein.

Entire Agreement. You agree that this Agreement expresses the entire understanding between you and Instantiations and
supersedes all other communications, oral or written, relating to the Software.

Copyright © Instantiations, Inc., 1997, 1998. All rights reserved.

Portions Copyright © ObjectShare, Inc., 1994, 1996.

Information in this document is subject to change without notice and does not constitute a commitment on the part of
Instantiations

Portions herein © Copyright IBM Corporation, 1994, 1998. Reproduced by Permission.

Second Edition July 1998. Printed in Oregon.
Instantiations, Inc., Smalltalk Systems Division
16004 SW Tualatin-Sherwood Road, Suite 435

Sherwood, OR 97140-8378

Smalltalk Systems, StS and Instantiations are trademarks of Instantiations, Inc. WindowBuilder is a registered
trademark of ObjectShare. Windows is a trademark of Microsoft Corporation. VisualAge and OS/2 are registered
trademarks of International Business Machines Corporation.

Contents iii

Contents

Chapter 1 Introduction..1

What is WindowBuilder Pro?..1

What you should already know...1

History of WindowBuilder Pro..2

What’s New? ...2

How this manual is organized ...6

Typographic Conventions..6

Technical Support ...7

Chapter 2 Installation..9

Prerequisites..9

Installation...9

Installing WindowBuilder Pro into the VisualAge Image ...11

Chapter 3 Overview...13

Starting WindowBuilder Pro ...13

Creating a window-based application ...15

Step 1. Design the User Interface...15

Step 2. Attaching callbacks and event handlers to interface objects.....................................18

Chapter 4 Using WindowBuilder Pro...25

Editing Windows...25

Positioning and Sizing Windows...27

iv WindowBuilder Pro

Positioning and Sizing Widgets...28

Operations on Multiple Widgets ...31

Using the Grid...38

Setting the Tab Order for Widgets...39

Changing Fonts ...42

Setting Colors..43

Styles...45

Reframing Widgets..46

Widget Morphing ..49

Using Call Outs...50

Using the Callback Editor ...51

Creating Callback Handlers Visually ..55

Managing Outboard Windows ..58

Using Popup Widget Menus..59

Chapter 5 Menus ...63

Creating a Menubar...63

Popup menus on widgets...68

Chapter 6 Coding in WindowBuilder Pro ..71

WindowBuilder Pro and Smalltalk..71

What WindowBuilder Pro Generates ..74

Passing Arguments to Windows ..75

Returning Values From a Dialog ...75

Naming Widgets..77

Contents v

Passing messages from one widget to another ..77

Chapter 7 Example Application ...79

Designing the Interface ...80

Attaching Callbacks and Event Handlers..82

Chapter 8 Command Reference ...85

Main Toolbar...85

Attribute Toolbar ...86

Status Bar ..86

Widget Categories ...86

Transcript ..87

New Window...87

Edit Window..87

Test Window... ...88

Templates... ...89

Properties... ...90

Runtime ICs... ...90

Register..91

About... ...91

File ..92

 New ..92

 Open... ..92

Spawn..93

vi WindowBuilder Pro

Revert... ...94

 Save ..94

Save As..94

 Test Window..95

About... ...95

Exit..96

Edit..97

 Undo...97

 Redo ...97

Undo/Redo List... ..98

 Cut ..98

 Copy ...98

 Paste ...99

 Duplicate ..99

 Clear ...99

 Select All ..99

 Select All In Same Class...99

Select All In Same Hierarchy..100

Contents vii

 Browse Class... ...100

Browse Widget Class...100

Attributes...101

 Font... ...101

 Colors... ..102

 Attachments... ...103

 Menus...104

 Callbacks... ...106

 Selected Widgets... ...109

 Window...109

 Tab & Z-Order... ...110

Call Outs... ..112

Drag Drop... ..112

Help...114

NLS... ..115

 Morph...116

Align ...117

 Left ...117

viii WindowBuilder Pro

 Center ...117

 Right...117

 Top..117

 Middle ..117

 Bottom..117

Position ...118

 Bring To Front ..118

 Send To Back..118

Bring Forward ...118

Send Backward ...118

 Distribute Horizontally...119

 Distribute Vertically..119

Pack Horizontally..119

Pack Vertically...119

 Move By Pixel ...119

 Set Widget Position... ...119

Size..120

 Auto Size Selection ..120

Contents ix

 Replicate Width ..120

 Replicate Height...120

 Size By Pixel..120

 Set Widget Size... ...121

Options..122

 Use Grid ...122

 Draw Grid...122

 Set Grid Size...123

Color ...123

Attachments ..124

Nudge..124

Tab & Z-Order ..124

Widget Selection ...125

Drag Outlines ..125

Show Tab & Z-Order...125

Target Is First ..126

Use Fence..126

Allow Reparenting ..127

Nested Direct Manipulation ..127

Use Scrolled Window Child ..127

x WindowBuilder Pro

Always Add Forms To Frames ..127

Mini Help ..127

Update Outboards ...127

Auto Save..128

 Templates..128

 Properties..129

Redraw ..133

Add..134

 Text...134

 Button...134

 List..134

 Composite ..134

 Slider ..135

 Notebook..135

 Container ..135

 Other...135

 Windows 95 ..135

 OLE/ActiveX ...135

Contents xi

New Widget...135

Nested Application... ...136

Chapter 9 Common Widgets Overview ...137

OSF/Motif Compatibility ..137

Common Widgets Class Hierarchy ...138

Overview of Common Widgets User Interface Concepts..141

The Parent-Child Widget Tree...141

The Widget Lifecycle ..144

Mapping and Unmapping Widgets..146

Managing and Unmanaging Widgets ..146

Widget Resources and Functions ..147

CwConstants Pool Dictionary ...151

Widget Event Handling and Callbacks..151

Fonts..153

Using the System Browser Font..154

Colors..155

Drag Drop Support..156

The Players..156

Sequence of Events ...157

System Configuration..161

Minimal Drag Drop...161

Drag Drop on Base Widgets..162

Chapter 10 Callbacks and Event Handlers ...163

xii WindowBuilder Pro

Callbacks...163

Event Handlers..167

Chapter 11 Common Widget Classes..173

Shell Widgets ..173

Top-Level Shell Widgets ...174

Main Window Widgets..176

Main Windows and Geometry Management...176

Scrolled Window Widgets ...177

Text Widgets..178

Drawing Area Widgets ..180

Adding an Event Handler to a Drawing Area ...183

Layout Widgets ...184

Form Widgets ..185

Row-Column Widgets ...188

Button and Label Widgets...189

Static Label Widgets..191

Push Button Widgets ...191

Toggle Button Widgets..193

Radio Button Groups ..193

Check Boxes ...195

Icon and Pixmap Label and Button Widgets...196

Application-Drawn Buttons ..197

List Widgets ..199

Contents xiii

Single Selection Lists..200

Multiple Selection Lists ..201

Combo Box Widgets ...202

Chapter 12 Widget Encyclopedia...205

All Widgets..205

CwArrowButton..219

CwComboBox...221

CwDrawingArea ...226

CwDrawnButton ...229

CwForm ..234

CwFrame...238

CwHierarchyList ...241

 CwLabel ..249

CwObjectList ..254

CwProgressBar ...260

CwPushButton...262

CwRowColumn...267

xiv WindowBuilder Pro

 CwSash..274

CwScale ..276

 CwScrollBar ..280

CwScrolledWindow ..284

 CwSeparator..288

CwStatusBar ...290

CwPanel ..291

CwTabStrip ...293

CwTab ...295

CwText ..297

 CwToggleButton..304

CwToolBar ..310

CwToolButton ...311

CwTrackBar ..314

CwTreeView ...318

EwDrawnList ..321

Contents xv

EwFlowedIconList ..327

EwIconArea ..335

EwIconList ..342

EwIconTree ...350

EwPage..359

EwPMNotebook..363

 EwProgressBar ..367

EwSlider..371

EwSpinButton ...378

EwTableColumn..382

EwTableList ..386

EwTableTree ...397

EwToolBar ..408

EwGroupTool..411

EwLabelTool ...413

EwProgressBarTool...415

xvi WindowBuilder Pro

EwPushButtonTool..418

EwSeparatorTool...420

EwToggleButtonTool ..423

EwWINNotebook..430

OleClient ...432

OleControl ..438

WbComboBox ..445

WbEnhancedText ..451

WbFrame...463

WbRadioBox...466

 WbScrolledList..472

WbScrolledText...479

Chapter 13 WbApplication Protocol ..487

Opening and Closing...487

Accessing ..489

Subclass Overrides..491

Prompting..493

Utility ..495

Contents xvii

Mini Help Support ..501

Creating...502

Appendix A Customizing WindowBuilder Pro..505

Adding Support for New Widgets...505

Building a Custom Attribute Editor ..516

Using Add-In Modules..523

Adding Code Generation ..529

Appendix B Extended Widgets ..533

Writing an Extended Widget ...533

Defining the Extended Widget Class...534

Initialization ..534

Resources ..534

Callbacks...535

Widget-Specific Methods..535

Using an Extended Widget..535

Example: A Primitive Extended Widget..535

Using the WbLabelledText Primitive Extended Widget..539

Appendix C User Interface Process Model...541

The System View...542

The Application Programmer’s View ..544

Examples of Applications with Long-Running Operations ..546

Example 1:A Simple Text Editor ..547

Example 2:A Program Development Environment...547

xviii WindowBuilder Pro

Example 3:A Complex Drawing Editor ..547

Appendix D Common Widgets Platform Differences...549

Windows and OS/2 Platform Differences ...549

Appendix E VisualAge Integration...557

Prerequisites..557

Using WindowBuilder Pro Created Parts In VisualAge ..557

Defining VisualAge Connection Features In WindowBuilder Pro558

Attribute Editor ...559

Action Editor...560

Event Editor ..561

Integration Examples Using WindowBuilder Pro And VisualAge562

Preferred Connections...563

Index..565

Contents xix

Acknowledgments

Software Design & Development:
Eric Clayberg

Manual
Eric Clayberg

Testing
William Dargel, Kalpana Krishnaswami, Jeff Odell, Steve Parker, Tom Petersen,
Dan Rubel, Gordon Sheppard, Enoch Sower, S. Sridhar, Solveig Viste, Chris Wolcott

We would like to thank the following people. Without their hard work, help, advice,
support and debugging skills, this product would never have seen the light of day.
Thanks!

Joseph Acero, Bill Baer, Robert Benson, Carter Blitch, Rob Brown, Pat Caudill,
James Chan, Eric Clayberg, Karen Clayberg, Steven Daniels, William Dargel, Scott
Day, Stef van Dijk, Shawn Elliot, Juanita Ewing, Marten Feldtmann, Dina Fischer,
Max-Pieter Fränkel, Amarjeet Garewal, Suman Goel, John Hansen, Steve Harris,
Chris Hayes, Scott Herndon, Bill Hertha, Hal Hildebrand, Pat Huff, Dan Kehn, Ed
Klimas, Alan Knight, Kalpana Krishnaswami, Chamond Liu, Byron Long, Jasmin
McCabe, Cynthia McCrickard, Paul McDonough, Steve Messick, Dave Mitchell,
Carmelo Montalbano, Martin Nally, Jimmy Nguyen, Jeff Odell, Steve Parker,
Joseph Pelrine, Tom Petersen, Hudson Philips, Rene’ Plourde, Dan Rubel, Kristi
Rudolph, Rick Runyan, Dan Shafer, Gordon Sheppard, Ed Shirk, Sames Shuster,
Mike Silverstein, Enoch Sower, S. Sridhar, Mike Taylor, Ken Thompson, Steve
Robinson, Rick Runyan, David N. Smith, Solveig Viste, David Whiteman, Marlin
Wilson, Allen Wirfs-Brock, Chris Wolcott, Robert Yerex, Sherwood Zern

Portions herein © Copyright IBM Corporation, 1994, 1998.
Reproduced by Permission

1

Chapter 1 Introduction

Welcome to WindowBuilder Pro! You have purchased the most advanced graphical user
interface (GUI) builder available. Read on to learn about what WindowBuilder Pro does,
and how it can dramatically increase your VisualAge development productivity.

What is WindowBuilder Pro?
WindowBuilder Pro is a complete GUI builder. All the tools that you need to create user
interfaces are contained in WindowBuilder Pro. Just draw the windows with a mouse as
you would with a paint program. Add buttons, list boxes, and scroll bars. Arrange, resize,
and rearrange these screen elements until you are satisfied. When you get the screen
looking the way you want, WindowBuilder Pro generates the necessary Smalltalk code
for you. Add the rest of your application code, and your program is complete. You never
have to write any user interface (UI) code. If you later find that you need to make
changes to the UI, you can make the changes right on the screen, and WindowBuilder Pro
will recreate the code automatically. WindowBuilder Pro takes care of all the down-and-
dirty work of writing UI code, and allows you to concentrate on writing the application
code. You should find that your program development time noticeably decreases.

What you should already know
To be successful using WindowBuilder Pro, you need

• a working knowledge of VisualAge Smalltalk

• familiarity with components and navigation of the operating system you are using

This manual assumes that you have a functional knowledge of VisualAge.
WindowBuilder Pro allows you to generate user interfaces without knowing how to
program in Smalltalk. However, you will not be able to write the code necessary to create
a fully functioning application. If you are new to Smalltalk, you should work through the
examples provided in the IBM Smalltalk Programmer’s Reference before proceeding with
WindowBuilder Pro.

2 Chapter 1 Introduction

You need to be familiar with operating system interface components such as dialog
boxes, buttons, and menus. You should also understand the mouse concepts of pointing
and clicking, as well as the text manipulation commands for your system.

History of WindowBuilder Pro
The first version of WindowBuilder was called Widgets/V, and was introduced in 1990 by
Cooper & Peters. It ran on the Macintosh and the IBM PC under DOS. In 1991 Cooper &
Peters built a version for Microsoft Windows and renamed the product WindowBuilder.
Objectshare Systems, took over the development of WindowBuilder in 1992.
WindowBuilder Pro was developed by Objectshare Systems and appeared first for
Digitalk Smalltalk in 1993.

WindowBuilder Pro for VisualAge first appeared in 1994 and the briefly became a
product of ParcPlace-Digitalk following its acquisition of Objectshare in 1996. In 1997
Instantiations’ Smalltalk Systems Division acquired rights to WindowBuilder Pro for
VisualAge and now develops, markets and supports it. It is notable that the original
development team of WindowBuilder Pro for VisualAge has followed the product to each
of its new homes and continues to work on it today!

What’s New?
There are dozens of new features that have been added to the product (many at the
suggestion of users like yourself) in recent releases. In no particular order they are:

• Support for new IBM Smalltalk widgets
• EwProgressBar
• EwToolBar
• CwSash (splitbar)

• New WbEnhancedText widget
• Character and field-level validation
• Password style
• Left, right and center justification

• New WbObjectComboBox widget
• Object-oriented version of CwComboBox
• Works with any arbitrary objects, not just strings
• #printSelector attribute specifies how the obects will be displayed
• Supports type ahead object matching in text edit mode

What’s New? 3

• Support for Windows 95 widgets
• CwStatusBar
• CwToolBar
• CwTabStrip
• CwTreeView
• CwProgressBar
• CwTrackBar

• Support for OLE/ActiveX
• OleClient
• OleControl
• Wrappered OLE/ActiveX widgets (AbtOleExtendedWidget subclasses)

• Runtime Unix Support
• Develop under Windows or OS/2
• Deploy under Windows, OS/2 or any VA Unix platform

• Enhanced Integration with VisualAge
• WBPro windows may be embedded within VisualAge windows as visual

components
• Conceptually similar to nested applications within WBPro or

CompositePanes in VSE
• WBPro is now the ideal environment for creating complex, reusable visual

parts for VisualAge

• Lightweight visual programming (e.g., configure callbacks and event handlers via
drag drop like the VisualAge Composition Editor)

• Popup connect menu listing callbacks and events
• Drag connect the source to the target
• Popup message menu on target
• Resultant callback/event handlers can be viewed with Callback Editor

• New Callback Editor
• Widgets are displayed as graphical tree
• Widgets may be displayed hierarchically, alphabetically (by name or type)
• Widgets may be filtered by type (e.g., view just the CwPushButtons)
• Multiple widget select (create callbacks/event handlers on multiple widgets

simultaneously)
• Multiple handler select (change receiver/selector/clientdata simultaneously)
• Handlers may be ordered via up/down buttons
• Handlers may be zero (unary) or one-argument methods in addition to the

standard three-argument methods. For one-argument callbacks, the default
argument that is passed is the originating widget. Specifying a unary
selector as the client data will cause the attribute of the originating widget
specified by that selector to be passed as the argument (e.g., specifying
#selectedItem as the client data for the Single Selection Callback of a
listbox will cause the selected item to be passed as the argument).

• Built-in event handler editing via embedded code browser

4 Chapter 1 Introduction

• New Help Editor
• Specify tooltips (mini / hover help) for any widget
• Specify platform help files and help topic IDs for any widget
• New WbPlatformHelpExample provided
• Mini / hover help enhanced to work with EwToolBar tools

• Drag drop tab order setting
• In “Show Tab/Z-Order” mode, the tags are live and may be dragged from

one widget to another

• Graphically enhanced tab/z-order editor, call-out editor, and drag-drop editor
• Widgets are displayed graphically in list (e.g., icon and name)
• Status is displayed graphically

• New toolbar buttons: Morph, Undo, Redo, Select All, etc.

• New menu layout (e.g., Align, Position and Sizing functions have been separated)

• Context sensitive popup menus everywhere (in layout area and on numerous toolbar
buttons)

• Popup widget menu reflects the type and number of selected widgets
• Popup morph menu lists morphing types for the selected widget(s)
• Popup undo and redo menu list undoable and redoable actions
• Popup select all menu lists are widget types in layout (e.g., makes it easy to

select all CwLabels)
• Popup open menu lists recently accessed classes

• Dynamic, context sensitive style selection
• Style comboboxes now have identifying labels
• Right-clicking on style comboboxes allows you to change the displayed

style choices

• New Generic Attribute Editor, Template Editor and Property Editor
• Graphically enhanced (e.g., widgets are displayed with icons and labels)
• Table widget is now used for all attribute/property setting

• Enhanced Attachment Editor
• More default styles
• New thumbnail before and after views

• Enhanced Color Editor
• New palette of the 16 “primary” colors

• New floating tool windows
• Color tool (this is a mini version of the Color Editor)
• Attachment tool (this is a mini version of the Attachment Editor)
• Nudge (move/size by pixel) tool
• Tab & Z-Order tool (bring to front, send to back, etc.)
• Widget Selection tool (select multiple widgets at any level of the widget

hierarchy)
• They remember their last size and position each time they are opened

What’s New? 5

• New Layout features
• New Drag & Drop Reparenting option allows widgets to be reparented

simply by dragging them from one parent to another. For example, a widget
may be dragged from the top level form into a nested form without the need
to cut and paste it. Likewise, a table widget may be dragged into a scrolled
window to make it scrollable.

• Side handles are now available for selected widgets (in addition to the
existing corner handles). This gives more precise control over resizing a
widget in only one direction

• New Vertical and Horizontal Packing functions make it easy to cluster
groups of widget together

• If the ALT key is held down while performing a horizontal or vertical
widget alignment, only the specified sides of the widgets will be aligned
while the opposite sides will not move. This will cause the widgets to grow
or shrink in size (as opposed to moving and retaining their original sizes)

• New Timer support protocols in WbApplication
• Easily set up (and remove) timers
• New #timer event
• Use #startTimer:period: to create a timer
• Use #stopTimer: to stop a timer

• Support for Icons as graphical labels
• New smart WbIcon subclass of CgIcon
• Load icons from .ICO files or from resource DLLs
• Pixmap Editor is now the Graphics Editor and can be used to select

Pixmaps or Icons

• New WbLabeledImage runtime support class
• Combines an image and a label into a single renderable object
• Supports EwRenderContext interface
• Horizontal or vertical orientations supported
• Create toolbars with labeled buttons - see the WbLabeledImageExample

class for an example
• Create fancy iconic lists and tables

• More Code Generation Options
• Optionally use generic IBM Smalltalk code generation
• Optionally generate EtWindow subclasses

• Runtime IC Generation
• New "Runtime ICs" submenu is available from the Transcript's

WindowBuilder menu
• Generate ICs for all WindowBuilder & WidgetKit components
• Generate ICs for either development or runtime images

• Minor window enhancements
• Any window can be made to float above the main WindowBuilder Pro

window

6 Chapter 1 Introduction

• All windows have their own icons (makes it easy to distinguish between
them in the task bar)

• Splitbars are used where appropriate

How this manual is organized
Chapter 2 covers installation of the product.

Chapter 3 of this manual describes the process of creating user interfaces with
WindowBuilder Pro. In it you put together a small “Hello World” program, and become
familiar with the WindowBuilder Pro environment. You learn the basics of writing code
that enables a WindowBuilder Pro interface to interact with other Smalltalk objects.

Chapters 4 and 5 are a functional reference to the WindowBuilder interface.

Chapter 6 describes the code writing process in detail. In it you learn about writing
different kinds of callbacks, passing values to and from the UI, and about the widget
hierarchy.

In Chapter 7, you construct a simple application, using what you have learned in the first
four chapters of this manual.

Chapter 8 is a comprehensive reference to all of WindowBuilder Pro’s commands.

Chapter 9 is an overview of the Common Widgets subsystem in VisualAge.

Chapter 10 is a detailed discussion of callbacks and event handlers.

Chapter 11 is a detailed discussion of each of the standard widgets in VisualAge.

Chapter 12 is a complete widget encyclopedia detailing the protocols and events that each
widget responds to.

Chapter 13 is a reference to the WbApplication window framework provided with
WindowBuilder Pro.

Appendix A is a guide to customizing WindowBuilder Pro.

Appendix B discusses the extended widget framework in VisualAge

Appendix C describes the user interface process model used by VisualAge.

Appendix D details behavioral differences between each platform supported by
VisualAge.

Appendix E discusses the WindowBuilder Pro’s integration with VisualAge.

Typographic Conventions
This manual uses the following typographic conventions.

Technical Support 7

Example of convention Used for

printString Smalltalk code

Style words that you type in

C:\VAST\ABT.EXE file names

input name placeholders for your input

CNTRL+S key combinations

The symbol is used to indicate that a feature is Windows 95/98 or Windows NT
4.0/5.0 specific. An example would be OLE/ActiveX support.

Technical Support
We provide 30 days of free support for WindowBuilder Pro to registered users, Monday-
Friday, from 8:30 AM to 2:30 PM, Pacific Standard Time. If you have purchased
WindowBuilder Pro but have not registered it, we can not provide support. Additional
support contracts may be purchased for a nominal fee and include maintenance upgrades
and bug fixes - contact Instantiations’ Smalltalk Systems Division for details. We prefer
to handle support questions via e-mail at support@smalltalksystems.com or via our
Internet newsgroup at news://nt1.netsmart.com/sts.smalltalk. You can also call in to
our order and support system at 800-808-3737. When contacting us electronically or
when calling in a support request please provide as much information as possible. The
following details will be needed for us to provide prompt support:

1. Version and serial number of your WindowBuilder Pro product

2. Version number of the VisualAge product you are using

3. Version number of the operating system you are using

4. Any special information about your configuration.

We anticipate some confusion over the ownership of problems associated with
WindowBuilder Pro. Please keep in mind that the widgets provided in VisualAge are
products of IBM, not Instantiations. If your problem is related to widget or base system
functionality, please refer to IBM for support. Our technical support is strictly limited to
problems in the runtime or development portions of WindowBuilder Pro. Problems with
runtime specific behavior of base image widgets should be referred to IBM.

8 Chapter 1 Introduction

9

Chapter 2 Installation

This chapter will tell you everything you need to know in order to install WindowBuilder
Pro.

Prerequisites
In order to use WindowBuilder Pro, you must be currently a user of VisualAge 4.02 or
4.5. Earlier, beta versions may also work, but are not guaranteed to work.

If you do not have VisualAge on Windows or OS/2 (either standalone or server), you will
not be able to use this release of WindowBuilder Pro. Please note that if you are using
WindowBuilder Pro with the server version of VisualAge, you must have one license of
WindowBuilder Pro for each developer who loads the product from the server.

We assume that you are familiar with the VisualAge development environment and have
some experience with programming in Smalltalk.

Installation
Check your disk space. The total required for WindowBuilder Pro installation is 8 MB at
minimum. WindowBuilder Pro can be installed either from a CD or from electronic
distribution (ZIP) files. The CD includes versions of the product for Windows and OS/2.
You will undoubtedly need only a portion of these files for your current environment.

To install WindowBuilder Pro from the CD:

Run SETUP???.EXE off of the CD (where “???” is either “WIN” or “OS2”). You will be
asked to enter the path to your VisualAge main directory (e.g., C:\VAST). The
WindowBuilder Pro files will be decompressed and installed in the appropriate
subdirectories off of the main directory. If you would prefer that the setup program not
install into this directory tree, specify an alternative directory as the target. If you specify
a directory that does not exist, the setup program will create it for you. The setup
program will also automatically create subdirectories under the specified directory that
mirror the directories that it would normally install into (make sure that you then
move/copy the files to the indicated directories).

10 Chapter 2 Installation

To install WindowBuilder Pro from electronic distribution files:

WindowBuilder Pro is distributed electronically as a set of ZIP files. The files should be
unzipped and their contents placed into the directories indicated in the next section. The
applicable ZIP files are:

WB45VA.ZIP

Contains all of the files needed to install and run WindowBuilder Pro under either
Windows or OS/2 (e.g., DAT, CTL and DLLs).

WB45DOC.ZIP

Contains the WB45VA.PDF file. This is the on-line help file in Windows help file
format.

File Locations

The following files are installed. Each file should be placed into the appropriate
VisualAge subdirectory (indicated for each file). We have indicated whether a file has
any operating system dependencies.

READMEWB.RTF (\VAST directory)

Read Me file containing installation instructions and an overview of the product. You
should read this file before installing the product.

WB45*VA.DAT (\VAST\IMPORT subdirectory)

This is a VisualAge export library that contains several configuration maps for the
various elements of WindowBuilder Pro.

ABT*.CTL (\VAST\FEATURE subdirectory)

These are the control files that add WindowBuilder Pro to the “Load/Unload
Features...” list. These are not needed if you use the manual loading option below.

STS40VAW.DLL (\VAST directory - Windows only)

This is a resource-only DLL containing bitmaps and icons used by the Windows
version of WindowBuilder Pro. This file should be copied to a directory that is
located on the search path described by the PATH variable in AUTOEXEC.BAT
(e.g., \VAST).

STS40VAO.DLL (\VAST directory - OS/2 only)

This is a resource-only DLL containing bitmaps and icons used by the OS/2 version
of WindowBuilder Pro. This file should be copied to a directory that is located on the
search path described by the LIBPATH variable in CONFIG.SYS (e.g., \VAST).

Technical Support 11

WB45VA.PDF (\VAST directory)

On-Line manual in Adobe Acrobat format. This requires the Adobe Acrobat Reader
to view.

Installing WindowBuilder Pro into the VisualAge Image
To install WindowBuilder Pro, bring up the VisualAge image. There are two ways to
load WindowBuilder Pro into your image:

Automatic Load

From the Transcript’s Tools menu, select the Load/Unload Features... option.
Select “WindowBuilder Pro” from the dialog box. This will load WindowBuilder
Pro into your image.

Manual Load

Bring up a Configuration Maps Browser, and import the “WindowBuilder Pro”
configuration into the library from the WB45*VA.DAT manager file. Then load this
configuration into your image.

Several other configurations may also be loaded:

• “WindowBuilder Pro - Examples” contains all of the WindowBuilder Pro
tutorial and example code.

• “WindowBuilder Pro - Tools” adds a tools/debugging menu to WindowBuilder
Pro. This would be useful for advanced users

When WindowBuilder Pro has finished loading, a new menu called WindowBuilder will
be added to the Transcript menu. You'll launch WindowBuilder Pro and related tools
from this menu. WindowBuilder Pro is now loaded, enabled and ready to go!

12 Chapter 2 Installation

If this copy of WindowBuilder Pro is a fully licensed copy, you may also register it via
the menu item Register under the WindowBuilder menu. Enter your name, company
name, serial number and click the Register button.

If this is an evaluation copy of WindowBuilder Pro and you don’t have a valid serial
number, enter your name, company name and click the 30 Day Eval button. You can
then use WindowBuilder Pro free for 30 days in order to decide whether you wish to
purchase it. You can order the product by calling Instantiations at 800-808-3737.

13

Chapter 3 Overview

This chapter introduces you to creating window based applications with WindowBuilder
Pro. In this chapter you will become familiar with the WindowBuilder Pro environment

• learn about the process of creating window-based applications

• create a simple application

Starting WindowBuilder Pro
After you have completed installation, start your VisualAge for Smalltalk image. Notice
that the installation procedure has added a new menu item, WindowBuilder , to the
System Transcript menu bar.

To start WindowBuilder Pro:

• Choose New Window from the WindowBuilder menu in the System Transcript
window.

The WindowBuilder Pro screen appears, as shown on the next page.

14 Chapter 3 Overview

Design Surface

Attribute bar

Status Bar

Widget Palette

Menu bar

Toolbar

Name Field

Style Combo Box

Floating Tools

WindowBuilder Pro Main Window

Toolbar Displays icons representing shortcuts for menu commands.

Widget Palette Displays icons representing the widgets available for placement in
a window. You can also access these widgets from the Add menu.

Design Surface The work area on which you build your windows.

Menu Bar Groups commands and options under text headings.

Attribute Bar Allows you to add behavior to your widgets.

Name Field Allows you to assign a name to a widget.

Style Combo Box Displays style information about a widget.

Floating Tools Provide quick access to color, attachment, tab & z-order, widget
selection and fine tuning controls.

Status Bar Provides information on currently selected widgets.

Creating a window-based application 15

Creating a window-based application
Application development in WindowBuilder Pro comprises two steps:

• Design the user interface

• Attach callback and event handlers to the interface objects

Designing the user interface is the process of placing buttons, menus and other user
interface objects (collectively called widgets) in a window.

Attaching callbacks and event handlers is the process of associating events with Smalltalk
methods. An event is a mechanism that notifies the application when the user performs a
mouse or keyboard action. An example of an event is clicking the mouse button.

A callback is a mechanism that notifies the application that some higher level action is
performed on a widget.

An event handler is a method that launches when certain operations are performed on
window objects. For example, when a button is clicked, an event handler associated with
the action “activate” might display a message on the screen.

You learn how these steps actually work in the rest of this section. Read the procedures,
then follow along with the example to create a small application consisting of a text
widget and a push button. In this application, clicking the push button will cause the
message “Hello World” to appear in the text.

Step 1. Design the User Interface

When you start WindowBuilder Pro, a window is displayed on the design surface. You
can resize this window by dragging the small red rectangle (called a handle), located at
the lower right corner of the window. If you make the window larger than the design
surface, you can use the scrollbars on the right and bottom of the design surface to scroll
across the window.

Placing a Widget in a Window

You add widgets to the window by selecting them from the widget palette, or from the
Add menu. Notice that the widget palette has two columns. The left column displays
categories of widgets, and the right column displays types of widgets in those categories.
You select a widget by first clicking its category icon button in the left column, and then
clicking the icon button in the right column that represents the type of widget that you
want from that category. For example, to select a check box, first click the button icon in
the left column.

16 Chapter 3 Overview

When you do so, the right column icons change to display the various types of buttons.
Click the check box icon in the right column to select the check box.

Remember that you can also select a widget from the Add menu. You may find it easier to
use this method until you have learned to associate the widgets with their icons. Note that
if you allow the mouse pointer to linger over any toolbar icon, a popup help window will
appear describing what it is.

To place a widget in a window:

1. Select the widget that you want to place in the window by clicking the Category icon
in the left column, and the Type icon in the right column.

 Or, from the Add menu, choose the menu corresponding to the widget category, then
choose the type of widget that you want.

2. Move the pointer to the window. The pointer becomes a cross hair. This indicates
that the cursor is loaded with the widget, and ready to place in the window.

3. Position the cross hair where you want the upper left corner of the widget to be.
Hold the left mouse button down and drag the cross hair to draw the widget. You can
also just click and release the mouse button which will allow WindowBuilder Pro to
place the widget on the screen, using the widget’s default size.

4. When the widget is the size you want, release the mouse button. The widget appears
in the window, surrounded by four small black rectangles (handles).

To resize a widget:

• Point to one of the corner handles, and drag it until the widget is the size you want.

• If you want to resize in a horizontal or vertical direction only, use the sizing handles
on the sides of the widget

To move a widget:

• Point anywhere on the widget other than a handle, and drag the widget to the new
location.

Naming and Labeling a Widget

All widgets must have a name. This name is used only as a code reference; it is not
visible to the application user. This name is necessary if you want to direct messages to
the widget. When a widget is added to the design surface, the system automatically

Creating a window-based application 17

assigns it a default name (generally its type followed by a number). If you want to
reference the widget in your code, you will likely want to replace this default name.

To change the name of a widget:

• Type the name in the Name field in the Attribute panel.

Each widget must have a unique name. If more than one widget shares the same name,
unpredictable behavior may result.

A label is the actual text that will display on the face of the widget. Not all widgets can
display a label. Widgets that can display a label have, by default, their generic title as
their default label. For example, a CwPushButton has “PushButton” as its default label.
You can replace the generic title aCwPushButton with your own label. Labeling a widget
can be accomplished by directly editing the widget or by using the widget’s attribute
editor. There are attribute editors for every kind of widget. There is also a generic
attribute editor.

For More Information on Attribute Editors, see Chapter 9, Command Reference.

To add a label to a widget by direct editing:

1. Point to the widget, hold the ALT key and click. The widget will then enter direct edit
mode.

2. Type the text of the label.

If the widget only supports a single line label (for example, CwPushButton), press ENTER

to finish direct editing and see the results. If the widget supports a multi-line label (for
example, CwLabel), click anywhere outside of the widget to finish editing (pressing
ENTER will start a new line). Pressing ESC will end direct edit mode without accepting
any changes. Note that almost all of the widgets in the system support direct editing. For
example, a WbScrolledList will allow you to set its contents in direct edit mode. Using
direct edit with a CwForm or CwRowColumn widget will allow you to edit its children.

To add a label to a widget by using the widget’s attribute editor:

1. Point to the widget and double-click. The attribute editor for the widget appears.

2. Type the text of the label in the Label String field.

18 Chapter 3 Overview

3. Click Apply to see the result immediately. When you are satisfied, click OK to close
the attribute editor.

Designing the “Hello World” Application

Now you have the procedures necessary to draw the widgets for the sample application.
You’ll use a CwPushButton and a CwText widget. Place the widgets into a blank window,
and add names and labels to them as follows:

Widget Type Name Text:

CwPushButton pushMeButton Push Me

CwText greetingField (none)

When you are done, the screen should look similar to this:

“Hello World” application

Step 2. Attaching callbacks and event handlers to interface objects

You attach callbacks and event handlers to the currently selected widget by using the
Callback Editor.

For example, if you want a message to display in a text widget when the user clicks a
button, you select the Activate callback from the Callback List, click Add, and type a
method name in the Methods: entry field. Standard callback method names in VisualAge
are three part selectors of the form “descriptiveName:clientData:callData :”. You
only need to type the descriptive name followed by two colons; WindowBuilder Pro will
automatically append “clientData:callData: ” for you.

Creating a window-based application 19

In the Class Browser, add the code to display a message in a text widget. The application
then knows that it is to display a message in a text widget when the button is clicked. This
is how you add behavior to user interface objects.

For More Information on the Callback Editor, see Chapter 8, Command Reference.

To attach a callback to a widget:

1. Select a widget and click the callback editor toolbar button.

 Or, choose Callbacks... from the Attribute menu.

 The Callback Editor appears. Select the type of callback to which you want the
application to respond. A full description of the callback is displayed to the right of
the callback list.

2. Click the Add button (or double-click the callback type).

3. Specify the receiver of the callback by selecting a widget from the Receiver list box.

 Generally, the receiver is the application itself (“self”). In some cases, you may want the
receiver to be some other object, such as one of the other widgets in the window or
one of the instance variables of the application (for example, a model object).

4. Type the name of the method in the Methods: combo box, followed by two colons.
When you type the second colon, the editor automatically fills in the rest of the
method name by appending clientData:callData : for you.

 Zero (unary) and single argument callback handlers are also supported. Leave the second
colon off, if you do not want the method name expanded to the standard three
argument style.

20 Chapter 3 Overview

5. Type client data, if any, in the Client Data combo box.

 Client data is any arbitrary information that you want to pass to the callback handler (this
is the second argument of the callback name that you just defined). Generally, the
client data will be nil. Occasionally, you may want to pass a different value such as a
String, a Symbol, an Integer, or a Class. It is up to you to decide what to do with this
client data in the callback method itself.

 Unary callback handlers do not pass along any arguments and thus do not allow client
data to be specified.

 For one-argument callbacks, the default argument that is passed is the originating widget.
Specifying a unary selector as the client data will cause the attribute of the
originating widget specified by that selector to be passed as the argument (e.g.,
specifying #selectedItem as the client data for the Single Selection Callback of a
listbox will cause the selected item to be passed as the argument).

6. Click the OK button when you are done.

Before you can enter code for event handler methods, you must save the window. This
allows WindowBuilder Pro to generate the stub (empty) event handler methods for you.

To save a window to disk:

1. Choose Save from the File menu or click the Save button in the toolbar

2. The Create Class dialog will appear.

3. Type the class name for the window in the New Class Name combo box.

4. Select a superclass from the Select Superclass list box.

Creating a window-based application 21

5. Select an application in which you want the class to be created.

 You must have an open edition of an application, or you will not be able to save the
window. If you do not have an open edition, cancel the Create Class dialog, go to the
Application Manager. Create either a new application, or a new edition of an existing
application (the application must have WbApplicationFramework in its prerequisite
chain). You can also click the New button to automatically create a new application
with the selected superclass as a prerequisite.

6. Click the OK button to save the class and close the dialog.

You can enter code for event handler methods in any Class Browser. WindowBuilder Pro
provides a button that brings up a browser on the class that you have created for the
window.

To enter code for an event handler:

1. Click the Class Browser icon in the lower left of the screen. A browser for the
subclass that you have created appears.

2. If the Public/Private button is displaying public, change it to private by clicking it.

 By default, WindowBuilder Pro categorizes the callback methods it generates as private.
This can be changed by using the Property Editor (accessible via the Options |
Properties menu).

3. If you have method categories enabled, select the Callbacks category.

4. Locate and select the method corresponding to the method name that you entered in
the Method combo box in the callback editor.

5. Type the code for the method.

 Note that if long callback method annotations are enabled, the initial comment that
WindowBuilder Pro generates for the method will describe all three of the arguments
that are passed in to the method. Once you become more familiar with the system,
you may want to turn off the long callback annotation feature via the Property
Editor.

6. Save the method, and close the Class Browser when you are done with it.

Adding Callbacks and Event Handlers to the “Hello World” Application.

Now you are ready to enter the event handler code for the “Hello World” example
application.

1. Select the push-button, and click the callback editor toolbar button. The Callback
Editor appears.

22 Chapter 3 Overview

2. Select the Activate callback in the Callback List.

3. Type “sayHello::” in the Methods combo box. Remember to include the two colons.
The method name is automatically expanded to “sayHello:clientData:callData:”

4. Click OK to close the callback editor.

5. Save the window, and select the Class Browser button to bring up a browser.

6. Display the private methods for the Callbacks category. Select the
#sayHello:clientData:callData: method, and enter the code for the method,
as shown below.

7. Save the method, and close the Class Browser.

Testing an application

WindowBuilder Pro makes it easy to test your application. You can do so at any stage of
the development process and switch between edit mode and testing at the click of a
button.

To test an Application:

• From the toolbar, click the Test Window button.

Creating a window-based application 23

Or, choose Test Window from the File menu.

Or, press CTRL+T.

Testing the “Hello World” Application

To test the “Hello World” application, click the Test Window button, or choose Test
Window form the File menu. When the window appears, click the Push Me button.
“Hello World” appears in the CwText widget, as shown below.

“Hello World” application

Congratulations! You have completed your first WindowBuilder Pro application.
Although this is a small example, you can see how WindowBuilder Pro makes creating
windows-based applications simple. You also have an understanding of the general
application-creation process. In the next two chapters, you’ll learn in detail about the
features of WindowBuilder Pro.

24 Chapter 3 Overview

25

Chapter 4 Using WindowBuilder Pro

In chapter 3, you learned that application development using WindowBuilder Pro consists
of creating the user interface, and attaching callbacks to interface objects. In this chapter,
you’ll learn more about the tools Window Builder Pro provides to assist you in creating
the user interface. Specifically, you’ll learn about:

• Editing existing windows

• Positioning and sizing windows

• Positioning and sizing widgets

• Perform operations on multiple widgets

• Using the grid

• Setting the tab order for widgets

• Changing the fonts, colors, and styles of widgets

• Reframing widgets

• “Morphing” a widget from one type to another

• Factoring code using call-outs

• Using the Callback Editor

• Creating callbacks visually

• Managing Outboard Windows

• Using Popup Widget Menus

Editing Windows
You can easily edit any windows that you have created and saved with WindowBuilder
Pro. WindowBuilder Pro generates all window definitions as subclasses of
WbApplication. WbApplication is a powerful and flexible abstract superclass providing a
generalized windowing framework (which is not found in the base image).

26 Chapter 4 Using WindowBuilder Pro

To edit an existing window:

1. Choose Open from the File menu or click the Open button in the toolbar.

 Or, choose Edit Window ... from the WindowBuilder Pro menu on the system Transcript.

2. The Edit Class dialog appears, as shown below.

Positioning and Sizing Windows 27

3. Select a window to edit.

The list in this dialog contains only those windows built by WindowBuilder Pro. The
classes are listed alphabetically. They can also be viewed hierarchically or by frequency
of access. A handy application filter is provided to help you look at just the classes that
you wish. A user definable filter is also provided in which you can add an class you like
(generally an abstract superclass for one or more of your own windows). As a further
convenience, WindowBuilder Pro keeps track of the most recently accessed and most
frequently accessed classes.

Note: Right-clicking on the Open button in the toolbar will popup a menu listing the
most recently edited windows.

Positioning and Sizing Windows
Two buttons are used to position and resize both windows and widgets. They are located
on the status bar, as shown below.

To set the initial window position:

1. Click the Position button.

2. Type a point representing the desired upper left coordinate of the window.

3. Click OK to close the dialog. The window will reposition when you test the
application.

The initial position of a window is its location on the screen at runtime.

To set the size of a window:

1. Click the Window Size button on the status bar.

2. Type a point representing the desired width and height of the window.

3. Click OK to close the dialog. The window resizes immediately.

28 Chapter 4 Using WindowBuilder Pro

The Position and Size icons can also be used to position and resize selected widgets.

Positioning and Sizing Widgets
In the last chapter you learned how to position widgets by dragging and placing them in a
window. There may be times when you need to position widgets at specific coordinates.
You can enter coordinates directly by clicking the Position and Size buttons. You can also
use these buttons to position and size windows. See the section, “Positioning and Sizing
Windows.”

To position a widget:

1. Click the Position button, or choose Set Widget Position from the Size menu. A
dialog appears, prompting you for the coordinates of the upper left corner of the
widget.

2. Type the new coordinates.

3. Click OK . The widget immediately moves to the new position.

To size a widget:

1. Click the Size button, or choose Set Widget Size from the Size menu. A dialog
appears, prompting you for the size of the widget.

2. Type the new coordinates.

3. Click OK. The widget immediately resizes.

Positioning and Sizing Widgets 29

Remember that the size of the widget includes the widget’s borders (if any).

Fine-tuning a Widget’s Position

You may need to make fine adjustments to the position or size of a widget. These
adjustments are available on the Position and Size menus, but are more easily made using
their accelerator keys (for information on accelerator keys, see Chapter 5, Menus).

To move a widget in single-pixel increments:

1. Select the widget that you want to move.

2. Press CTRL and the arrow key corresponding to the direction toward which you want
to resize.

 Or, choose Move By Pixel from the Position menu. A submenu will appear, displaying a
menu item for each direction.

 Or, open up the floating Nudge tool via the Options | Tools | Nudge command and use
the top row of buttons.

3. Choose the direction toward which you want to move the widget.

Resizing a widget a pixel at a time is a similar procedure.

To adjust the size of a widget by single pixel increments:

1. Select the widget that you want to resize.

2. Hold down the CTRL and SHIFT keys and press the arrow key corresponding to the
direction toward which you want to resize.

 Or, choose Size By Pixel from the Size menu. A submenu will appear, displaying a menu
item for each direction.

 Or, open up the floating Nudge tool via the Options | Tools | Nudge command and use
the bottom row of buttons

3. Choose the direction toward which you want to resize the widget.

30 Chapter 4 Using WindowBuilder Pro

Autosizing Widgets

When you add a text label to a widget, you can have the widget size around the text
automatically, with a border. This is called autosizing. Autosizing sets the size of a widget
to its preferred extent as defined by the widget itself. For example, for a CwLabel or
CwPushButton widget, the size would be just large enough to fully contain the widget’s
label.

To Autosize a widget:

1. Double-click the widget you want to automatically size. The attribute editor for the
widget appears.

2. In the Label String field, type the text label as you want it displayed.

3. Click OK to accept the change and close the attribute editor.

4. Choose Auto Size Selection from the Size menu, or click the Autosize button. The
widget will size with a border around the text.

By default, autosizing is always on for instances of CwLabel and its subclasses (for
example, CwPushButton). Instances of these classes automatically size around their
labels. If you do not want a class of widgets to autosize, set the Recompute Size attribute
of the widget class to false in the Template Editor. This will affect any new widgets of
that class that you add to the edit window. Individual widgets can be told not to autosize
by unchecking the Recompute Size checkbox in their attribute editors. You can still
autosize a specific widget by typing its label in the widget’s attribute editor and clicking
the Autosize button.

Direct Editing

Many of the widgets that are editable by WindowBuilder Pro also support direct editing
of their labels or contents.

To directly edit a widget:

1. Click the widget with the ALT key pressed. Either a single or multi-line edit region
will appear, depending on the type of widget.

2. Type the desired label.

3. Click anywhere outside of the edit region. The change takes effect immediately.

Operations on Multiple Widgets 31

Using direct edit with a CwForm, CwRowColumn, CwFrame, WbFrame,
CwScrolledWindow or any of the Notebook widgets allows you to manipulate the
children of that widget. If the Nested Direct Manipulation option in the Options menu is
enabled, you can directly click on a child widget and immediately put its parent(s) into
direct edit mode. Children may be added to any of the above widgets by dropping the
widget within the boundaries of the desired parent. Selecting multiple widgets follows
the rule that only widgets at the same level (with the same parent) may be selected
simultaneously.

If the Allow Reparenting option in the Options menu is enabled, you can drag widgets
from one parent to another. For example, a widget may be dragged from the top level
form into a nested form without the need to cut and paste it. Likewise, a table widget may
be dragged into a scrolled window to make it scrollable.

Operations on Multiple Widgets
It is useful to be able to perform simple editing operations on groups of widgets, such as
moving and deleting. This section covers how to create a group of widgets, and then
discusses operations that are specific to widget groups.

Placing Multiple Widgets

You may need to place several widgets of the same type in a window. Using the left
mouse button to place a widget unloads the widget from the cursor, requiring you to re-
select the widget.

To place more than one of the same type of widget:

• Place the widget using the right mouse button. This will leave the cursor loaded with
that widget, ready to place in another position.

Selecting Groups of Widgets

There are five way to create a group of widgets.

• The Select menu options: Select All, Select All In Same Class, Select All In Same
Hierarchy .

• The Select All and Select All In Same Class buttons in the lower left corner of the
WindowBuilder Pro window

• The Rubberband method (also known as the marquee selection method).

• The SHIFT-select method.

• The floating Widget Selection tool.

32 Chapter 4 Using WindowBuilder Pro

To select widgets using the Select menu options from the Edit menu:

• Do one of the following:

To select Do this

All of the widgets on the screen. Choose Select All.

All widgets of the same type. Select one widget of the desired type. Choose
Select All In Same Class.

All widgets in the same class or
subclass.

Select one widget of the common superclass.
Choose Select All In Same Hierarchy.

The Select All In Same Class command is very useful in situations where you want to
change an attribute of all widgets of a certain type that might be geographically dispersed
around the screen.

To select widgets using the Select buttons:

• Do one of the following:

To select Do this

All of the widgets on the screen. Click the Select All button.

All widgets of the same type. Select one widget of the desired type. Click the
Select All In Same Class button.

All widgets of the same type. Right-click on the Select All button. Select a
widget type from the popup menu.

To select widgets using the rubberband method:

1. Click and drag outside of the area containing the widgets you want to select. A
selection box outline follows the mouse pointer.

2. Release the mouse button when all the widgets are enclosed within the selection box.
The box disappears, and handles appear on all the widgets.

You are now able to perform operations on the widget group. Many operations that can
be performed on individual widgets can be performed on groups, such as moving and
deleting.

Operations on Multiple Widgets 33

Notice that the handles of the highest widget in the z-order (the order of overlapping
widgets is called the z-order) are solid black boxes, and the rest of the widgets’ handles
are outline boxes. This indicates that WindowBuilder Pro considers the widget with the
black handles to be the first widget selected. This widget is called the model widget, for
reasons that will become apparent in the discussion below.

Sometimes the highest widget in the z-order is not the widget you want to be the model.
When you need to have more control specifying the model widget, choose the following
method.

To select widgets using the SHIFT-select method:

• Select the first widget in the group. Holding down the SHIFT key, click the other
widgets that you want in the group.

This method gives you complete control over which widget WindowBuilder Pro will
consider the model widget for the group. This is important in the operations that follow.

If you prefer the VisualAge “target-is-last” mode of operation, select the Target Is First
command from the Options menu. This will uncheck the command and reverse the
selection order. Now the last widget selected will be the model. Although counter-
intuitive at first, this method is useful in certain situations. For example, you can
rubberband-select a group of widgets and then SHIFT-deselect and reselect the desired
model widget.

To select widgets using the Widget Selection tool:

1. Choose the Widget Selection command from the Options | Tools menu. The Widget
Selection tool appears as shown on the next page.

2. Select any of the widgets from the list.

The widget list can display the window’s widgets either hierarchically or alphabetically
by name or by type. It can also filter the list to show only one type of widget at a time.
The All button in the upper right corner makes it easy to select all of the widgets in the
window or all the widgets of a particular type.

34 Chapter 4 Using WindowBuilder Pro

Replicating Widget Sizes

Often you need to make widgets the same size. You can either make one widget and make
multiple copies, or use the Replicate buttons.

To replicate widget sizes:

1. Create the desired widgets.

2. Set one of the widgets to the desired size, and leave it selected. This is the model for
the other widgets.

3. SHIFT -select the remaining widgets.

4. Choose Replicate Width from the Size menu, or the Replicate Width button.

 The widgets immediately assume the width of the model widget.

5. Choose Replicate Height from the Size menu, or the Replicate Height button.

 The widgets immediately assume the height of the model widget.

Operations on Multiple Widgets 35

Distributing Widgets

Placing widgets exactly equal distances from each other in a window can be a time
consuming process. WindowBuilder Pro requires only that you establish the positions of
the end widgets, and then automatically distributes the rest evenly between the end
widgets.

To distribute widgets:

1. Position the two endpoint widgets where you want the ends of the row or column to
be. Leave one of the endpoint widgets selected.

2. SHIFT -select the rest of the widgets to be distributed. Make sure to select the other
endpoint last.

3. Choose Distribute Horizontally or Distribute Vertically from the Position menu, or
click one of the Distribute buttons.

4. Choose the direction in which you want to distribute the widgets. The widgets
immediately distribute evenly between the two endpoint widgets.

The key to this operation is positioning the endpoint widgets. Note that WindowBuilder
Pro distributes the other widgets equally in the space between the endpoint widgets, not
in the space between the edges of the window. Note also that the widgets don’t need to be
aligned for distribution to work properly.

If the ALT key is held down while performing a horizontal or vertical widget distribution,
the widgets will be distributed based on their relative position rather than the order in
which the were selected.

In the example shown below, the four buttons have been selected in numeric order with
Button 1 first, and Button 4 last. Selecting Distribute distributes them, resulting in the
window shown in the third picture.

36 Chapter 4 Using WindowBuilder Pro

Buttons, before vertical Distribute operation. Button 1 and Button 4 are in desired
vertical position. Button 1 has been selected first, Button 4 has been selected last.

Button 2 and Button 3 have been moved to the desired horizontal position in
preparation for the Distribute operation.

Final position of buttons, after Distribute operation.

Operations on Multiple Widgets 37

Aligning Widgets

Precise alignment of rows of widgets is important to the look of an application. It can be
difficult to manually arrange a row of widgets so they align along one edge.
WindowBuilder Pro provides tools that automatically align widgets along their tops,
bottoms, or sides.

To align widgets:

1. Move one of the widgets to the correct horizontal or vertical position, and leave it
selected. This is the model widget for the alignment operation.

2. SHIFT -select the rest of the widgets that you want to align.

3. Click the button corresponding to the side of the widgets that you want aligned. The
widgets align immediately.

A button is available for each choice. These choices are also available from the Align
menu.

Buttons, ready to be aligned. Button 1 is the model widget.

Buttons after alignment.

38 Chapter 4 Using WindowBuilder Pro

Note: If the ALT key is held down while performing a horizontal or vertical widget
alignment, only the specified sides of the widgets will be aligned while the opposite sides
will not move. This will cause the widgets to grow or shrink in size (as opposed to
moving and retaining their original sizes)

Using the Grid
WindowBuilder Pro has a snap-to-grid feature. When widgets are placed, sized and
moved, they snap to the hidden grid. By default, the distance (in pixels) between any two
grid lines is 4 @ 4. You can change it to any size you want by using the Set Grid Size on
the Options menu or via the popup menu on the Grid button. You can turn the grid off by
unchecking Use Grid on the Options menu. WindowBuilder Pro saves the setting
between sessions.

To change the grid size via the Set Grid Size command:

1. Choose Set Grid Size from the Options menu, or right-click the Grid button. A
dialog appears, displaying a point value.

2. Type the new point value, where the x value represents the number of pixels between
vertical grid lines, and the y value is the number of pixels between horizontal grid
lines.

3. Click OK to close the dialog.

To change the grid size using the Grid button’s popup menu:

1. Right-click on the Grid button in the lower right corner of the WindowBuilder Pro
window.

2. Select an appropriate grid size from the popup menu.

Setting the Tab Order for Widgets 39

To display the grid:

• Choose Draw Grid from the Options menu, or click the Grid button.

Setting the Tab Order for Widgets
It is important to consider users who prefer to navigate the application by using the
keyboard, rather than the mouse. You can allow users to use the tab key to move from
widget to widget. To do so, you must set the order in which the widgets are accessed
when the user presses the tab key. By default, the tab order is the order in which the
widgets are physically added to the screen. In other words, the first widget added to the
screen is considered the topmost widget in the z-order. WindowBuilder Pro provides a
powerful, yet easy to use, tab order editor to manipulate this order.

To see the current tab and z-order:

• Choose Show Tab & Z-Order from the Options menu.

Or, ALT -click the Tab & Z-Order button in the lower left corner of the
WindowBuilder Pro window

A round, color-coded number appears on each widget.

The number indicates the widget’s position in the z-order. The color of the circle
indicates the widget’s status as a tab stop.

Red indicates widgets that are both tab stops and tab groups (for example, full tab
stops).

Yellow indicates widgets that are tab stops but not groups (for example, buttons in a tab
group).

White indicates widgets that are not tab stops (for example, labels and separators).

40 Chapter 4 Using WindowBuilder Pro

To set the tab order via the Tab & Z-Order Editor:

1. Click the Tab & Z-Order button, or choose Tab & Z-Order from the Attributes
menu.

 The Tab & Z-Order Editor appears, as shown below

Setting the Tab Order for Widgets 41

2. Select the widget or widgets that you want to reposition.

3. Click either the , , or buttons to change the order of the selected
widgets. If a discontinuous set of widgets is selected, they will all be collected
together and follow the movement of the first widget in the selection.

4. Click either the Tab or No Tab buttons to specify whether the selected widgets are to
be tab stops or not. Full tab stops are indicated by a red circle next to the name of the
widget.

5. Click either the Group or No Group buttons to specify whether the selected widgets
are tab groups as well. Widgets that are not tab groups become part of a single
general tab group (this is primarily useful for button widgets). Widgets that are tab
stops but not tab groups are indicated by a yellow circle.

To set the tab order via drag and drop:

1. Choose Show Tab & Z-Order from the Options menu.

 Or, ALT -click the Tab & Z-Order button in the lower left corner of the WindowBuilder
Pro window

2. Drag the color-coded tags from one widget to another.

To make a widget first in the tab order, find the tag labeled “1” and drag it to the desired
widget. It will now become the first widget in the tab order (the widget that originally
held that position will now become the second widget in the tab order).

Re-ordering Widgets

When you select widgets in the Tab & Z-Order Editor, they are also selected in the design
area of the main editing window. Conversely, when you select widgets in the main editing
window they are selected in the Tab & Z-Order Editor as well.

To re-order all of the widgets on the screen (or any subset):

1. SHIFT -select the widgets in the desired order. As you select them, they become
selected in the Tab & Z-Order editor.

2. Click either the , , or button (at least one will be available) in the Tab
& Z-Order Editor. The selected widgets re-order immediately in the order in which
you selected them.

3. CTRL -clicking on the Tab & Z-Order button in the main editor will also cause the
widgets to re-order.

42 Chapter 4 Using WindowBuilder Pro

The initial, empty window is the top level. ALT -clicking to direct edit a CwForm or
CwRowColumn widget moves you down a level (in other words, all editing functions
apply to that CwForm or CwRowColumn). The Tab & Z-Order Editor only displays
widgets at the current editing level. The Show Tab & Z-Order command only applies to
the current editing level.

Pay special attention to the interaction between tab stops, tab groups and the initial tab
stop. The initial focus goes to the first widget that is a tab stop and is not a tab group (for
example, a button that is part of the top level tab group). If all widgets are tab groups,
focus goes to the first widget that is a full tab stop (i.e., both a tab stop and a tab group,
like a CwText). Widgets which do not receive focus are not part of the tab order, whereas
they are part of the z-order (for example, CwLabels and CwSeparators).

Note: WindowBuilder Pro also provides a floating tab & z-order tool. This tool is used
for fine-tuning the tab and z-order of the selected widgets without the need to open the
Tab & Z-Order Editor. Access this tool via the Options | Tools | Tab & Z-Order
command.

Changing Fonts
By default, the standard system font is used for all widgets. You can change the font with
the Font Editor.

To change the font:

1. Select the widget or widgets whose font you wish to change.

2. Click the Font button, or choose Font from the Attributes menu.

 The standard VisualAge font dialog will appear, as shown on the next page.

3. Specify the Family, Style and Size of the desired font.

4. Click OK to confirm the change.

Setting Colors 43

Setting Colors
Each type of widget in the system has a default foreground and background color
associated with it. The Color Editor provides a means to change these colors and any
other color attributes a widget might have.

To set the color:

1. Select the widget or widgets whose colors you wish to change.

2. Click the Color button, or choose Color from the Attributes menu.

 The Color Editor appears, as shown below.

3. Select the color attribute that you wish to change (generally just “Background Color”
and “Foreground” color). When a color attribute is selected, the name of the color

44 Chapter 4 Using WindowBuilder Pro

will be selected in the color list and the RGB values and a rendering of the color will
appear in the RGB color editor on the right.

4. Either select the desired color from the color list, color palette, or use the RGB color
editor’s scrollbars or entry fields to set the red, green and blue values of the desired
color. When you set one of the RGB values, the system selects the closest matching
color from the color list for you.

5. Click OK to confirm the color choice.

The Color Editor provides three different color lists: “Base Color”, “R3 Color” and “R4
Color”. The first list provides the standard 16 colors supported by the default palettes on
all platforms. The other lists are colors supported under various versions of UNIX (for
example, R3 & R4). The VisualAge color model, like the windowing system, is based on
UNIX Motif. The list of supported colors varies by platform and video driver capabilities.
If you select a color that is not in the Base Color list, the operating system tries to match
that color to the best of its ability. Windows responds to a request for an unsupported
color by displaying the closest color from its default palette. OS/2 responds by dithering
the colors that it is capable of displaying.

The first item in the color list will always be “<Default>”. Selecting this color will set the
widget to use its own default colors for that attribute. When a widget has been defined to
use its own default color, no color attribute code will be generated.

Note: WindowBuilder Pro also provides a floating color tool. This is tool can be used to
set the colors for the selected widgets without the need to open the Color Editor. Access
this tool via the Options | Tools | Color command.

Styles 45

Styles
Each widget available to WindowBuilder Pro supports many attributes. One or more of
these attributes represent the major style of the widget. For example, Left, Right or
Center aligned is the major style for CwLabels. While the attribute editors for each
widget provide a means for changing this style information, WindowBuilder Pro also
provides a fast path for setting the major style attributes of the widget.

The style comboboxes update their styles to reflect the currently selected widgets in the
design surface. Note that the selected widgets do not need to be homogeneous. If a
heterogeneous collection of widgets is selected, the two style comboboxes will reflect
attributes that all of the selected widgets have in common (e.g., enable/disable). If all of
the selected widgets have the same value for the displayed attribute, this value will be
shown in the combobox. If they have differing values, the combobox value will be empty.
In any case, selecting a value from the combobox will assign that attribute setting to all of
the selected widgets

To change the style:

1. Select the widget or widgets for which you wish to change the style. The contents of
the two Style combo boxes update to reflect the style options for the selected
widgets.

2. Select the desired style. Visible changes, if any, will be reflected immediately.

The style comboboxes are completely customizable. Right-click on either of them to get
a popup menu of other style attributes specific to the selected widgets. Selecting a new
attribute will update the combobox’s label and contents. If the first style combobox is
changed, the second will adopt the style attribute formerly held by the first. Think of the
two style comboboxes as showing you a window on a collection of attributes where the
most important two will be displayed. By changing the attribute settings, you are
essentially re-ordering the list and telling WindowBuilder Pro what you think the most
important attributes are. Any changes you make will be remembered so that the next time
you select a widget of the same type, the two comboboxes will reflect the last settings
that you made.

46 Chapter 4 Using WindowBuilder Pro

Reframing Widgets
Most applications that you create in WindowBuilder Pro will have resizeable windows.
When a window resizes, the widgets within it usually resize or move as well. In
VisualAge, this is accomplished by specifying the widget’s attachments. All kinds of
attachments may be specified: attachments with respect to the application window;
attachments with respect to any other widget in the form. Proportional attachments and
fixed size attachments can also be specified.

To set the attachments:

1. Select the widget or widgets whose attachments you wish to change.

2. Click the Attachment button, or choose the Attachments command from the
Attributes menu.

 The Attachment Editor appears, as shown on the next page.

3. Set the desired attachment type for each of the widget’s four sides. For the left side,
you can set whether the coordinate should always be a fixed distance from the form’s
left side, the form’s right side, a fixed relative to its own right side (None), relative
(proportional) to its initial position on the form, or fixed relative to the right side of
any other widget.

4. Click OK or Apply to confirm the attachment choices.

Reframing Widgets 47

At least one side in both the vertical and horizontal directions must be specified. If, for
example, a widget’s left side is fixed to its own right side, the attachments for the
widget’s right side must be fixed somehow to its form; otherwise you’d have a pretty
confused widget floating around!

As an alternative to fixing the left side to something, you can also set it proportionally. In
this case, the left side will always be in the same proportional position within the
window, no matter how large or small you size it.

As mentioned above, this discussion holds true for all four sides of a widget. Since each
side can be specified separately from all other sides, you can create many different
possible variations, covering most common resizing situations. To help illustrate the
possibilities, we’ve provided the following examples:

Before After

Fixed to upper left corner
(the default)

Before After

Fixed to lower right corner

Before After

Fixed on all sides

Before After

Fixed on top, bottom and
left sides

To set the attachments for multiple widgets:

1. Multiple-select the desired widgets.

2. Click the Attachments button.

For more information on multiple selection, see Selecting Multiple Widgets.

If the Update Outboards option is on, the Attachment Editor may be left open. As
widgets are selected in the main editor, their current settings will be reflected in the

48 Chapter 4 Using WindowBuilder Pro

Attachment Editor. They may then be changed, and those changes locked in, by clicking
the Apply button.

Attachment Styles

Many different attachment combinations can be specified. However, you will probably
only use a few of the possible combinations on a frequent basis. Recognizing this, the
Attachment Editor provides a fast path to the common attachment combinations, or
styles. The toolbar and listbox at the top of the Attachment Editor provide access to all of
the most common attachment styles. As you select a style, the individual setting for each
side are reflected in the combo boxes below and the thumb-nail view on the right side of
the window.

Locking a button to the lower right corner of the windowan operation that would
normally take four stepscan be accomplished in one step by selecting the “Fixed
Distance from Bottom-Right Corner” style or selecting the appropriate toolbar button.

To Add a new attachment style:

1. Set the desired combination of styles in the combo boxes at the bottom of the screen.
If you select a combination that is not already defined, the Add button will become
enabled.

2. Click the Add button.

3. Enter the name for the new style in the prompter that appears.

4. Click OK to save your style.

Widget Morphing 49

Once you have saved a style, WindowBuilder Pro remembers it for the future. The names
of existing styles may be changed by clicking the Change button. Styles that are not
needed may be deleted by clicking the Remove button.

Note: WindowBuilder Pro also provides a floating attachment tool. This is tool can be
used to set the attachments for the selected widgets without the need to open the
Attachment Editor. Each button in the tool represents a different attachment style. Access
this tool via the Options | Tools | Attachments command.

Widget Morphing
Morphing allows you to quickly change any widget from one type to another, allowing
for powerful “what-if” style visual development. For example, a WbScrolledList instance
could be converted into a CwComboBox or WbRadioBox. Common attributes are
automatically translated. Attributes not needed by the target class are lost. Attributes not
provided by the source class are defaulted.

To morph a widget:

1. Select the widget or widgets that you wish to morph.

2. Select Morph ... from the Attributes menu or click the Morph button.

3. Select the new widget class from the list of widget types presented.

4. Click OK to morph the widget into the new type.

Right-clicking on the Morph button in the toolbar will popup a menu containing all of
the lists morphing types for the selected widget. If a widget class has subclasses, all of
those are listed as well.

50 Chapter 4 Using WindowBuilder Pro

Warning: Some care is needed on your part when morphing a widget into a radically
different type. WindowBuilder Pro maps over any attributes the two widgets have in
common as well as event callbacks for any shared events. You must be careful that the
event callbacks do, in fact, make sense for the new type. For example, a Default Action
Callback for a CwText would not be appropriate for an CwPushButton. It is
recommended that morphing be limited to similar classes of objects.

Using Call Outs
Call Outs give you the opportunity to exercise more control over how your window
definition code is factored. For a large window with lots of widget definitions,
WindowBuilder Pro will generate a very large #addWidgets method. The Call Out
Editor allows you to have any top level widget (e.g., child of the main form) generated
into its own method. If a CwForm, CwRowColumn, CwScrolledWindow, Frame or
Notebook widget is so designated, it and all of its nested children will be generated in the
specified method.

Using the Callback Editor 51

To create a call out:

1. Open the Call Out Editor.

2. Select a top level widget in the left hand list for which you wish to add a call out.

3. Click the button to move the widget to the right hand list.

4. Optionally modify the automatically created call out selector. Note that this should
be unary selector (no arguments).

5. Click OK to confirm the call out specifications.

To remove a call out:

1. Open the Call Out Editor.

2. Select the top level widget in the right hand list from which you wish to remove the
call out.

3. Click the button to move the widget to the left hand list.

Using the Callback Editor
Actions performed on widgets by the user must be communicated back to the application.
One mechanism used for this communication is a callback. A callback method defines
actions to perform in response to some occurrence in a widget. Callbacks are normally
registered just after widgets are created. For example, when a push button widget is
created, the application usually registers an Activate callback that is executed when the
button is activated by the user clicking on it. Although it is not necessary for the
application to register callbacks, without them the application is unable to take action
based on the user’s interaction with the widgets.

To define a callback or event handler for a widget:

1. Select the widget or widget to which you would like to register a callback

2. Click the Callback button, or choose Callbacks from the Attributes menu.

 The Callback Editor will appear as shown on the next page:

52 Chapter 4 Using WindowBuilder Pro

3. Select the type of callback or event to which the application should respond (a
description of the callback or event appears to the right). As a convenience, the most
common callbacks for a widget appear first in the list.

4. Click the Add button or double-click the callback type. A new handler appears in the
Handlers list.

5. Specify the receiver of the callback by selecting an item from the Receiver list.
Generally, the receiver is the application itself (“self”).

6. Type the name of the method in the Method: combo box, followed by two colons.
When you type the second colon, the editor automatically fills in the rest of the
method name by appending clientData:callData : for you.

 Zero (unary) and single argument callback handlers are also supported. Leave the second
colon off, if you do not want the method name expanded to the standard three
argument style.

7. Type client data, if any, in the Client Data combo box.

8. Click the OK button when you are done.

To remove one or more callback handlers:

1. Select the callback handlers in the handlers list that you would like to remove.

2. Click the Remove button in the lower right corner of the editor.

By default, multiple callback handlers for the same callback are executed in the order
they are defined. The handlers may be reordered if necessary.

Using the Callback Editor 53

To re-order callback handlers:

1. Select the callback handler in the handlers list that you would like to re-order.

2. Click the Up or Down button as appropriate.

The widget list on the left-hand side of the Callback Editor can display the window’s
widgets either hierarchically or alphabetically by name or by type. It can also filter the
list to show only one type of widget at a time. The All button in the upper right corner
makes it easy to select all of the widgets in the window or all the widgets of a particular
type.

Multiple callback handlers may be defined for multiple widgets simultaneously. This
would be the case if you wanted several widgets to respond to the same callback or event
in the same way (in order to update a context sensitive help system, for example).

54 Chapter 4 Using WindowBuilder Pro

If multiple widgets are selected within the Callback Editor, the Callback and Event list
will show the intersection of the callbacks that the widgets have in common. If a callback
or event is selected, the Handlers list will show all handlers for that callback or event
defined in all of the selected widgets. The handlers list will display a third column,
Source, in order to identify the source widget for each handler. Since the Up and Down
buttons only apply when the displayed handlers are for a single widget, they are not
displayed.

Multiple handlers may also be selected and edited simultaneously. When multiple
handlers are selected, changes made in the Receiver, Method or Client Data fields are
immediately applied to all of the selected handlers. This makes it easy to configure the
same handler for multiple widgets. The All button above the handlers list provides a
convenient way to select all of the handlers without scrolling.

The callback handlers themselves may be viewed and edited using the embedded code
browser. Just click on the Methods tab to access the embedded code browser. Click on
any widget or group of widgets and the list of callbacks that have handlers will be shown
in the upper left list. Select one or more callbacks and view the callbacks handlers that
have been defined for them. Clicking on any of the callback handlers (methods) will
display its code in the text pane at the bottom of the window. Right-clicking on either the
methods list or the text pane will popup the standard menus that you would expect to find
in any of the system code browsers. Code may be viewed and edited here. Methods may
be deleted, added, new editionss loaded, etc.

Creating Callback Handlers Visually 55

Creating Callback Handlers Visually
New with version 4.0, WindowBuilder Pro gives you the ability to define callback and
event handlers visually by hooking widgets together - much like the VisualAge
Composition Editor. This “visual shorthand” provides an alternative to defining callback
and event handlers via the Callback Editor.

Note that this feature does not provide support for complete visual programming. It only
applies to the window and widgets currently being edited. Non-visual objects are not yet
supported. Also, it does not yet provide a persistent view of visual connections. Once a
connection is established (which is simply a shorthand approach to creating a callback
handler), it can only be edited (e.g., deleted, receiver or selector modified, etc.) in the
Callback Editor.

To create a callback handler visually:

1. Select the widget that will be the initiator of the event.

2. Right-click on the widget to reveal the popup widget menu and select the Connect
submenu, or ALT -right-click on the widget right-click on the Callback button to
popup the Connect menu.

56 Chapter 4 Using WindowBuilder Pro

3. Select a callback or event. For convenience, the most important callbacks triggered
by the widget are listed first. All events are listed in a submenu called Events.

4. The cursor will enter visual connection mode. Move the mouse pointer to the desired
target of the connection. This can be one of the other widgets or the application
itself. As you move the mouse pointer over various targets, they will highlight as
shown below.

5. Release the mouse button when it is over the desired target. A popup menu will
appear listing all of the target’s messages that can be connected to.

Creating Callback Handlers Visually 57

6. Select the desired target message. Standard VisualAge three-argument callbacks
(listed first) are supported as well as zero (unary) and one-argument callbacks.

 For one-argument callback handlers, the argument that is passed is automatically
determined based upon the source and type of the callback. For example, if the
source widget is a listbox and the Selection Callback has been chosen, the default
argument is the selected item of the listbox. The argument passed by the callback can
be changed via the Callback Editor.

7. In addition to the listed messages, you can link to a new message or any other
message supported by the target. If New is selected, the dialog shown below is
displayed. A zero, one or three-argument selector may be specified (for a standard
three-argument selector, just type the first element of the selector followed by two
colons).

58 Chapter 4 Using WindowBuilder Pro

 If Other is selected, the dialog show below is displayed. A selector may be chosen from
the list.

Managing Outboard Windows
Collectively, all of the secondary windows that the WindowBuilder Pro editor controls
are referred to as “Outboard” windows. If the Update Outboards option is turned on,
WindowBuilder Pro will automatically update any outboard windows (e.g., attribute
editors, attachment editor, etc.) with the currently selected widget or widgets.

All of the outboard windows close down automatically when the main WindowBuilder
Pro window closes. If the “WindowBuilder Pro - Tools” configuration is loaded, you can
close all the outboard windows at any time via the Tools | Outboards | Close All
command.

Any of the outboard windows can become a floating window (e.g., one that floats above
the main WindowBuilder Pro window as opposed to hiding behind it when the main
window is selected).

Using Popup Widget Menus 59

To make an outboard window float:

1. Select the outboard window that you would like to float.

2. Click the floating window button in the upper right corner of the window

3. To remove this floating property from a window, click the floating window button
again (it’s a toggle button).

Using Popup Widget Menus
The WindowBuilder Pro editor provides popup context sensitive menus within the main
editing window. If no widgets are selected, the window popup menu appears as shown
below. This menu gives you quick access to setting the background color of the window,
editing its menubar, callbacks (via the Callback Editor or visual connection) or attributes.
It can also be used to select groups of widgets or to toggle the display of the tab & z-
order.

60 Chapter 4 Using WindowBuilder Pro

If a single widget is selected, the widget popup menu appears as shown below. This menu
gives you quick access to the widget’s font, color, attachments, popup menu definition,
callbacks and attributes. It also allows you to open a class browser on the class of the
selected widget and gives you the option of saving the current widget as the default
template for that type of widget. A cascading Morph menu provides a list of similar
widget types that the current widget may be morphed to. The size, position and relative
tab order may also be modified.

Using Popup Widget Menus 61

If multiple widgets are selected, the widget group popup menu appears as shown below.
This menu gives you quick access to the widgets’ font, color, attachments, popup menu
definition, callbacks and attributes. It also allows you to open class browsers on the
classes of the selected widget and gives you the option of saving the current widgets as
the default templates for those types of widgets. A cascading Morph menu provides a list
of similar widget types that the current widgets may be morphed to. Their size, position,
alignment and relative tab order may also be modified.

If the optional “WindowBuilder Pro - Tools” configuration is loaded, each of the above
menus also includes an Inspect option which allows the selected widget(s) to be
inspected.

62 Chapter 4 Using WindowBuilder Pro

63

Chapter 5 Menus

WindowBuilder Pro supports hierarchical menus on both widgets and windows. When
you attach a menu to a widget, it is called a popup menu. A menu under the title bar of a
window is called a menubar. The process of adding menus to widgets and windows is
almost the same. This section discusses the procedures that you use to create menubars
for windows. Procedures specific to popup menu definition are discussed at the end of the
section.

Creating a Menubar
Menubars are useful for organizing functions in categories and making the categories
available to the application user as menu titles. WindowBuilder Pro simplifies the menu
building process by furnishing you with a menu editor.

To add a menu bar to a window:

• Select the title bar of the window, or a section of the window not covered by a
widget.

Select the Menus command from the Attributes menu, or click the Menu button in the
attribute bar.

The Menu Editor appears as shown below.

64 Chapter 5 Menus

If you have already created a menu bar, you can re-edit a particular menu by double-
clicking it. This will open the Menu Editor with the appropriate menu group preselected.

To add a menu title to a menu:

1. Type the first menu title in the entry field. As you type, the menu title appears in the
list box below the entry field.

2. Press Return when you are done. The menu title remains in the list box, and the entry
field clears, ready for the next entry.

To add a menu item to a menu:

1. Click the button from the Menu Editor dialog. The selected menu shifts to the
right.

2. Type the menu item. It will appear indented under its menu title.

3. Click the button when you have entered all the menu items for that menu title.
The selected menu shifts to the left. You are back at the menu title level, and you can
enter another menu title.

Creating a submenu is the same process as the one just described, except you start a level
lower.

Creating a Menubar 65

To create a submenu:

1. Type the menu item you want to be the submenu title. Press Return to enter the menu
item.

2. Click the button, and type the first submenu item. Press Return.

3. Click the button when you have entered all the submenu items for that submenu
title. When you do so, the next item will be outdented to the next level up.

If your menu has many items, you can separate the items into different groups by using
horizontal separator lines.

To insert a separator line:

1. Select the line where you want to put the separator line.

2. Click the button.

3. Click the Separator check box, or type a hyphen (“-”) in the entry field. A separator
line appears in the list box.

Assigning Mnemonic Keys and Accelerator Keys

You can accommodate users who do not use a mouse by defining mnemonic keys and
accelerator keys.

Mnemonic keys are combinations of ALT and some other key. These key combinations are
assigned to menu titles and menu items. By typing the ALT-key combination, a user can
open a menu, as if he had opened the menu with the mouse. The user can then access
menu items by typing the letter assigned to it. Mnemonic keys display as underlined
characters.

To assign a mnemonic key to a menu title:

1. Select the menu title to which you want to assign the mnemonic key.

2. Type an tilde “~” in front of the letter you want to be the mnemonic key, or type the
desired character in the field next to the label field (the letter must be one of the
characters in the label).

Keyboard accelerators are key combinations that execute menu items immediately when
they are typed. They appear to the right of the menu object to which they are assigned.

66 Chapter 5 Menus

To assign a keyboard accelerator to a menu item:

1. Select the menu item to which you want to assign the accelerator .

2. Select the Key text entry field in the Accelerator group box. Type the desired letter
or select the desired key from the drop down list.

3. Check one or more of the Alt , Control or Shift key modifier boxes.

Editing a menu:

• To promote or demote an item after you have entered it, select the item, and click the

 or button.

• To move an item to another place in the menu, select the item and click the or

 button. Note that when you shift a submenu up or down, the submenu and all of
its items will move.

• To insert a menu item, select the line where you want to insert the new item, and

click the button. An empty space will appear. Enter the new item, and press
Return.

• To delete a menu item, select the line that you want to delete, and click the
button.

Each of these editing options can be applied to one or more menus at the same level in
the hierarchy simultaneously. To select multiple menu items, hold the SHIFT or CTRL
keys down while selecting the desired menu items. You can also drag select multiple
menu items without holding down any modifier keys.

WindowBuilder Pro allows you to place menus in one of three groups to facilitate
subclassing. These groups are Standard Left Menus, Application Menus and Standard
Right Menus. You could, for example, define an abstract superclass that defines the File
and Edit menus as the Standard Left Menus and the Help menu as the Standard Right
Menus. Concrete subclasses would only need to implement menus in the Application
Menus group.

To assign a menu to a group:

1. Select one of the top level menus (e.g., File, Edit, etc.).

2. Click the button. A dialog listing the other two groups will appear (its contents
will vary based on what the current group is).

3. Select the group you want to move the menu to and hit OK .

Creating a Menubar 67

To view menus in different groups:

• Select the desired group from the menu group combobox at the top left corner of the
Menu Editor.

Most menu items have a selector associated with them. This is the message that will be
sent to your application window when the menu item is selected.

To assign a selector to a menu item:

1. Select the menu item to which you want to add the selector.

2. In the Item Attributes group box, type the name of the selector in the Selector entry
field. You can specify a unary menu message selector or a VisualAge callback-style 3
argument selector (just add a colon, WindowBuilder Pro will fill in the rest of the
method name for you).WindowBuilder Pro will automatically generate matching
skeletal methods for you.

Menu items may also be enabled, disabled, toggled on or toggled off dynamically.

To make a menu item enabled or toggled:

1. Select the menu item you wish to modify.

2. Select the desired enabled or toggled state.

 and/or

3. Enter a method selector (in the same class as the receiver) that should (at runtime)
answer true or false to specify the current state of the menu. You may also click the
“...” button to the right of the fields to be presented with a list of unary messages
understood by the receiver. By setting up these boolean method selectors, you can
make menu management a snap at runtime.

Menu items may also be targeted at a receiver other than the application.

To change the receiver of the menu item:

1. Select the menu item you wish to modify.

2. Select the receiver from the drop down list.

Or, click the “...” button to get a list of classes that may be used as receivers (you
could, for example, send the #open message to another WbApplication class)

When you have finished working on your menu, you can test it.

68 Chapter 5 Menus

To test a menu:

• Choose . A new window will appear with a working example of your menu.

When you are satisfied with your menu, click OK to return to the main WindowBuilder
Pro window. Click Cancel to return without saving the menu.

Popup menus on widgets
Most widgets can have popup menus associated with them. The process of creating a
popup menu for a widget is the same as creating a menubar for a window. There are two
minor differences:

• When you create a menubar, the top level menu items are menu titles that display
horizontally on the menubar. When you create a popup menu, the top level menu
items display vertically when the user right-clicks on the widget associated with the
menu.

• When you test a menubar, a new window launches with a working example of your
menu in it. When you create a popup menu, the menu pops up by itself, without its
associated widget.

To add a popup menu to a widget

1. Select the widget or widgets that you wish to add a popup menu.

2. Select the Menus command from the Attributes menu, or click the Menu attribute
bar button. The Popup Menu editor dialog appears as shown below.

Popup menus on widgets 69

The combobox that used to contain the menu category list in the Menu Bar editor, now
contains a list of methods in your application that define popup menus. Initially this list
will be empty except for “<None>.” As new menus are defined, additional entries will
appear in the list.

To create a new popup menu:

• Click the button. A prompter will appear in which you can enter the name of a
method (zero arguments). Attempting to enter a menu item when <None> is selected,
will automatically invoke this prompter and create a new menu.

Changing the popup menu assigned to a widget:

1. Select the desired popup menu from the combobox.

2. Click the OK or Apply button. Whichever popup menu is selected in the combobox
will be assigned to the currently selected widget.

To remove a popup menu from a widget:

• Select “<None>” from the combobox.

• Click the OK or Apply button.

For more Information on the menu editor, see Chapter 8, Command Reference.

70 Chapter 5 Menus

71

Chapter 6 Coding in WindowBuilder Pro

In this section, we will focus our attention on how you should create the pieces of your
Smalltalk application for which WindowBuilder Pro doesn’t provide specific help. We’ll
start by examining the code WindowBuilder Pro generates when you create a window or
dialog. Then we’ll discuss how this code interacts with other elements of the Smalltalk
system to create the user interface and framework for your applications. Finally, we’ll
take a look at how you should approach this process to create user interface-related
elements of your application that are outside the sphere of influence of WindowBuilder
Pro.

WindowBuilder Pro and Smalltalk
When you launch your Smalltalk application after creating its interface in
WindowBuilder Pro, the sequence of steps shown on the next page takes place.
WindowBuilder Pro generated methods are shown in gray.

72 Chapter 6 Coding in WindowBuilder Pro

 open method

 Create Shell

 Initialize Shell

 Setup Window Callbacks

 preInitWindow method

 Realize Window

 initWindow method

 setUpShell: method

 Create Main Window

 setUpMainWindow: method

 Create Form

 addWidgets method

 initializeWidgets method

 Create Menus

 addStandardLeftMenus method

 addApplicationMenus method

 addStandardRightMenus method

 initializeMenus method

 setUpShellCallbacks: method

 setUpMainWindowCallbacks: method

Steps in Processing and Opening a Window

Smalltalk window based applications all have several important elements in common
including the shell, the main window, the main form and a menubar if necessary. The
#open method creates each of these elements in order. The code generated by
WindowBuilder Pro has been factored into individual methods tasked with handling
certain elements of this process.

WindowBuilder Pro and Smalltalk 73

The first element that is created is the shell. The #setUpShell : method that is generated
by WindowBuilder Pro sets up attributes that are unique to the window as a whole such
as its position, size, title and decorations (for example, frame style, minimize and
maximize buttons, etc.). After the shell is created, the main window is created. The
#setUpMainWindow : method sets up attributes such as the window’s scrolling behavior.

Next the main form is created. This is the element to which the widgets are added. The
#addWidgets method defines each of the widgets that make up the window as well as
their attachments and callbacks. An optional hook method, #initializeWidgets , is
provided to give you the opportunity to dynamically initialize any widget specific
attributes that could not be captured by WindowBuilder Pro itself.

After the form, the menus are defined. WindowBuilder Pro splits the menu definitions
into three groups: standard left menus, application menus and standard right menus. This
allows an abstract superclass to define standard right and left menus (for example, File,
Edit, Help) while subclasses only define unique application menus. Once the menus have
been defined, an optional hook method, #initializeMenus , is provided. This provides
an opportunity to add additional dynamically defined menus (or override any of the
menus defined by WindowBuilder Pro).

After the menus have been defined, any callbacks for either the shell or the main window
are defined in the #setUpShellCallbacks : and #setUpMainWindowCallbacks :
methods.

Finally, there are two optional methods, #preInitWindow and #initWindow , that will
be called automatically as part of the process of opening and displaying user interface
elements in your Smalltalk application. The order in which these methods are called is
important.

The #preInitWindow method is called before the window is realized and made visible.
It provides a perfect place to add widgets and menus that WindowBuilder Pro can’t
handle but that must be defined before the window is made visible. It can also be used for
such tasks as setting the contents of various panes with dynamically derived data that
can’t be hard-coded into WindowBuilder Pro because it isn’t known until the program
executes. The #initWindow method is called after the window is realized and made
visible. It can be used in much the same way that the #preInitWindow method can be
used. If there are any initialization tasks that require that the window be visible, this is the
place to perform them.

The #initializeWidgets , #initializeMenus , #preInitWindow and
#initWindow methods make it possible for you to do anything you want to a window or
dialog without tampering with the methods generated automatically by WindowBuilder
Pro.

74 Chapter 6 Coding in WindowBuilder Pro

What WindowBuilder Pro Generates
By default, WindowBuilder Pro generates a single method to define the widgets in your
window or dialog. This method is called #addWidgets .

The basic structure for an #addWidgets method created by WindowBuilder Pro is
something like this:

addWidgets
create Widgets & define attributes
define Attachments & Callbacks

The #addWidgets method is defined in two parts. The first half of the method creates
the all of the widgets and defines all of their attributes. These attributes include things
like the widget’s upper left corner, size, labels, styles, contents, etc. The second half of
the method defines attachments and callbacks for each widget.

Attachments define the widget’s resizing behavior. You can specify all kinds of
attachments. Attachments with respect to the application window, attachments with
respect to any other widget in the form. Proportional attachments and fixed size
attachments can also be specified.

Callbacks are a mechanism by which the application is notified when some higher level
action is performed on a widget. For example, the Activate Callback is used to inform the
application that a CwPushButton has been pressed and released. The Destroy Callback is
used to inform the application that a widget has been destroyed. The application can take
some appropriate action via the callback method in response to this action.

The callback method is a 3 argument method such as
#browseClass:clientData:callData . The first argument, “aWidget”, is the widget
which caused this callback to occur. The second argument, “clientData”, is any
application-specific data you might choose to send. The last argument, “callData”, is a
widget-specific object whose contents depend upon the widget and the nature of the
callback. When you add a callback to a widget, WindowBuilder Pro automatically
generates the corresponding stub method in your application.

Notice the comment at the beginning of the method. It includes a warning that it is not
particularly wise to change this method. This is because the next time you edit this
window or dialog and save it, WindowBuilder Pro generates a new #addWidgets

method, overwriting the existing one, if any. Later in this chapter, we’ll see how to get
around this necessary limitation.

Passing Arguments to Windows 75

Passing Arguments to Windows
When a window is opened, it often launches with some initial information already filled
in. For example, a message box may have a string of text to display, a color dialog may
start with a currently selected color, or a font dialog may start with a currently selected
font. As a designer, you will probably want to create windows of your own with similar
functionality.

Imagine a simple window called “ExamplePrompter”. It requires two pieces of
information to start up: the text used to prompt the user, and the initial text placed in the
text field. To pass this information in, we might want to launch the window with the
following syntax:

ExamplePrompter new
prompt: ‘Enter a new exclamation:’
default: ‘Aaaargh!’.

This requires that we create an instance method in ExamplePrompter called #prompt:

default :. This method must take in these two arguments, open the window, and set the
values of the static label and text field. Let’s see how that can be done.

We’ll start with the #prompt:default : method:

prompt: string1 default: string2
promptString := string1.
responseText := string2.
self open.

In this method, we store the two strings passed in using instance variables we’ve
declared, then execute the open method which in turn calls the #addWidgets method
generated by WindowBuilder Pro. Later, during the initialization process that occurs
during the open method, we’ll make use of these instance variables to set the contents of
the various controls:

initWindow
(self widgetNamed: ‘promptText’) labelString: promptString.
(self widgetNamed: ‘editor’) value: responseText.

That’s all there is to it! As you can see, it’s really very easy to make use of arguments in
code without altering any WindowBuilder Pro generated methods.

Returning Values From a Dialog
So far, we’ve modified the ExamplePrompter dialog so that it accepts arguments when it
is initialized. How do we actually make use of the information the user enters? For that
matter, how do we even close the window?

76 Chapter 6 Coding in WindowBuilder Pro

Let’s deal first with the process of dismissing the dialog. When the user presses the OK
button, they expect the window to close. Let’s see to it that this happens. WindowBuilder
Pro generates an #ok:clientData:callData : method for us when we tell it to use that
method as the response to a user click on the OK button. Modify the empty ok: method
to look like this:

ok: aWidget clientData: clientData callData: callData
self close.

Now the window can be closed, but a big issue remains: the method which invoked this
prompter wants some information from the userthat’s why it launched the dialog in the
first place. The question is, how can our dialog offer this information once the user has
filled it in?

The easiest way to do so is to query the dialog after it returns. Since this is a dialog, the
#prompt:default : method will not return until the window is closed. All we need to do
is store the necessary information in instance variables after the dialog is dismissed, and
provide accessor methods to these instance variables. Then we can simply use these
accessor methods to ask the dialog for the information.

For example, if we add a method result that answers the user’s response, we can then use
the following code:

exclamation:=
(ExamplePrompter new

prompt: ‘Enter a new exclamation:’
default: ‘Ddoooooooh!’) result.

The result method is straightforward: we can use the instance variable responseText
again, like so:

result
^responseText

But there’s a problem here. This will always return the initial value of the responseText,
since it’s never set to the contents of the text field. Let’s take care of this. Alter the
#ok:clientData:callData : method as follows:

ok: aWidget clientData: clientData callData: callData
responseText := self widgetNamed: ‘editor’) value.
self close.

This will ensure that the instance variable is set up correctly for the result method.

The only issue that remains is the Cancel button. This typically means the user has
decided to cancel the change they were going to make; we need some way of
communicating this back from the dialog. A commonly accepted convention under such
circumstances is to return nil, and this is easy to do. We simply have the cancel: method
set the responseText instance variable to nil before closing the window, as follows.

Naming Widgets 77

cancel: aWidget clientData: clientData callData: callData
responseText := nil.
self close.

With that, we’ve completed the interactive portions of the ExamplePrompter. The
techniques used here are only one way of accomplishing the tasks at hand, but provide a
general mechanism that works under many different circumstances.

Naming Widgets
As we saw in the previous section, sending messages to individual widgets is easy. Each
widget defined in a window must have a name. By default, WindowBuilder Pro generates
a name of the form “a<WidgetClass>n” where “n” is a number. In general, you will want
to give your widgets more descriptive names such as “okButton”, “addressLabel”,
“nameField”, etc. Sending a message to named widget is simple. To ask the application
for a particular widget, use the #widgetNamed : protocol like this:

(self widgetNamed: ‘nameField’)

To set the contents of a text field, therefore, you would do the following:

(self widgetNamed: ‘nameField’) value: aNameString

WindowBuilder Pro also gives you the option of directly assigning any widget to be an
instance variable of the application (via the checkbox next to the widget name).

If you do this, the above expression can be re-written as:

nameField value: aNameString

where “nameField” is now an instance variable.

Passing messages from one widget to another
Now that you know how to address a widget programatically and send it messages,
sending messages from one widget to another is easy. As an example, let’s assume that
we have two widgets, a single select WbScrolledList and a CwLabel, and that we want
the selected item of the list to update the contents of the label. This code can be expressed
as:

(self widgetNamed: ‘aCwLabel’) labelString:
(self widgetNamed: ‘aWbScrolledList’) selectedItems first

or more directly using instance variable assigned widgets as:

aCwLabel labelString: aWbScrolledList selectedItems first

78 Chapter 6 Coding in WindowBuilder Pro

79

Chapter 7 Example Application

To give you some hands-on experience using WindowBuilder Pro, this chapter presents a
simple data entry application. The Person Editor application tracks data that you input,
and you are able to edit and add to the data. It is a very simple application but does a
good job of highlighting the important steps in building a window. All of the windows in
WindowBuilder Pro, including WindowBuilder Pro itself, were built using the same
techniques. If you are interested in further, more sophisticated examples, examine the
windows that make up WindowBuilder Pro (source code is provided for many of them in
the Team version).

The finished Person Editor application looks like this.

The finished Person Editor application.

This section presents the steps to follow to create the sample application. The application
is intended to give you experience with the procedures that are covered in previous
chapters of the manual. Refer to those chapters for more information on these
procedures. If you perform the steps as instructed, you will touch on the important
features of WindowBuilder Pro. In keeping with the format of the rest of the manual, the

80 Chapter 7 Example Application

steps are divided into two sections: Designing the Interface, and Attaching Callbacks and
Event Handlers to Widgets. You probably would not actually create an application in this
manner; more likely, you would attach callbacks and event handlers as you think of them.

In the steps that follow, positions and sizes of widgets are given so that you may
duplicate the application exactly as it is shown on the prior page. If duplicating the exact
positions of the widgets is not important to you, you can just place the widgets by eye.
Since a working version of the Person Editor application is already provided with
WindowBuilder Pro (it is the class WbPersonEditor in the WbProTutorialExample
application), you can display the Person Editor in WindowBuilder Pro and follow along
with the text.

Be sure to save the window occasionally as you work. The first time you do, you will be
prompted to save your window as a subclass of WbApplication. Since you also need to
provide an application into which the class can be saved, you may want to create a new
application with the Application Manager before you start.

Designing the Interface
1. From the File menu, choose New.

2. Resize the window to 372 x 212 by clicking the Size button on the Status bar.
Double-click anywhere in the window to bring up a window editor, and type Person
Editor in the title field. Alternatively, you can simply ALT -click on the titlebar to
direct edit the title of the window.

3. From the Attributes menu, choose Menus, or click the Menu button to open the
Menu editor. Build the menu shown below. Recall that mnemonic keys are displayed
as underlined characters in menu items, and accelerator keys are displayed on the
right of the menu. Using the picture as a guide, add accelerator and mnemonic keys
to the menu.

 Person Editor Application Menu.

Designing the Interface 81

4. Place a CwText widget at position 20,52 with a size of 126x28. Name the widget
firstName by typing firstName in the name field on the attribute bar.

5. Place a CwText widget at position 152,52, with a size of 197x28. Name the CwText
widget lastName.

6. Place a CwLabel widget at position 20,32. Name the widget firstNameLabel.
Open an CwLabel editor by double-clicking on the widget. In the Label String field,
type First .

7. Place a CwLabel widget at position 152,32. Name the label lastNameLabel. Open
the CwLabel editor and Type Last in the Label String field. Click OK to close the
editor. As an alternative to using the attribute editors, you can ALT -click on the
widgets to direct edit their labels.

8. Place the first of two CwText widgets in the lower part of the window, by using the
right mouse button (this leaves the cursor loaded with the widget). Then place the
second CwText widget below the first, using the left mouse button (which unloads
the cursor). Select the top widget, and set its position to 100, 128, and its size to
156x28.

9. Leaving the upper widget selected, SHIFT-select the lower widget. From the Size
menu, choose Replicate Height, and then Replicate Width, (or click the button
equivalents). The two widgets are now the same size. Position the lower widget at
100, 160. Click a blank part of the window to deselect the widgets.

10. Select the upper widget, and name it title . Select the lower widget, and name it
company.

11. Place a CwLabel widget at position 20, 132. Name the label titleLabel . Open a
CwLabel editor and type Title: in the Label String field. In the Alignment box,
select Right. Uncheck Recompute Size. Click OK to close the editor. Keep the
widget selected.

12. Copy the titleLabel widget by choosing Copy from the Edit menu. Paste the copy at
position 20,164. Name the new label companyLabel. Open aCwLabel editor and
type Company: in the Label String field. Note that the attribute settings are already
correct, since you copied them from the titleLabel widget. Click OK to close the
editor.

13. Select a WbFrame, and drag it so that it surrounds the firstName and lastName
widgets and their labels. The position of the frame in the example shown above is
12,28, and its size is 346x68. Name the frame nameFrame. Open a WbFrame editor.
In the Shadow Type box, select In. In the Frame Thickness field, type 1. Click OK
to close the editor.

14. Make a copy of the WbFrame nameFrame. Paste and drag the copy so that it
surrounds the title and company widgets and their labels. The position of the frame
in the example shown above is 12,116, and its size is 260x84. Name the frame
employmentFrame.

82 Chapter 7 Example Application

15. Place a CwPushButton at position 280, 116, and set the size to 78x40. Name the
button next. Open a CwPushButton editor. In the Label String field, type Next.
Uncheck the Recompute Size box. Click OK to close the editor.

16. Place a CwPushButton at position 279,160. Name the button previous. Select the
“next” button, then SHIFT-select the “previous” button. From the Size menu, choose
Replicate Height, then Replicate Width. The buttons should now be the same size.
Click elsewhere in the window to unselect the widgets. Select the “previous” button.
Open a CwPushButton editor. In the Label String field, type Previous. Uncheck the
Recompute Size box. Click OK to close the editor. As stated earlier, you always have
the option of ALT -clicking on a widget to direct edit its contents.

17. Save the application.

You have completed the user interface part of the application. If you want, you can test
the window by choosing Test Window from the File menu. The widgets and menu
should respond. Nothing else happens, because there is no code attached to the widgets.
In the next section, you attach callbacks and event handlers to the widgets to give the
application some behavior.

Attaching Callbacks and Event Handlers
1. Open the Menu editor. Select the New menu item. Notice that the Selector box is

enabled. For each menu item in the chart, type the corresponding method in the
Selector box.

Menu Item Method

New menuNew

Open menuOpen

Save menuSave

Revert menuRevert

Delete menuDelete

Exit menuExit

2. Select the firstName CwText widget. Open a callback editor by choosing
Callbacks... from the Attributes menu, or clicking the equivalent button. From the
Callback List, select Value Changed Callback. In the Method combobox, type
“textChanged::”, and press Return. Be sure to include the two colons. Notice that
WindowBuilder Pro automatically appended the standard second and third key words
(clientData:callData:) to the method name. Click OK to close the editor.

3. Using the chart below, attach callbacks for the remaining widgets by repeating the
procedures in Step 2. The “firstName” callback is included for reference. Note that
once the Callback Editor is open, there is no need to close it until you are done
attaching callbacks. You may either use the combobox at the top of the screen to

Attaching Callbacks and Event Handlers 83

select another widget or click on the widget in the main editing window (the
Callback Editor and any other open editors will automatically update to reflect the
currently selected widget).

Widget Name Callback List Item Method Prefix

firstName Value Changed Callback textChanged

lastName Value Changed Callback textChanged

title Value Changed Callback textChanged

company Value Changed Callback textChanged

next Activate Callback next

previous Activate Callback previous

4. Save the application. WindowBuilder Pro will regenerate the window’s layout and
menu definitions (e.g., the #addWidgets and #addApplicationMenus methods)
and create method stubs for any callbacks and menus that you specified.

You have completed attaching callbacks to the widgets. The next step is to add program
logic to the generated stub methods. For the Person Editor application, the necessary
methods are included in the WbPersonEditor class. You can either type them into your
class definition or copy the ones that have been provided. So you may now test your
application.

You now have a working application with buttons, text fields, and a menu. Feel free to
modify and expand the application. Some of the enhancements that you might consider
are defining attachments (resize behavior) for each of the widgets as well as an overall
tab order.

84 Chapter 7 Example Application

85

Chapter 8 Command Reference

This chapter provides a detailed description of each command available within
WindowBuilder Pro. The first two pages establish a name for each toolbar function. Each
of these function is described in detail in the context of its corresponding menu
command. All of the WindowBuilder Pro menus (both on the Transcript and within the
main editor) are discussed immediately following the identification of the toolbar
buttons.

Main Toolbar

 Test Auto Size

 New Replicate Width

 Open Replicate Height

 Save Align Left

 Cut Align Center

 Copy Align Right

 Paste Align Top

 Duplicate Align Middle

 Delete Align Bottom

 Undo Distribute Horizontally

 Redo Distribute Vertically

 Morph Templates

 Bring To Front Properties

 Send To Back

86 Chapter 8 Command Reference

Attribute Toolbar

 Font Menus

 Color Callbacks

 Attachments Attributes

Status Bar

 Select All Set Position

 Select All In Class Set Size

 Browse Class Show Grid

 Tab & Z-Order

Widget Categories

 Text Notebooks

 Buttons Containers

 Lists Other/Miscellaneous

 Composites Windows 95

 Sliders OLE/ActiveX

Transcript 87

Transcript

New Window

Creates a new window. WindowBuilder Pro starts from scratch on a new copy of the
default template window.

Edit Window...

Edit an existing window definition (WbApplication subclass). WindowBuilder Pro will
prompt the user with an Edit Class dialog containing a list of windows that have been
created by it. When a window is chosen, WindowBuilder Pro will begin editing the
window of the selected WbApplication subclass.

By default, the list in this dialog contains only those windows built by WindowBuilder
Pro. The classes are listed alphabetically. They can also be viewed hierarchically or by
frequency of access. A handy application filter is provided to help you look at just the
classes that you wish. As a convenience, WindowBuilder Pro keeps track of the most
recently accessed and most frequently accessed classes.

88 Chapter 8 Command Reference

Test Window...

Test an existing window definition (WbApplication subclass). WindowBuilder Pro will
prompt the user with an Test dialog containing a list of windows that have been created
by it. When a window is chosen, an instance of that window will be created and opened.

Transcript 89

Templates...

Displays the template editor.

The template editor allows you to specify default attribute values for attributes of all the
widgets supported by WindowBuilder Pro. These widgets are the concrete classes in the
Common Widgets and the Extended Widgets subsystem of VisualAge. Once you change
a default value, that new value will be used for all new instances of that widget that you
place in the editor. For example, all CwArrowButtons are upward pointing by default.
This can easily be changed so that all new buttons are right pointing when first dropped
into the editor.

90 Chapter 8 Command Reference

Properties...

Displays the property editor.

The properties editor is used to customize your WindowBuilder Pro environment. You
can customize the code generation properties, the editor properties, grid properties and
the user properties.

See the discussion of the Property Editor in the section on the Option menu for a list of
all available properties.

Runtime ICs...

Generate ICs for all runtime components.

Transcript 91

The first option is to generate the ICs. This is a long running process that can be
cancelled while in progress. The second option specifies whether ENVY manager
structures should be excluded. This is the information that specifies versions, method
categories and class ownership. An IC generated with this option turned on will only be
loadable in a runtime image. The next option specifies whether instances of development
classes (e.g., EmTimeStamp) should be unlinked during export. An IC generated with
this option turned off will not be loadable at runtime. For a runtime loadable IC, both of
these options should be turned on; for a development loadable IC, they should be turned
off. See the IBM Smalltalk User's Guide, pp 314-6 for a more complete description of
these last two options. The final option specifies the directory in which to generate the
ICs. The default is the current directory (e.g., ‘.’)..

Register...

Displays the registration dialog.

About...

Displays information about WindowBuilder Pro.

92 Chapter 8 Command Reference

File

 New

Creates a new window. WindowBuilder Pro discards any work in progress, and starts
from scratch on a new copy of the default template window.

 Open...

Edit an existing window definition (WbApplication subclass). WindowBuilder Pro will
prompt the user with an Edit Class dialog containing a list of windows that have been
created by it. When a window is chosen, WindowBuilder Pro will discard any work in
progress, and begin editing the window of the selected WbApplication subclass.

File 93

By default, the list in this dialog contains only those windows built by WindowBuilder
Pro. The classes are listed alphabetically. They can also be viewed hierarchically or by
frequency of access. A handy application filter is provided to help you look at just the
classes that you wish. As a convenience, WindowBuilder Pro keeps track of the most
recently accessed and most frequently accessed classes.

Right-clicking on the Open button in the toolbar will popup a menu listing the most
recently edited windows.

Spawn

Displays a submenu with the following choices:

New

Opens a new copy of WindowBuilder Pro on the currently edited window.

94 Chapter 8 Command Reference

Open

Opens a new copy of WindowBuilder Pro on a window selected from the Edit Class
dialog.

Revert...

Revert the last saved version of the window. Any changes that have not been saved will
be lost.

 Save

Save the edited window by generating the appropriate code. If the edited window has not
been associated with a class, this command behaves exactly as the Save As command,
described below.

Warning: When a window’s definition is saved, it writes over the previous methods for
the window’s layout and menu structure. You can use the standard ENVY tools to load
previous versions if need be.

Save As...

Save the edited window by generating the appropriate code. When this command is
executed, WindowBuilder Pro will bring up the following dialog from which to select a
target application window:

File 95

In this dialog you select a superclass, you specify a class and specify an application in
which you want the class to be created. You must have an open edition of a application
already created using the Smalltalk Application Manager. Otherwise you will not be able
to save the window definition. If this happens, cancel out of the Create Class dialog. Go
to the Application Manager and create a new application or create a new edition of an
existing application. You can also click the New button to automatically create a new
application with the selected superclass as a prerequisite.

Remember the application into which you are trying to create the window class must
have WbApplicationFramework in its prerequisite chain. The classes in application
WbApplicationFramework constitute the runtime portion of WindowBuilder Pro.

Warning: When a window’s definition is saved, it writes over the previous methods for
the window’s layout and menu structure. You can use the standard ENVY tools to load
previous versions if need be.

 Test Window

Launches an example of the currently edited window, by sending the message open to a
new instance of it. This function can also be performed by pressing the Test button.

About...

Displays information about WindowBuilder Pro.

96 Chapter 8 Command Reference

Exit

Exit WindowBuilder Pro. If any changes have been made since the last save of the
application window, the user will be prompted to save the window. Selecting Close from
the System menu has the same effect.

Edit 97

Edit

 Undo

Undoes the last edit operation. This command is dimmed when an operation cannot be
undone. The number of available undo levels is configurable from the WindowBuilder
Pro Property editor.

Right-clicking on the Undo toolbar button pops up a menu containing all of the edit
operations that can be undone.

 Redo

Redoes the last edit operation that was previously undone. This command is dimmed
when an operation cannot be redone.

98 Chapter 8 Command Reference

Right-clicking on the Redo toolbar button pops up a menu containing all of the edit
operations that can be redone.

Undo/Redo List...

Launches a dialog from which multiple edit operations can be undone or redone. The
maximum number of undo levels may also be set.

 Cut

Removes the selected widget(s) from the design surface, placing it (them) on the
clipboard for later pasting.

 Copy

Places a copy of the selected widget(s) on the clipboard.

Edit 99

 Paste

Loads the cursor with the widgets on the clipboard. When the mouse is clicked
somewhere within the design surface, the clipboard selection is placed at that location.

 Duplicate

Creates another copy of the selected widget or widgets. The first duplicate will be
diagonally offset from the original. If this copy is repositioned, subsequent duplicates
will be placed using this new offset.

 Clear

Removes the selected widget(s) from the interface without affecting the clipboard. This is
the same as pressing the Delete key on the keyboard.

Select

Displays a submenu with the following choices:

 Select All

Selects all the widgets within the main window.

Right-clicking on the Select All button in the lower left corner of the
WindowBuilder Pro window will popup a menu listing all of the widget types used
in the layout. Selecting one will cause all widgets of that type to be selected.

 Select All In Same Class

Selects all the widgets in the same class. This command can be used as a fast path for
selecting all labels or buttons on the screen.

100 Chapter 8 Command Reference

Right-clicking on the Select All In Same Class button in the lower left corner of the
WindowBuilder Pro window will popup a menu listing all of the widget types used
in the layout. Selecting one will cause all widgets of that type to be selected.

Select All In Same Hierarchy

Displays all the widgets in the same hierarchy.

 Browse Class...

Display a standard class browser on the currently edited WbApplication subclass. If the
class has not been saved yet, you will be prompted to save the class.

Browse Widget Class...

Display a standard class browser on the class of the currently selected widget.

Attributes 101

Attributes

 Font...

Displays a Font Selection dialog for the currently selected window or widget. This is the
standard font dialog provided with VisualAge.

102 Chapter 8 Command Reference

 Colors...

Displays a Colors dialog for the currently selected window or widget(s).

The Color Editor provides a list of color attributes (generally just “Background Color”
and “Foreground” color). When a color attribute is selected, the name of the color will be
selected in the color list and the RGB values and a rendering of the color will appear in
the RGB color editor on the right.

To set a color, select it from the color list or use the RGB color editor’s scrollbars or entry
fields to set the red, green and blue values of the desired color. As you set one of the RGB
values, the system will attempt to find the closest matching color in the color list for you.

The Color Editor provides three different color lists: “Base Color”, “R3 Color” and “R4
Color”. The first list provides the standard 16 colors supported by the default palettes on
all platforms. The other lists are colors supported under various versions of UNIX (for
example, R3 & R4). The VisualAge color model, like the windowing system, is based on
UNIX Motif. The list of supported colors varies by platform and video driver capabilities.
If you select a color that is not in the Base Color list, the operating system tries to match
that color to the best of its ability. Windows responds to a request for an unsupported
color by displaying the closest color from its default palette. OS/2 responds by
attempting to reproduce the desired color through dithering colors in its palette that it is
capable of displaying.

The first item in the color list will always be “<Default>”. Selecting this color will set the
widget to use its own default colors for that attribute. When a widget has been defined to
use its own default color, no color attribute code will be generated.

Attributes 103

 Attachments...

Displays an attachment editor for the currently selected widget.

This editor is used to specify constraints on a widget. Essentially, by specifying widget
attachments you specify what happens when the application window is resized. You can
specify all kinds of attachments. Attachments with respect to the application window,
attachments with respect to any other widget in the form. Proportional attachments and
fixed size attachments can also be specified. A comprehensive list of attachment styles
are provided. By default the widget is constrained with respect to the application window
(its top left corner). You can also specify any other widget in the window relative to
which you want to constrain a particular edge.

The Attachments command can set the attachments for multiple subpanes at once; add all
the desired widgets to the selection before pressing the Attachments button. For more
information on multiple selection, see Selecting Multiple Widgets. If the Update
Outboards option is on, the Attachment Editor may be left open. As widgets are selected
in the main editor, their current settings will be reflected in the Attachment Editor. They
may then be changed and those changes may be locked in via the Apply button.

New with V4.0, the Attachment Editor sports thumbnail before and after views showing
the effects of the chosen attachment style on the selected widgets. Widgets can be
selected by clicking on their thumbnail representations.

104 Chapter 8 Command Reference

There are hundreds upon hundreds of attachment combinations that can be specified. In
reality, only a few of the possible combinations are useful on a frequent basis.
Recognizing this, the Attachment Editor provides a fast path to all of the common
attachment combinations or styles. The toolbar and listbox at the top of the Attachment
Editor provide access to all of the common attachment styles. As you select a style, the
individual setting for each side are reflected in the combo boxes below. Locking a button
to the lower right corner of the windowan operation that would normally take four
stepscan be accomplished in one step by selecting the “Fixed Distance from Bottom-
Right Corner” style or selecting the appropriate toolbar button.

 Menus...

Displays a Menu Editor for the window.

The menu editor is used to defined the application’s pull down menus. The menu editor
allows you to define standard left menus (for example, File, Edit), application menus and
standard right menus (for example, Windows, Help). This makes subclassing easy where
you keep the left and right menus unchanged and vary the right menus.

The menu editor is a convenient way for specifying menu titles, menu items, menu
selectors, menu item separators, menu accelerator key and so on. Cascading of menus is a
snap. You can specify a unary menu message selector or a VisualAge callback-style 3
argument selector. Your choice.

Attributes 105

In addition to the selector, you can also specify the receiver of the selector (the
application by default) as well as whether the menu should be enabled and/or be a toggle
menu. For the enable and toggle options, you can optionally enter a method selector (in
the same class as the receiver) that should (at runtime) answer true or false to specify the
current state of the menu. By setting up these boolean method selectors, you can make
menu management a snap at runtime.

Accelerator keys may also be established that use either the Alt , Control or Shift keys
(or any combination). The mnemonic key associated with a menu (the underlined letter)
can be specified in the field directly to the right of the menu label field.

Most widgets can have popup menus associated with them. The process of creating a
popup menu for a widget is the same as creating a menubar for a window. There are two
minor differences:

• When you create a menubar, the top level menu items are menu titles that display
horizontally on the menubar. When you create a popup menu, the top level menu
items display vertically when the user right-clicks on the widget associated with the
menu.

• When you test a menubar, a new window launches with a working example of your
menu in it. When you create a popup menu, the menu pops up by itself, without its
associated widget.

106 Chapter 8 Command Reference

 Callbacks...

Displays a Callback Editor for the currently selected window or widget.

This is the editor that you will use to specify callback methods when a specific action is
performed on a widget. A callback is a mechanism by which the application is notified
when some higher level action is performed on a widget. For example the Activate
Callback is used to inform the application that a CwPushButton has been pressed and
released. The destroy callback is used to inform the application that a widget has been
destroyed. The application can take some appropriate action via the callback method in
response to this action. The Callback editor can be invoked from the toolbar, the
Attributes menu or by right double-clicking on any widget.

The Callback Editor lists the callbacks that are supported by the widget in question. For
example, if you were to bring up a Callback editor on the extended widget CwObjectList,
you would see these callback names (along with several others):

Browse Selection Callback

Default Action Callback

Single Selection Callback

Multiple Selection Callback

Extended Selection Callback

Attributes 107

Let’s consider Default Action Callback. There is a description provided within the editor
that describes when this situation would occur. This default action callback is triggered
when you double click on an item on the CwObjectList widget. Triggering a callback?
What does that mean? Well, that means the application is given a chance to respond to
this user action. For example, if CwObjectList were displaying a list of classes, double
clicking on say the class CwBasicWidget, could bring up a class browser on
CwBasicWidget. The Smalltalk code that brings up the class browser is a user written
piece of code that resides in the callback method for the Default Action Callback.

What is this callback method or where do you specify it? The callback method is a 3
argument method, and you specify it in the combo box entry beside the caption that says
Method. Actually what you specify is a 3 argument message selector such as
#browseClass:clientData:callData . New with V4.0, zero (unary) or one
argument callback methods are supported for all widgets.

You express the intent that you want to handle the Default Action Callback, by simply
selecting the callback name from the list of callbacks and clicking on the Add button.
Alternatively you can simply double click on the callback name. This will add the
method to the list of callback handlers. It is a feature of VisualAge that triggering a single
callback can cause multiple methods to be executed. Therefore, you can add as many
handlers as you wish. They will fire in the chronological order in which you specified the
handlers (this order can be rearranged using the up and down buttons).

By default the receiver of the callback method is the application. The application is the
class in which the screen is saved into. This class is either directly or indirectly a subclass
of WbApplication. However, the receiver of the callback method need not be the
application. It can be the widget itself which caused the callback to be triggered. Or any
other widget that is part of the application. In addition, the receiver can also be any
instance variable of the application. This includes local instance variables as well as
inherited instance variables.

The 3 argument callback selector, mentioned above, is specified by the user in the
Method combo box field. The message selector is typically of the form:

#browseClass:clientData:callData:

As a convenient user interface feature, WindowBuilder Pro waits for you to start typing a
selector name, and as soon as you type the second colon (:) character, it immediately
auto-fills the rest of the selector name by automatically appending the text:
“clientData: callData: ”. The last two keyword names clientData: and
callData: are VisualAge naming conventions for callback method selector names.

Zero (unary) and one-argument callbacks handlers are also supported. Leave the colons
off, if you do not want the method name expanded to the standard three argument style.

108 Chapter 8 Command Reference

Unary callback handlers do not pass along any arguments and thus do not allow client
data to be specified.

For one-argument callbacks, the default argument that is passed is the originating widget.
Specifying a unary selector as the client data will cause the attribute of the originating
widget specified by that selector to be passed as the argument (e.g., specifying
#selectedItem as the client data for the Single Selection Callback of a listbox will
cause the selected item to be passed as the argument).

When you specify a callback such as the one above for Default Action Callback,
WindowBuilder Pro generates a stub method in your application class that looks like this:

browseClass: aWidget clientData: clientData callData: callData
“Private: Callback for the Default Action Callback event
triggered in the CwObjectList named ‘aCwObjectList’.
Generated by WindowBuilder Pro.”

aWidget is the widget which caused this callback to occur. clientData is any application-
specific data you might choose to send. (This is actually specifiable in the callback
editor). callData is a widget-specific object whose contents depend upon the widget and
the nature of the callback. WindowBuilder Pro also provides a code generation option for
annotating the callback method with a more detailed explanation of each of the
arguments (especially the callData argument).

Attributes 109

The callback handler stub may be viewed and edited using the embedded code browser.
Just click on the Methods tab to access the embedded code browser. Click on any widget
or group of widgets and the list of callbacks that have handlers will be shown in the
upper left list. Select one or more callbacks and view the callbacks handlers that have
been defined for them. Clicking on any of the callback handlers (methods) will display its
code in the text pane at the bottom of the window. Right-clicking on either the methods
list or the text pane will popup the standard menus that you would expect to find in any
of the system code browsers. Code may be viewed and edited here. Methods may be
deleted, added, new editionss loaded, etc.

 Selected Widgets...

Displays the attribute editor for the currently selected window or widget(s). Each
attribute editor is described in the Widget Encyclopedia in conjunction with the widget
type it edits.

If a heterogeneous collection of widgets is selected, the Generic Attribute Editor will
open rather than a widget specific attribute editor. If the CTRL key is held down while
invoking this command, the Generic Attribute Editor will also appear. If the Use Generic
Editors property is turned on, the Generic Attribute Editor will become the default editor
in all cases.

 Window...

Displays a window editor for the currently selected window.

110 Chapter 8 Command Reference

In addition the window’s title, its border decorations can be specified by the check boxes
on the right (system menu, titlebar, minimize and maximize buttons, resize border and
dialog border). Some of the check boxes are mutually exclusive and can only be used in
specific combinations. The exact combinations are platform specific and WindowBuilder
Pro does its best to support these platform specific combinations (for example, the title
bar can be deleted under OS/2, but not under Windows).

You can also specify whether you want the window to automatically include scrollbars or
not. This can be set via the comboboxes on the right. Setting the Scrolling field to
“Automatic” adds scrollbars to the window. The visibility of the scrollbars can then be set
via the Scroll Bar Display field to either “Static” (always there) or “As Needed” (only
visible when the window is too small to display its contents).

 Tab & Z-Order...

Displays the Tab & Z-order Editor.

Attributes 111

The Tab & Z-order Editor allows you to change the relative depth of each widget in the
Z-order as well as specify whether a widget should be a tab stop and/or a tab group. The
listbox in the editor contains a list of all of the widgets visible at the current editing level
within the editor (e.g., direct editing a form takes you down a level). The Z-order of each
widget is indicated by the number to the left of its name. Its tab status, if any, is indicated
to the left of the number. Widgets that are both tab stops and tab groups are indicated by a
red circle. Widgets that are tab stops but not tab groups (e.g., buttons in a single tab
group) are indicated by a yellow circle. Widgets that are not tab stops are indicated by a
white circle.

The , , or buttons may be used to reorder the selected widget or widgets.
If a discontinuous collection of widgets is selected, they will all be collected together and
follow the movement of the first widget in the selection.

The Tab and No Tab buttons are used to specify whether the selected widgets are to be
tab stops or not. The Group and No Group buttons determine whether the widgets are
tab groups as well. At any level, there may be one and only one tab group. If you need to
establish more than one, you should put each widget group into its own CwForm or
CwRowColumn.

The interaction been tab stops, tab groups and the initial tab stop is a bit complicated. The
initial focus goes to the first widget that is a tab stop and is not a tab group (for example,
a button that is part of the top level tab group). If all widgets are tab groups, focus goes to
the first widget that is a full tab stop (e.g., both a tab stop and a tab group like a CwText).
Widgets which do not receive focus are not part of the tab order, whereas they are part of
the z-order (e.g., CwLabels and CwSeparators).

112 Chapter 8 Command Reference

If the Auto Apply check box is set, all changes made in the editor will be immediately
reflected in the editing window. If it is not set, changes are batched up and applied when
either the Apply or OK buttons are pressed.

Call Outs...

Displays the Call Out Editor.

The Call Out Editor gives you the opportunity to exercise more control over how your
window definition code is factored. For a large window with lots of widget definitions,
WindowBuilder Pro will generate a very large #addWidgets method. The Call Out
Editor allows you to have any top level widget (e.g., child of the main form) generated
into its own method. If a CwForm, CwRowColumn, CwScrolledWindow, Frame or
Notebook widget is so designated, it and all of its nested children will be generated in the
specified method. The editor interface is simple. On the left side of the window is a list of

all top level widgets. The button moves one or more widgets to the right hand list
where a call out method selector may be specified. Note that this should be unary selector
(no arguments) and that a default method name is built for you based on the widget’s

name. The button may be used to transfer a widget back to the left hand list where it
will be generated in the main #addWidgets method.

Drag Drop...

Displays the Drag Drop Editor.

Attributes 113

The Drag Drop Editor allows you to specify whether a widget should be a drag drop
source or target. If a widget is defined to be a drag drop source, an EwSourceAdapter will
be created for it. If a widget is defined to be a drag drop target, an EwTargetAdapter will
be created for it. Widgets that are either drag drop sources or targets are identified via the
following symbols:

 Drag Drop Source

 Drag Drop Target

 Drag Drop Source and Target

The Drag Drop Editor also allows you to specify callback handlers for any drag drop
adapter by clicking on the Callback button.

A number of different drag drop events are supported. The class WbDragDropExample
provides an example of how to use the various drag drop events.

114 Chapter 8 Command Reference

Help...

Displays the Help Editor.

The Help Editor allows you to specify tool tips (e.g., hover/mini help) and platform help
(help file, topic ID, etc.) for any widget. Widgets that have help (hover help or platform
help) are identified by the symbol.

Attributes 115

NLS...

Displays the NLS Editor.

Text labels for buttons, labels, window titles and menus can be specified as NLS pool
dictionary keys rather than strings. Use the NLS Editor to assign one or more NLS pool
dictionaries to the currently edited class (see the IBM Smalltalk Programmer’s Reference
for instructions for creating NLS pool dictionaries). Typing in a “#” followed by the pool
key name sets the text of the widget to that pool constant. The actual string that is held by
the pool dictionary will be displayed in the editing window. Right-clicking on any text
field (e.g., the Label String field in the CwPushButton editor) will pop up a menu from
which an NLS pool key may be selected. If multiple NLS pools are assigned to the
class, this popup menu will have multiple cascading entries. When WindowBuilder Pro
generates the code for the window, the appropriate NLS pool key is generated rather than
the actual text as seen in the widget.

116 Chapter 8 Command Reference

 Morph...

Quickly changes - “morphs” - any widget from one type to another. For example, a
WbScrolledList instance could be converted into a CwComboBox or WbRadioBox.
Common attributes are automatically translated. Attributes not needed by the target class
are lost. Attributes not provided by the source class are defaulted.

Right-clicking on the Morph button in the toolbar will popup a menu containing all of
the lists morphing types for the selected widget. If a widget class has subclasses, all of
those are listed as well.

Warning: Some care is needed on your part when morphing a widget into a radically
different type. WindowBuilder Pro will map over any attributes the two have in common
as well as event callbacks for any shared events. You must be careful that the event
callbacks do, in fact, make sense for the new type. For example, a Default Action
Callback for a CwText would not be appropriate for an CwPushButton. It is
recommended that morphing be limited to similar classes of objects.

Align 117

Align

 Left

Aligns the left side of the selected widgets to the first widget in the selection.

 Center

Aligns the selected widgets so that one vertical axis goes through all their centers.

 Right

Aligns the right side of the selected widgets to the first widget in the selection.

 Top

Aligns the top of the selected widgets to the first widget in the selection.

 Middle

Aligns the selected widgets so that one horizontal axis goes through all their centers.

 Bottom

Aligns the bottom of the selected widgets to the first widget in the selection.

118 Chapter 8 Command Reference

Position

 Bring To Front

Moves the selected widget in front of any widgets that conceal it. This places the widget
at the top of the z-order. If the widget is also a tab stop, it will become the first tab stop
on the window.

 Send To Back

Moves the selected widget behind any widgets it overlaps. This places the widget at the
bottom of the z-order. If the widget is also a tab stop, it will become the last tab stop on
the window.

Bring Forward

Moves the selected widget forward one position in the z-order. This command also
moves it forward in the tab order if the widget is a tab stop.

Send Backward

Moves the selected widget backward one position in the z-order. This command also
moves it backward in the tab order if the widget is a tab stop.

Position 119

 Distribute Horizontally

Evenly distributes the selected widgets horizontally, i.e. leaving the first and last selected
panes in the same location, forces the horizontal space between each pane to be the same.

 Distribute Vertically

Evenly distributes the selected widgets vertically, i.e. leaving the first and last selected
panes in the same location, forces the vertical space between each pane to be the same.

Pack Horizontally

Packs the selected widgets so that they are one grid spacing apart horizontally.

Pack Vertically

Packs the selected widgets so that they are one grid spacing apart vertically.

 Move By Pixel

Moves the selection one pixel in the direction specified. These commands are replicated
in the floating Nudge tool available from the Options | Tools menu.

 Set Widget Position...

Sets the location at which the currently selected widget will initially be placed.

120 Chapter 8 Command Reference

Size

 Auto Size Selection

Sets the size of the selected widget to the size specified by the widget’s answer to the
#preferredExtent message. The default suggested size is the current size of the
widget, i.e. a no-op. This command is useful for sizing simple widgets like labels without
much effort.

 Replicate Width

Sets the width of all widgets in the selection to the width of the first widget in the
selection.

 Replicate Height

Sets the height of all widgets in the selection to the height of the first widget in the
selection.

 Size By Pixel

Sizes the selection one pixel in the direction specified. When sizing, the top left corner of
the selection remains in place, and the lower right shifts. These commands are replicated
in the floating Nudge tool available from the Options | Tools menu.

Size 121

 Set Widget Size...

Displays a dialog in which you can set the size of the selected widget to a specific pixel
size.

122 Chapter 8 Command Reference

Options

 Use Grid

Toggles the grid function on or off. When set on, an invisible grid is overlaid on the
design surface that widgets snap to when being placed, dragged, or sized.

 Draw Grid

Toggles the grid display function on or off. When set on, WindowBuilder Pro displays the
grid.

Options 123

 Set Grid Size...

Displays a dialog that allows you to set the grid size of the design surface in the x and y
directions.

Right-clicking on the Grid button in the lower right corner of the WindowBuilder Pro
window pops up a menu from which you can select an appropriate grid size. You can also
specify whether the grid should be used or not.

Tools

Displays a submenu with the following choices:

WindowBuilder Pro remembers the status (e.g., size, position and open/close) of each
floating tool when it is closed. Any tools left open when WindowBuilder Pro closes will
be automatically opened when WindowBuilder Pro is restarted.

Color

Open the floating color tool. This is tool can be used to set the colors for the selected
widgets without the need to open the Color Editor.

124 Chapter 8 Command Reference

Attachments

Open the floating attachment tool. This is tool can be used to set the attachments for
the selected widgets without the need to open the Attachment Editor. Each button in
the tool represents a different attachment style. See the discussion of the Attachment
Editor for a discussion of these styles.

Nudge

Open the floating nudge tool. This tool is used for fine-tuning the position and size
of the selected widgets. The top row of buttons are used to position a widget in one
pixel increments. The bottom row of buttons are used to size a widget in one pixel
increments. These functions replicate the Move By Pixel and Size By Pixel
functions found on the Position and Size menus respectively.

Tab & Z-Order

Open the floating tab & z-order tool. This tool is used for fine-tuning the tab and z-
order of the selected widgets. The top row of buttons are used to change the tab and
z-order of the selected widgets. These functions replicate the Bring To Front , Send
To Back, Bring Forward and Send Backward functions found on the Position
menu.

The first three buttons on the bottom row are used to change the tab stop status of the
selected widgets. The first button (red) sets the selected widgets to be full tab stops.

Options 125

The second button (yellow) sets the selected widgets to be tab group members. The
third button (white) sets the selected widgets not to be tab stops. The last button on
the bottom row are used to toggle on and off the display of the tab and z-order tags.
This is the same as the Show Tab & Z-Order option on the Options menu.

Widget Selection
Open the floating widget selection tool. This tool can be used to select any
combination of widgets on the design surface. Unlike the main design surface,
widget selection is not limited to widgets within the same parent group. This allow
you to change the attributes of widgets at different levels in the widget hierarchy
simultaneously. Double-clicking a widget will allow you to edit the widget’s name.
The toolbar includes all of the standard attribute setting commands like Font, Color,
Attachments, Menus, Callbacks and Attributes . A Browse Widget Class button
and optional (if the WindowBuilder Pro - Tools configuration is loaded) Inspect
button are also included.

The widget list can display the window’s widgets either hierarchically or
alphabetically by name or by type. It can also filter the list to show only one type of
widget at a time. The All button in the upper right corner makes it easy to select all
of the widgets in the window or all the widgets of a particular type.

Drag Outlines
Toggles the outline drag function on and off. When set on, widgets will be represented as
dotted outlines when they are dragged around the screen. The default is off in which case
the widgets themselves are dragged around the screen.

Show Tab & Z-Order

Toggles the Tab & Z-order display function on and off. When set on, a filled circle
containing a widget’s Tab & Z-order will be displayed on top of the widget. The color of
the circle indicates the widget’s status as a tab stop. Widgets that are both tab stops and

126 Chapter 8 Command Reference

tab groups (e.g., full tab stops) are indicated by red. Widgets that are tab stops but not
groups (e.g., buttons in a tab group) are indicated by yellow. Widgets that are not tab
stops at all are white (e.g., labels and separators).

When the tab order tags are visible, they may be moved via drag and drop. This provides
a convenient mechanism for rearranging the tab order without the need to open the Tab &
Z-Order Editor.

Target Is First

Toggles the selection mode between target-is-first mode and target-is-last mode. The
latter is the default mode of operation for VisualAge. The target widget is the widget that
acts as the model for all multiple widget editing commands.

Use Fence

This specifies whether widgets should be constrained to the bounding box of their parent
widget. Turning this off will allow a widget to be positioned anywhere within its parent
(even off screen out of view).

Options 127

Allow Reparenting

Specifies whether widgets may be reparented by dragging them from one parent to
another. For example, a EwTableList could be dragged into a CwScrolledWindow to give
it scrolling abilities.

Nested Direct Manipulation

Specifies whether VisualAge-style direct manipulation of nested widgets is allowed.
Turning on this option will enable direct manipulation of nested widgets and will
automatically put the selected widget’s parent into direct select mode. Children may be
added to a CwForm, CwRowColumn, CwScrolledWindow, Frame or Notebook by
dropping the widget within the boundaries of the desired parent. Selecting multiple
widgets follows the rule that only widgets at the same level (with the same parent) may
be selected simultaneously.

Use Scrolled Window Child

Specifies whether operations on CwScrolledWindows should pass through to the child.
For example, should double clicking on a CwScrolledWindow invoke the attribute editor
of the CwScrolledWindow or the child? With this enabled, holding the ALT key down
when double clicking will open the attribute editor on the CwScrolledWindow itself.

Always Add Forms To Frames

Specifies whether frames should always be created with an embedded form as their
primary child. This is more intuitive for most developers who expect to be able to place
multiple widgets within a frame (frames are only allowed one direct child).

Mini Help

Toggles the display of popup mini help (balloon/hover help) in all attribute editors. Mini
help may be turned on and off in any attribute editor via hitting CTRL+H. If mini help is
turned off, hitting F1 in any attribute editor will pop up a mini help window for the
widget under the cursor (and only that widget).

Update Outboards

Toggles the outboard update function on and off. When set on, WindowBuilder Pro will
automatically update any outboard windows (e.g., attribute editors, attachment editor,
etc.) with the currently selected widget or widgets.

128 Chapter 8 Command Reference

Auto Save

Toggles the Autosave function on or off. Autosave prevents WindowBuilder Pro from
querying you to save the window’s definition every time you wish to test it. This
facilitates rapid testing.

 Templates...

Displays the template editor.

The template editor allows you to specify default attribute values for attributes of all the
widgets supported by WindowBuilder Pro. These widgets are the concrete classes in the
Common Widgets and the Extended Widgets subsystem of VisualAge. Once you change
a default value, that new value will be used for all new instances of that widget that you
place in the editor. For example, all CwArrowButtons are upward pointing by default.
This can easily be changed so that all new buttons are right pointing when first dropped
into the editor.

Options 129

 Properties...

Displays the property editor.

The properties editor is used to customize your WindowBuilder Pro environment. You
can customize the code generation properties, the editor properties, grid properties and
the user properties.

Allow Reparenting Specifies whether widgets may be reparented by dragging them
from one parent to another. For example, a EwTableList could be
dragged into a CwScrolledWindow to give it scrolling abilities.

Always Add Forms
To Frames

Specifies whether frames should always be created with an
embedded form as their primary child. This is more intuitive for
most developers who expect to be able to place multiple widgets
within a frame (frames are only allowed one direct child)..

Auto Save Specifies whether the window definition should automatically be
saved before testing a window.

Auto Update
Outboards

Specifies whether the outboard windows should be updated when
new widgets are selected in the main editing window.

130 Chapter 8 Command Reference

Comment Methods Specified whether the comment field of each method should be
set to the current copyright string.

Company Name Specifies the user’s company name.

Confirm Non-
Undoable

Specifies whether the user is asked to confirm non-undoable
operations.

Copyright Specifies the copyright string to use in generated code. Automatic
word substitution is supported: “%Y” is replaced by the current
calendar year. “%C” is replaced by the company name. “%U” is
replaced by user name. “%D” is replaced by the current date. “T”
is replaced by the current time.

Copyright After
Body

Specifies whether the copyright string should appear after the
method body. When this property is false, the copyright text is
generated before the method body right after the method
comment. This is only applicable when “Generate Copyright” is
set to true.

Default Widget
Font

Specifies the default font used for all widgets..

Drag Outlines Specifies whether widgets should be dragged as outlines or not.

Draw Grid Specifies whether the grid is visible within WindowBuilder Pro.

Generate All Stubs Specifies whether callback stubs should be generated for all
receiver objects. If false, callback stubs are generated only for the
current application.

Generate Default
Handler Names

Specifies whether the Callback Editor should generate default
handler names when new callback/event handlers are added.

Generate OLE
Properties

Specifies whether OLE/ActiveX properties should be generated
for OleControl instances. If turned on, each property setting will
be generated as “propertyAt: <Name> put: <value>”. Settable
properties are limited to String, Integer, Float and Boolean. If
turned off, the property settings will be generated to an OLE file
named <widgetName>.CON. All properties are settable, but the
.CON file must be present in the working directory.

Generate
Copyright

Specifies whether each generated method should include a
copyright string.

Options 131

Grid Size Specifies the grid size used in the WindowBuilder Pro editor.
When the grid is on, all move and size operations are constrained
to multiples of the grid size.

Handle Size Specifies the handle size used in the WindowBuilder Pro editor.

Inherit Pool
Dictionaries

Specifies whether pool dictionary references should be inherited
from the superclass. The default is true. For better portability to
other Smalltalk dialects, set this to false.

Line Before
Comment

Specifies whether there should be a blank line between the
message pattern and the method comment.

Make Callbacks
Private

Specifies whether generated callback stubs should be private
methods. True indicates that they should be private. False
indicates that they should be public.

Max Undo Levels Specifies the maximum number of undo levels maintained by the
WindowBuilder Pro editor.

Max Window Size Specifies the maximum window size that can be built using
WindowBuilder Pro.

Mini Help Delay Specifies the Mini Help delay in milliseconds. This delay is the
time between the pointer passing over a widget and its Mini Help
description appearing.

Mini Help Enabled Specifies whether Mini Help should be enabled or not. If true,
WindowBuilder will pop up help descriptions of attributed editor
items when the cursor is passed over them.

Mini Help On
Toolbars Only

Specifies whether Mini Help should be available only for toolbars
or not. If true, help will only appear for toolbar items. If false,
help will appear on all items.

Nested Direct
Manipulation

Specifies whether VisualAge-style direct manipulation of nested
widgets is allowed. Setting this to true will enable direct
manipulation of nested widgets and will automatically put the
selected widget’s parent into direct select mode.

Show All Errors Specifies whether all internal editor errors should be displayed
(for debugging purposes).

132 Chapter 8 Command Reference

Show Attachment
Palette

Specifies whether the floating attachment palette should be
displayed.

Show Color Palette Specifies whether the floating color palette should be displayed.

Show Nudge
Palette

Specifies whether the floating nudge palette should be displayed.

Show Tab & Z-
Order Palette

Specifies whether the floating tab & z-order palette should be
displayed.

Show Widget
Selection Palette

Specifies whether the floating widget selection palette should be
displayed.

Show Z Order Specifies whether the z-order of the widgets should be shown in
the editor.

Target Is First Specifies whether the target widget is the first widget selected in
a sequence. Setting this to false, will emulate the VisualAge
target-is-last-selected model.

Use Add To Format Specifies whether methods should be generated using AddTo
format rather than Add format. In AddTo format, parents are
passed in as arguments (e.g., aForm, aMenuBar, etc.). In Add
format, parents are in-lined (e.g., self form) and no arguments are
passed.

Use Default Code
Generation Style

Specifies whether the WindowBuilder Pro default code
generation style will be used. If this is turned off, the code
generator will only use pure CwWidget constructs (no
WindowBuilder Pro extensions). The default method created will
be called #createWorkRegion and auto-scaling will be disabled.

Use Fence Specifies whether widgets should be constrained to the bounding
box of their parent widget. Setting this to false will allow a
widget to be positioned anywhere within its parent (even off
screen out of view).

Use Generic
Editors

Specifies whether custom or generic attribute editors should be
used by default.

Use Grid Specifies whether the grid is turned on or off within
WindowBuilder Pro. When the grid is on, all move and size
operations are constrained to multiples of the grid size.

Options 133

Use Long Callback
Comments

Specifies whether long callback comments should be generated.
Long comments include complete descriptions of each of the
callback arguments (e.g., the callData).

User Name Specifies the user’s name.

Use Scrolled
Window Child

Specifies whether operations on CwScrolledWindows should pass
through to the child. For example, should double clicking on a
CwScrolledWindow invoke the attribute editor of the
CwScrolledWindow or the child? With this enabled, holding the
ALT key down when double clicking will open the attribute
editor on the CwScrolledWindow itself.

Use Side Handles Specifies whether the WindowBuilder Pro editor will display side
handles in addition to the corner handles.

Redraw

Forces the window to repaint itself.

134 Chapter 8 Command Reference

Add

 Text

Displays a submenu containing all the text display and editing widgets (CwLabel,
CwText and WbScrolledText). When a widget type is selected from the submenu, the
cursor will be loaded with an example of this widget, which you can then place in the
window (i.e. this performs the same function as the Widgets Palette).

 Button

Displays a submenu containing all the button-type widgets (CwPushButton,
CwDrawnButton, CwArrowButton, CwToggleButton and WbRadioBox).

 List

Displays a submenu containing all the list-oriented widgets, or widgets which allow the
user to select one from a group of items (WbScrolledList, CwComboBox, EwSpinButton,
CwObjectList , CwHierarchyList, EwDrawnList, EwTableList and EwTableTree).

 Composite

Displays a submenu containing all composite widgets (CwForm, CwRowColumn,
CwFrame, WbFrame and CwScrolledWindow).

Add 135

 Slider

Displays a submenu containing widgets used to set numerical values (EwSlider,
CwScrollBar and CwScale).

 Notebook

Displays a submenu containing all the notebook-oriented widgets (EwPMNotebook,
EwWINNotebook and EwPage).

 Container

Displays a submenu containing all the iconic-container widgets (EwIconArea,
EwIconList, EwFlowedIconList and EwIconTree).

 Other

Displays a submenu containing miscellaneous widgets (CwDrawingArea and
CwSeparator).

 Windows 95

Displays a submenu containing all of the Windows 95 widgets (under Windows 95 or NT
4.0 only).

 OLE/ActiveX

Displays a submenu containing OleClient and OleControl.(under Windows 95 or NT 4.0
only). Wrappered OLE/ActiveX widgets (AbtOleExtendedWidget subclasses) will also
appear in this list.

New Widget...

Displays a dialog that allows you to specify a widget type by name to place on the editing
surface. This command would be useful for adding widgets that are not on the palette.

136 Chapter 8 Command Reference

Nested Application...

Displays a dialog that allows you to select a WbApplication subclass to embed in the
current window. Windows generated using the WindowBuilder Pro application
framework can be used both as standalone windows or treated as widgets and embedded
within other applications.

137

Chapter 9 Common Widgets Overview

This chapter introduces the Common Widgets (CW) subsystem of VisualAge. The
Common Widgets classes and methods enable programmers to design and build graphical
user interfaces using an application programming interface (API) based on OSF/Motif.
Using the Common Widgets subsystem, programmers can do the following:

• Create individual widgets, including buttons, lists, text, menus, and dialog boxes

• Create compound widget structures by combining individual widgets

• Specify the positioning of widgets relative to each other

• Program operations to occur in response to user actions

These capabilities are described later in this chapter. In addition, this chapter explains
how the system is based on OSF/Motif, gives an overview of the Common Widgets class
hierarchy, and describes the basic approach for building an application.

OSF/Motif Compatibility
The Common Widgets subsystem is based on the OSF/Motif C programming interface
standard. This section is of interest to developers familiar with Motif. It describes the
strategy used to translate Motif C types and functions to Smalltalk classes and methods.
Experienced Motif programmers will be able to apply their knowledge of the C
programming interface directly when programming Common Widgets.

Smalltalk classes have been created for most C data types. These classes are named by
prefixing the Motif data structure name with Cw (after first removing any X, Xt, or Xm
prefix). For example, the Motif data structure Widget is represented by the Smalltalk
class CwWidget.

Motif functions have corresponding Smalltalk methods. To understand this mapping,
consider the function XmListSelectItem below:

void XmListSelectItem (widget, item, notify)
Widget widget;
XmString item;
Boolean notify;

138 Chapter 9 Common Widgets Overview

In the Common Widgets subsystem, the XmListSelectItem call has been mapped to an
instance method of the class CwList:

selectItem: item notify: notify

The C type Widget, in this case, is mapped to the Smalltalk class CwList since the
XmListSelectItem function applies only to list widgets. The XmList prefix has been
stripped off, because such C-specific prefixing is unnecessary in Smalltalk.

Where C types have appropriate corresponding Smalltalk base classes, C types are
mapped to these. For example, the C type XmString is mapped to the Smalltalk class
String, and the C type Boolean is mapped to the Smalltalk class Boolean.

Common Widgets Class Hierarchy
This section describes the Common Widgets class hierarchy and provides an overview of
the functionality provided by each class.

A widget is a user interface component, such as a top-level window (shell), button or list.
A graphical user interface is built by creating a tree of widgets. Every widget except the
topmost widget in a tree has a parent widget. In the user interface a child widget appears
on top of the parent and is normally prevented from drawing outside the bounds of its
parent. Each parent widget is responsible for sizing and positioning its children. The
parent-child relationship defines the widget tree. The topmost widget in the tree is called
a shell widget. Shell widgets are responsible for negotiating with the window manager
for their position on the screen, and for the various window decorations that they display,
such as a title, border, or close box.

All Common Widgets are subclasses of one of three classes listed below.

CwPrimitive Primitive widgets have no children

CwComposite Composite widgets can have zero or more children

CwShell Shell widgets have exactly one child

Primitive widgets are the simplest building blocks in Common Widgets. A primitive
widget is always the child of another widget. The following table provides brief
descriptions of the CwPrimitive class and its subclasses. Classes in italics are abstract
classes (they are never instantiated).

Common Widgets Class Hierarchy 139

Class Hierarchy Responsibility

CwWidget Defines common behavior for all widgets.

CwBasicWidget Defines common behavior for widgets implemented
directly by the platform.

CwPrimitive Defines common behavior for widgets that do not have
children.

CwArrowButton Displays an arrow button.

CwComboBox Combines a list and text area to provide a prompted
entry field.

CwLabel Displays a static label that can be a string, pixmap, or
icon.

CwDrawnButton Displays a button drawn by the application.

CwPushButton Displays a push button containing a string, pixmap, or
icon.

CwToggleButton Displays a button that has on/off state such as a radio or
check button.

CwList Displays a list of strings from which one or more can be
selected.

WbScrolledList Displays a scrollable list of strings from which one or
more can be selected.

CwScrollBar Displays a vertical or horizontal scroll bar.

CwSeparator Displays a separator line, normally between menu items.

CwText Displays and provides editing capability for text.

WbScrolledText Displays and provides editing capability for multi-lined
text.

Composite widgets can have zero or more child widgets. A composite widget’s children
can include other composite widgets, primitive widgets or both. Different composite
widgets provide various kinds of layout capabilities for arranging children. The following
table briefly explains the CwComposite class and its subclasses. Classes in italics are
abstract classes.

Class Hierarchy Responsibility

CwWidget Defines common behavior for all widgets.

CwBasicWidget Defines common behavior for widgets implemented
directly by the platform.

CwComposite Defines common behavior for widgets that contain
child widgets.

140 Chapter 9 Common Widgets Overview

Class Hierarchy Responsibility

CwBulletinBoard Allows application-defined child widget positioning.

CwForm Provides a constraint-based mechanism for laying
out child widgets.

CwDrawingArea Performs no child layout and provides an area for
performing graphic operations.

CwFrame Provides a frame around its single child widget.

WbFrame Provides a frame around its single child widget with
an adjustable frame width.

CwRowColumn Provides a mechanism for laying out child widgets in
rows or columns.

WbRadioBox Provides a simple Radio Button group

CwScale Displays a numeric scale with a position indicator.

CwScrolledWindow Allows a child widget to be scrolled using scrollbars.

CwMainWindow Provides layout management for a menu bar and
optionally scrollable work area.

Shell widgets provide the protocol between the application interface and the window
manager. The following table provides brief descriptions of the CwShell class and its
subclasses. Classes in italics are abstract classes.

Class Hierarchy Responsibility

CwWidget Defines common behavior for all widgets.

CwBasicWidget Defines common behavior for widgets implemented
directly by the platform.

CwShell Defines common behavior for the top level widgets of
windows and dialogs.

CwOverrideShell A pop-up window that bypasses window management,
and normally appears over all other widgets.

CwWMShell Defines common behavior for shell widgets that do not
bypass window management.

CwTopLevelShell Provides a normal window with standard appearance and
decorations.

CwTransientShell A pop-up dialog window that does not bypass window
management.

CwDialogShell A pop-up window used to implement modal and
modeless dialog windows.

Overview of Common Widgets User Interface Concepts 141

Overview of Common Widgets User Interface Concepts
All user interfaces have two directions of communication: from the application to the
user, and from the user back to the application. Using Common Widgets, these two
directions of communication work as follows:

• The application creates and configures user interface components (widgets) through
the use of resources and functions, and expresses interest in receiving notification of
user actions by registering callbacks and event handlers.

• The user interface notifies the application of user actions by calling callbacks and
event handlers.

The next sections explain how widgets are created and configured, and how callbacks and
event handlers allow the application to react to user actions.

The Parent-Child Widget Tree

A widget tree is created in a top-down manner. First a shell widget is created. Next, a
single child widget, usually a subclass of CwComposite, is created as the child of the
shell. This process continues until the application has created all the widgets in the tree.

In the example below, a simple graphics application window is shown. A
CwTopLevelShell is created to interact with the window manager. A CwMainWindow is
created as the single child of the shell. A CwForm is created as the child of the main
window. The CwForm is required to position a CwDrawingArea and a CwRowColumn,
which are created as children of the form. Three CwPushButton’s are created as children
of the row-column widget. The window looks like this:

Here is the code used to create this interface.

142 Chapter 9 Common Widgets Overview

Example Code to Create a Widget Tree

The code below illustrates an example window built with WindowBuilder Pro.

setUpShell: aShell
“Private: WARNING!!!! This method was automatically generated
 by WindowBuilder Pro. Code you add here which does not
 conform to the WindowBuilder Pro API will probably be lost
 the next time you save your layout definition.”
aShell

x: 100;
y: 100;
width: 292;
height: 156;
fontExtent: 7 @ 16;
title: ‘Graphics Example’;
mwmDecorations: MWMDECORALL;
yourself.

addWidgets
“Private: WARNING!!!! This method was automatically generated
 by WindowBuilder Pro. Code you add here which does not
 conform to the WindowBuilder Pro API will probably be lost
 the next time you save your layout definition.”
| button1 button2 button3 draw rowColumn |
rowColumn := CwRowColumn

createWidget: ‘rowColumn’
parent: self form
argBlock: [:w | w

x: 4;
y: 4;
width: 52;
height: 144;
borderWidth: 1;
marginHeight: 5;
marginWidth: 5;
spacing: 5;
scale].

button1 := CwPushButton
createWidget: ‘button1’
parent: rowColumn
argBlock: [:w | w

x: 5;
y: 5;
width: 42;
height: 40;
labelString: ‘1’;
scale].

Overview of Common Widgets User Interface Concepts 143

button2 := CwPushButton
createWidget: ‘button2’
parent: rowColumn
argBlock: [:w | w

x: 5;
y: 50;
width: 42;
height: 40;
labelString: ‘2’;
scale].

button3 := CwPushButton
createWidget: ‘button3’
parent: rowColumn
argBlock: [:w | w

x: 5;
y: 95;
width: 42;
height: 40;
labelString: ‘3’;
scale].

draw := CwDrawingArea
createWidget: ‘draw’
parent: self form
argBlock: [:w | w

x: 62;
y: 5;
width: 222;
height: 144;
borderWidth: 1;
scale].

rowColumn
attachLeft: 4 relativeTo: XmATTACHFORM;
attachTop: 4 relativeTo: XmATTACHFORM;
attachBottom: 8 relativeTo: XmATTACHFORM;
yourself.

draw
attachLeft: 6 relativeTo: rowColumn;
attachRight: 8 relativeTo: XmATTACHFORM;
attachTop: 5 relativeTo: XmATTACHFORM;
attachBottom: 7 relativeTo: XmATTACHFORM;
yourself.!

When this code is executed, a window titled ‘Graphics Example’ appears on the screen.
The widgets behave as expected, but the application is not notified when a button is
pressed or when the mouse is moved. In order for the application to be notified of the
user’s interaction with the widgets, event handlers and callbacks are required.

144 Chapter 9 Common Widgets Overview

The Widget Lifecycle

In order for a widget to appear on the user’s display, it must be created, managed,
mapped and realized. When a widget is no longer required, it is destroyed. These steps
are described below.

1. Creating a Widget

The first step is to create the widget. When a widget is created, it is given a name, and its
parent-child relationship is established. A new widget adopts default settings for any of
its resources that are not explicitly set when the widget is created. Widget resources are
data that define how a widget appears and behaves. Resources are described in the next
section.

Widget names serve several purposes:

• Some widgets use their name to establish a default resource value. For example,
shells that have titles use their name as the default title. Push button and label
widgets use their name as the default labelString. Using the name in this way results
in more efficient code.

• Widget names are used as part of a widget’s printable representation (using
printOn:). They are also useful for identifying widgets during debugging.

• On platforms supporting OSF/Motif as the native widget system, widget names are
used in conjunction with X resource files to set initial resource values for widgets.

2. Managing a Widget

Managing a widget specifies that its size and position will be managed by its parent
widget. This process is called geometry management. Any changes in the size or
position of the parent widget will be recursively propagated to managed child widgets.
The application must specify that a widget is to be managed by sending the manageChild
message to the widget.

Managing or unmanaging a widget does not affect the managed state of child widgets.
However, if a widget is unmanaged then neither it nor any of its children will participate
in geometry management. By default a widget is not managed when it is created.

3. Mapping a Widget

Mapping a widget specifies that it is to appear on the display once it has been realized.
Realizing a widget is described below. By default, a widget is mapped automatically

Overview of Common Widgets User Interface Concepts 145

when it is managed. This is controlled by the setting of the #mappedWhenManaged

widget resource, which defaults to true. Unmanaging a widget also unmaps it.

It is possible for widgets to be created, managed, and realized, but left unmapped. The
widget remains invisible until it is mapped. This technique is useful for quickly
displaying frequently used dialog boxes.

Widgets are mapped using the #mapWidget method, and unmapped using the
#unmapWidget method. Mapping or unmapping a widget maps or unmaps all child
widgets.

4. Realizing a Widget

Up until the time a widget is realized, it is invisible. It can be created, managed in the
tree, and mapped, but it will not appear on the screen until it is realized. During
realization, all widgets assume their initial geometry and create their visual appearance.
Widgets are realized by sending the #realizeWidget message to the topmost widget in
the hierarchy, or shell widget. Realizing a widget realizes all of its children recursively.
Widgets created, mapped, and managed as children of already realized widgets are
automatically realized on creation.

In the example below, the CwTopLevelShell widget has been realized, and the
CwRowColumn has positioned its three CwPushButton children.

5. Destroying a Widget

When a widget is no longer required, it is destroyed. A widget can be implicitly
destroyed by the user, for example by clicking on a close box. Alternatively, a widget can
be destroyed under application control by sending it the #destroyWidget message. The
widget is removed from the display and released from memory. Destroying a widget
recursively destroys all child widgets.

146 Chapter 9 Common Widgets Overview

Mapping and Unmapping Widgets

A widget that is managed but not mapped still participates in geometry management, that
is, it takes up space in its parent, but it is not actually drawn. Normally this results in a
blank area in the parent where the widget would otherwise appear.

In this example, assume that the widget tree is created, managed and realized, but the
second CwPushButton is subsequently unmapped. Notice that the button is removed from
the screen, but its parent still reserves its position in the row-column widget.

Managing and Unmanaging Widgets

When a widget is unmanaged, its parent can reclaim the space the widget occupies. If the
parent widget is a composite that performs layout of its children, it will adjust child
layout accordingly. A row-column was chosen for this example because it provides a
visual demonstration of the difference between mapping and managing widgets.

In this example, assume that the widget tree is created, managed and realized, but
CwPushButton 2 is subsequently unmanaged. Not only is the button removed from the
screen, or unmapped, but it also loses its position in the row-column widget.

Overview of Common Widgets User Interface Concepts 147

Widget Resources and Functions

Widgets are configured and controlled by the application through resources and
functions. Widget resources are named stated that define the behavior and appearance of
a widget. Widget functions are messages that can be sent to a widget to tell it to do
something.

In VisualAge, resource accessors and functions are implemented as Smalltalk methods in
widget classes. Widget resource methods provide access to a widget’s resources. All
methods that are not resource methods are widget function methods. A method’s
comments and its message specification indicate whether it is a resource method or a
function method.

Resources

Resources are somewhat analogous to Smalltalk instance variables, and resource set and
get methods are similar to instance variable accessor methods. However, there are several
important differences:

• Resources may or may not be implemented using instance variables, and the
implementation varies from platform to platform.

• Changes to values in widget resources are immediately reflected in the appearance of
the widget.

• On platforms running Motif as the native widget system, VisualAge widget resource
values can be set using standard X resource files, as with any other Motif
application.

All widgets have a core set of resources. For example, all widgets have width and height
resources. A widget can also have resources specific to its behavior. For example, the
items resource of the CwList widget defines what items are displayed in the widget.
Default values are provided for all of a widget’s resources. A widget’s resources are set or

148 Chapter 9 Common Widgets Overview

retrieved using the set and get accessor methods of the widget, the names of which
correspond directly to the associated resource name.

Resources defined by a widget’s superclasses are inherited. For example, consider the
widget class CwPushButton. This class is a subclass of CwLabel, CwPrimitive,
CwBasicWidget and CwWidget. CwPushButton inherits resources from all of its
superclasses, as well as defining additional resources of its own.

The following table illustrates the resources that are available for a CwPushButton
widget. Many of the resources are provided by CwWidget, and these are available to all
widgets.

CwWidget CwPrimitive CwLabel CwPushButton

ancestorSensitive backgroundColor accelerator activateCallback

borderWidth foregroundColor acceleratorText armCallback

depth helpCallback alignment disarmCallback

destroyCallback navigationType fontList showAsDefault

height traversalOn labelIcon

mappedWhenManaged labelInsensitiveIcon

resizable labelInsensitivePixmap

resizeCallback labelPixmap

sensitive labelString

userData labelType

width marginBottom

x marginHeight

y marginLeft

(plus 16 attachment-related marginRight

resources) marginTop

marginWidth

mnemonic

recomputeSize

Not all widget resources can be modified or retrieved at any time. Resources are tagged
with the letters C, S, or G to indicate when the resource can be modified or retrieved, as
follows:

• The application can set the resource at creation time only (C).

Overview of Common Widgets User Interface Concepts 149

• The application can set the resource at any time (S).

• The application can retrieve, or get, the resource at any time after the widget is
created (G).

The specification for each resource method provides the resource access designation
information. Most resources are designated with all three attributes (C, S, and G).
Resources are manipulated using get and set accessor methods derived from the
OSF/Motif name for the resource by removing the ‘XmN’ prefix. For example, the Motif
resource XmNheight for a widget is retrieved and modified using the #height and
#height : methods, respectively.

Create-only (C) resources can only be set using an argBlock at widget creation time. An
argBlock is a single argument Smalltalk block of code that is evaluated with the widget
being created as its argument. Resources with an (S) designation can also be set in the
argBlock. The argBlock is evaluated before the widget is fully created, that is, while it is
still under construction, but after a Smalltalk object has been created to represent the
widget. If no argBlock is required, nil can be used for the argBlock argument, rather than
unnecessarily creating an empty block.

Tip: Always set resources in the create argBlock wherever possible. If the system has
more information available at the time of widget creation, it can perform more
optimization. On some platforms a significant performance advantage is achieved
by setting resources in the create argBlock rather than immediately after creation,
which may cause default widget configuration to have to be “undone”.

In the following example, the width and height resources for a drawing area are explicitly
set in an argBlock when the drawing area widget is created. These specify the size in
pixels of the drawing area widget. The size of the shell widget is calculated based on the
size of the drawing area widget. In general, when the size of a widget is not explicitly
specified, it is calculated based on the size of its children, recursively. The string
arguments in the creation messages specify the names of the widgets. By default, the
name of the top level shell appears as the window title.

| shell drawingArea |
shell := CwTopLevelShell

createApplicationShell: ‘ShellName’
argBlock: nil.

drawingArea := CwDrawingArea
createWidget: ‘draw’
parent: shell
argBlock: [:w | w

width: 100;
height: 100].

drawingArea manageChild.
shell realizeWidget

150 Chapter 9 Common Widgets Overview

Resources with set (S) and get (G) designations can be set and retrieved, respectively,
after widget creation using the appropriate set and get methods.

Multiple resources with set (S) designation can also be set simultaneously after the
widget has been created using the #setValuesBlock: message, which takes an
argBlock as argument. The #setValuesBlock: method is the recommended way of
setting multiple resources for a widget after the widget is created. Normally, after a
widget has been created and a resource is modified that changes a widget’s appearance,
the widget is redisplayed to show the change. Using a #setValuesBlock: is more
efficient than setting the resources outside the block because the widget can then
optimize updates together, even if several of them change the widget’s appearance. The
block passed to #setValuesBlock: has the same format as the argBlock used when
creating a widget.

In the following example, the geometry of a shell widget is changed. Assume that the
variable shell is a top level shell that has been created and realized.

“Set widget geometry using a series of set accessor methods. The
shell is redrawn up to four times, once for each resource change.”
shell

x: 10;
y: 10;
width: 100;
height: 100.

“Set widget geometry using a set values block. The shell is
redrawn only once, with the final dimensions, at the final
position.”
shell

setValuesBlock: [:w | w
x: 10;
y: 10;
width: 100;
height: 100].

Tip: Some resources change their values when the value of a different resource in the
same widget is changed. To avoid this “push-down-here-pop-up-there” effect, such
resources must be set simultaneously using an argBlock, either on creation or after
creation using #setValuesBlock: . This situation occurs with left/right and
top/bottom CwForm attachment resources, which should always be set in pairs.

Function Methods

Widget methods that are not resource set or get methods are widget function methods.
Unlike resource setting messages, function messages can only be sent to widgets after
they have been created. While resource methods are used to access or change widget
state, function methods typically perform more complex operations, and in some cases
modify resource values. While resource get and set methods uniformly require zero

Widget Event Handling and Callbacks 151

arguments and one argument respectively, widget function methods take varying numbers
of arguments, depending on the particular function. The #manageChild method is an
example of a widget function.

Functions often alter the resource values of a widget as a side effect. For example, the
#setString: function for text widgets alters the value resource of the widget. In some
cases it is possible to achieve the same effect by using either a resource method or a
function method.

Tip: Do not call function methods from inside a create argBlock. Because the widget is
not fully created when the create argBlock is evaluated, invoking widget functions
will result in errors.

CwConstants Pool Dictionary

The Common Widgets subsystem uses a pool dictionary called CwConstants to provide
pool variables for constant values. For example, pool variables such as
XmATTACHFORM and XmNactivateCallback are used as arguments to Common
Widgets methods. These pool variable names should be used rather than directly using
their constant values. All classes that require these Common Widgets pool variable names
must include the CwConstants pool dictionary in their class definition.

Widget Event Handling and Callbacks
An event is the mechanism that notifies the application when the user performs a mouse
or keyboard operation. The application can be notified about key presses and releases,
mouse button presses and releases, and mouse movements. Events are handled by adding
an event handler to a widget.

A callback is the mechanism that notifies the application when some higher level action
is performed on a widget. For example, the XmNactivateCallback is used to inform the
application that a CwPushButton has been pressed and released. As another example, all
widgets support the XmNdestroyCallback that is invoked just before a widget is
destroyed.

The following example illustrates how callbacks and event handlers are defined.

Example of Using an Event Handler and a Callback

In the example below, a small graphics application interface is created. The window
created by the code is illustrated below:

152 Chapter 9 Common Widgets Overview

The code to create this window is similar to the earlier example, but in this example event
and callback handler code (bold text) has been added. This code registers the event and
callback handlers just after the widgets are created.

When the push button widget is pressed (that is, when the user clicks mouse button 1
while the mouse pointer is over the push button widget), the
#pressed:clientData:callData: method is executed.

When the mouse is moved in the drawing area with button 1 held down, the
#button1Move:clientData:event: method is executed.

setUpShell: aShell
“Private: WARNING!!!! This method was automatically generated
 by WindowBuilder Pro. Code you add here which does not
 conform to the WindowBuilder Pro API will probably be lost
 the next time you save your layout definition.”
aShell

x: 100;
y: 100;
width: 284;
height: 168;
fontExtent: 7 @ 16;
title: ‘Graphics Example’;
mwmDecorations: MWMDECORALL;
yourself.

addWidgets
“Private: WARNING!!!! This method was automatically generated
 by WindowBuilder Pro. Code you add here which does not
 conform to the WindowBuilder Pro API will probably be lost
 the next time you save your layout definition.”

Fonts 153

| button draw |
button := CwPushButton

createWidget: ‘button’
parent: self form
argBlock: [:w | w

x: 4;
y: 4;
width: 56;
height: 56;
labelString: ‘1’;
scale].

draw := CwDrawingArea
createWidget: ‘draw’
parent: self form
argBlock: [:w | w

x: 64;
y: 4;
width: 212;
height: 156;
borderWidth: 1;
scale].

button
attachLeft: 4 relativeTo: XmATTACHFORM;
attachTop: 4 relativeTo: XmATTACHFORM;
addCallback: XmNactivateCallback

receiver: self
selector: #pressed:clientData:callData:
clientData: nil;

yourself.

draw
attachLeft: 4 relativeTo: button;
attachRight: 8 relativeTo: XmATTACHFORM;
attachTop: 4 relativeTo: XmATTACHFORM;
attachBottom: 8 relativeTo: XmATTACHFORM;
addEventHandler: Button1MotionMask

receiver: self
selector: #button1Move:clientData:callData:
clientData: nil;

yourself.

Fonts
The font used by certain widgets can be specified by the application. The following
widgets allow their font to be changed: CwLabel, CwPushButton, CwToggleButton,

154 Chapter 9 Common Widgets Overview

CwText, CwList, CwComboBox, and CwScale. The font is changed using the
#fontList: method. The font to use is specified by a CwFontList object.

To create a CwFontList, the #fontStruct: class method of CwFontList is passed a
CgFontStruct describing a Common Graphics font. A CgFontStruct can be loaded using
the #loadQueryFont: method of CgDisplay. For further details on fonts, consult
“Using Fonts” in the VisualAge Programmer’s Reference.

The following code creates a multi-line text widget and sets its font to the monospaced
font named ‘8x13’.

| shell fontStruct fontList text |
shell := CwTopLevelShell

createApplicationShell: ‘shell’
argBlock: [:w | w title: ‘Font List Example’].

fontStruct := shell display loadQueryFont: ‘8x13’.
fontList := CwFontList fontStruct: fontStruct.
text := shell

createText: ‘text’
argBlock: [:w | w

editMode: XmMULTILINEEDIT;
fontList: fontList].

text setString: ‘This text is displayed using the 8x13 font.’.
text manageChild.
shell realizeWidget

Using the System Browser Font
All of the browsers in VisualAge are subclasses of EtWindow. This class keeps one font
that every browser uses. You can find the browser font name by evaluating:

EtWindow fontName.

You can change the browser font from the File menu. If the browser font has not been
changed, then the EtWindow class method fontName returns nil. If your window will use
the browser font, then you can make the window a subclass of EtWindow. Your subclass
should provide the instance method #fontSettableWidgets , which answers a
collection of all the widgets to be notified in case the font changes. EtWindow calls all of
these widgets for you and tells them to change to the new font.

You can still use the browser font, even if your window does not subclass EtWindow. The
example below creates a new window with the system font. The class method fontList in
EtWindow returns either the current CwFontList, or nil if the font has not been changed.

|shell text fontList|
shell := CwTopLevelShell

createApplicationShell: ‘shell’

Colors 155

argBlock: [:w | w title: ‘Browser Font’].
fontList := EtWindow fontList.
fontList isNil ifTrue: [

fontList := CwFontList fontStruct:
(CgDisplay default defaultFontStruct)].

text := shell
createText: ‘text’
argBlock: [:w | w

columns: 60;
editMode: XmMULTILINEEDIT;
fontList: fontList].

text setString: ‘This font is the system browser font.’.
text manageChild.
shell realizeWidget

Colors
The background and foreground color of widgets can be set and queried by the
application using the backgroundColor and foregroundColor resources. The
foregroundColor is used for text or other foreground graphics, and the backgroundColor
is used to fill the background of the widget. The color values are specified using
CgRGBColor objects which allow the application to specify the red, green, and blue
components of the desired color. See “Specifying Colors” in the VisualAge Programmer’s
Reference for more information concerning the use of CgRGBColor objects. There are
platform-specific limitations concerning setting the colors of certain widgets. See Chapter
12, “Widget Encyclopedia,” for the details of these limitations.

Note: Due to platform-specific limitations, a widget may not take on a requested color
setting, or it may take on a slightly different color setting than requested. To
determine the exact color a widget is using, the resource can be queried after it is
set. Querying the color resource always returns the color the widget is actually
using.

The following code creates a multi-line text widget and sets its foregroundColor to black
and its backgroundColor to red.

| shell text |
shell := CwTopLevelShell

createApplicationShell: ‘shell’
argBlock: [:w | w title: ‘Color Example’].

text := shell
createText: ‘text’
argBlock: [:w | w

editMode: XmMULTILINEEDIT;
foregroundColor: (CgRGBColor red: 0 green: 0 blue: 0);
backgroundColor: (CgRGBColor red: 65535 green: 0 blue: 0)].

156 Chapter 9 Common Widgets Overview

text manageChild.

Drag Drop Support
CommonWidgets provides no support for direct manipulation (a.k.a. “drag and drop”).
EwDragAndDropSupport provides pluggable drag and drop on the base widgets without
modifying them.

The Players

The Application

An application may wish to support drag and drop for a variety of reasons. It is not the
purpose of EwDragAndDropSupport to prescribe the semantics of drag and drop; this is
left to the application. The primary role of the application in drag and drop is to create
the widgets and adapters required, hook the drag and drop callbacks on the adapters, and
then make the changes to the business model as drag and drop occurs.

The Widgets

Since the base common widgets do not provide any support for drag and drop, the
widgets only requirement in supporting drag and drop is that they provide mouse and
keyboard events. The adapters then hook these events to detect and play out a drag and
drop operation.

The Adapters

EwDragAndDropSupport provides two kinds of adapters for use in drag and drop: source
adapters and target adapters.

The application instantiates a source adapter for each widget which the application
designates as a drag and drop source. The source adapter serves as a wrapper around the
source widget, providing a drag and drop callbacks which base widgets do not provide.

The application creates one source adapter for each source widget as follows:

aSourceAdapter := EwSourceAdapter on: aWidget.

The source adapter provides the following callbacks:

XmNdragStartCallback
XmNdragChangeCallback
XmNdragCompleteCallback
XmNdragCancelCallback

Drag Drop Support 157

The application also instantiates a target adapter around each widget which is to be a
target for drag and drop. The target adapter is created as follows:

aTargetAdapter := EwTargetAdapter on: aWidget.

The target adapter provides the following callbacks:

XmNdragOverCallback
XmNdragLeaveCallback
XmNdropCallback
XmNdragCancelCallback

The Drag Drop Manager

A central drag and drop manager instance stores system-wide drag and drop parameters.
These include the list of possible operations, the cursors which correspond to each
operation, and the mappings from keyboard combinations to operations. The class
EwDragAndDropManager provides API to set and query these settings.

Sequence of Events

Setup

The application sets up for drag and drop by creating a source adapter on the widgets
which are to act as the drag source. The application then hooks the source adapter’s
XmNdragStart and XmNdragComplete callbacks and optionally the XmNdragChange
and XmNdragCancel callbacks.

The application also creates a target adapter on each widget which can act as a drop
target, including any source widgets which can also act as targets. The application then
hooks each target adapter’s XmNdragOver and XmNdrop callbacks and optionally the
XmNdragLeave and XmNdragcancel callbacks.

Drag Initiation

The user initiates a drag by pressing the drag mouse button over a drag source widget and
moving the mouse a certain nominal distance. The source adapter, having hooked the
mouse events on the source widget, detects that a drag is starting and fires the
XmNdragStart callback to the application. The calldata for the XmNdragStartCallback
includes the actual mouse event which triggered the drag start, the items in the source
widget which are being dragged along with each item’s offset from the mouse location.
It also contains a default image for each item to be used to represent the item during the
drag. The images and offsets may be altered by the application to cause alternate images
and offsets to be used. For example, an application may wish to use a multi-file icon to
represent all items being dragged rather than a single icon for each item.

158 Chapter 9 Common Widgets Overview

The images and offsets which the adapter provides as defaults depend heavily on the API
of the source widget. For example, since CwList provides no API to allow the source
adapter to determine which item in the list is under the cursor when the drag starts, the
adapter instead simply provides the selected items as the drag items. Similarly, since the
source adapter cannot determine the offsets of the selected items, it provides offsets
which cause the drag items to be beveled up and to the right from the mouse.

The XmNdragStart calldata also contains a doit flag which is set to true by default. The
application can change this flag to false if it determines that dragging is not allowed for
some reason. Finally, the calldata includes a default vote, which is an array of operations
which the source will allow for these items. The application can change this vote to an
Array of operations which it will allow, given the items being dragged.

Dragging Over a Target

Each time the mouse moves, the system determines which widget is now under the
mouse. The system keeps a registry of all target adapters and their widgets. This enables
it to map the widget under the mouse (if any) to its corresponding target adapter (if any).

If no widget is under the mouse or if no target adapter exists for a widget, the no parking
cursor is automatically shown. If a target adapter is found, however, it fires its
XmNdragOver callback to its application. The XmNdragOver calldata contains the items
being dragged and the source widget as well as the mouse event. The target adapter also
determines which item in the target widget is under the mouse and supplies this in the
calldata. This is only possible on widgets that provide the necessary API to determine
this. Since no base widgets provide API to support this, the item under the cursor is
always nil for target adapters on base widgets.

If there is an item under the cursor (as is the case in some extended widgets), the
application must determine whether the item itself is capable of accepting a drop. For
example, a trash can or a printer typically would be able to accept a drop, while an
employee object typically would not.

The calldata also contains a flag by which the application can define which kind of
emphasis is to be shown on the target widget. Again, this is not possible on any of the
base widgets, only on some extended widgets. If the application has determined that the
item under the cursor is in fact capable of receiving the drop, it sets the emphasis flag to
XmTARGETEMPHASIS. If it determines that the item is not capable of receiving the
drop, then it can set the emphasis flag to either XmINSERTIONEMPHASIS or
XmNOEMPHASIS (default). XmINSERTIONEMPHASIS indicates that if the drag
items are dropped, they will be inserted into the target widget at the index determined by
the mouse position.

Drag Drop Support 159

Finally, the XmNdragOver calldata contains a vote. The application can set this to be an
array of operations which it will allow given the current target widget, target item (if
any), and the items being dragged.

In some cases, an application may need to draw while a drag is in progress. To avoid
leaving visual “debris” on the screen, the application must do any drawing from within a
call to #drawDuringDrag:, which takes a Block as its argument. All drawing which takes
place in the block is guaranteed not to leave debris on the screen.

Voting and Cursors

As items are being dragged, the user can affect the voting by pressing the SHIFT and/or
CTRL keys. The meaning of each key combination is configurable in the
EwDragAndDropManager. Each time a dragOver callback fires and each time the
keyboard status changes, the source, target, and keyboard votes are recalculated, and a
net operation is determined. This operation, in turn, determines what the cursor should
be. The cursor to be used for each operation is also configurable in the
EwDragAndDropManager.

Since dragging images causes the cursor to blink, the EwDragAndDropManager also
provides and alternative to cursors called “cursor images.” Like cursors, each cursor
image corresponds to an operation. The difference is that if a cursor image is defined for
an operation, it is drawn over all the drag images and will not blink as the mouse is
moved. By default, the system turns off the cursor during drag and drop and uses a
unique cursor image for each operation. These can all be changed and customized via
API in the EwDragAndDropManager.

Source Vote and Image Changes

Some applications may require that the source be able to change its vote, its drag images,
or its drag offsets based on the target and/or the operation. For example, if the source
widget is a list of object templates, the source may want to change the icon from the
template icon to an instance icon once the item is dragged outside the source widget. As
another example, the source may want to allow certain operations only if the item is
being dragged over the source. In this case, the source would need an opportunity to
change its vote whenever the target changed.

To support this requirement, the XmNdragChange callback on the source adapter is fired
whenever the target or the operation changes. The calldata includes the items being
dragged, the target widget, and the current operation. It also includes the drag images and
offsets as well as the most recent source vote. The application can change these values to
implement behaviors like those outlined in the examples above.

160 Chapter 9 Common Widgets Overview

Leaving a Target

In some cases, an application may need to be notified when items are dragged away from
a target. For example, if an application had hooked the XmNdragOver callback to
change the trash can’s icon to show the lid up, it would need to be notified when the drag
had left that target widget so that it could change the icon to show the lid back down.

To support this, the XmNdragLeave callback on the target adapter is fired whenever the
items are dragged away from the target of the last XmNdragOver callback. The calldata
includes only the source widget and the source items. Neither of these fields may be
changed; this callback is for notification only.

Dropping

When the user releases the mouse button, the drop occurs on the target widget. Both the
target and the source need to be notified. The target adapter first fires the XmNdrop
callback. The calldata includes the source widget, the source items, the operation, and
the mouse event. It also includes an offset for each source item relative to the mouse
location. If, in response to the last XmNdragOver callback, the application set the
emphasis to XmTARGETEMPHASIS, the calldata for the XmNdrop callback also
contains the target item. If the emphasis was set to XmINSERTIONEMPHASIS, the
calldata contains the insertionIndex. Finally, the calldata contains a doit flag, which the
application can set to false if it is unable to perform the drop. In this case the source
adapter will fire its XmNdragCancel callback. Otherwise, it is the application’s
responsibility to perform the appropriate operation on the target widget and the business
model.

After the target has fired the XmNdrop callback, the source adapter fires its
XmNdragComplete callback. The calldata includes the source items, the target widget,
the target item (if any), and the operation. It is the application’s responsibility to perform
the appropriate operation on the source widget and the business model. For example, if
the operation was XmMOVE, the application should remove the items from the source
widget.

Canceling a Drag

The user may cancel a drag at any time by pressing XkCancel. In this case the source
adapter and the target adapter (if any) fire their XmNDragCancel callback. The calldata
for this callback depends on whether the adapter is a source or a target adapter. For
source adapters, the calldata includes the same information as the calldata for the
XmNdragComplete callback. For target adapters, the calldata includes the same
information as the calldata for the XmNdrop callback.

Drag Drop Support 161

The source adapter also fires the XmNdragCancel callback when the items are dropped
outside any target widgets. The XmNdragCancel callback is also fired when the items
are dropped onto a target that is unwilling to accept them, that is, when no valid operation
is in effect or when the target widget’s application sets the doit flag to false in the
XmNdropCallback’s calldata.

System Configuration

A number of aspects of drag and drop are configurable via API on the
EwDragAndDropManager.

The set of operations and their relative priorities are configurable. By default, the
operations are XmMOVE, XmCOPY, and XmMIRROR. (Mirror means making the same
item be in more than one widget.) When the source, target, and keyboard votes are
tallied, the highest priority operation of the intersection of the three votes is used as the
operation. The priority of the votes is determined by the order in which the source
answers its allowable operations in the dragStart callback. The highest priority vote is the
first vote the source gives. If the intersection is empty, then the no parking cursor is
shown.

The mapping of the SHIFT and CTRL key combinations can be customized also. The
default mappings are:

None: all operations are allowable
Shift: XmMOVE
Control: XmCOPY
Both: XmMIRROR

The drag and drop manager also decides which cursor to use based on the operation. As
mentioned above, since dragging images causes the cursor to blink, the
EwDragAndDropManager also provides and alternative to cursors called “cursor
images.” Like cursors, each cursor image corresponds to an operation. The difference is
that if a cursor image is defined for an operation, it is drawn over all the drag images and
will not blink as the mouse is moved. By default, the system turns off the cursor during
drag and drop and uses a unique cursor image for each operation.

Minimal Drag Drop

For most applications, the default settings are acceptable. This section describes what the
minimum requirements are for an application to enable drag and drop.

At the minimum, the application must create the source and target adapters on the
appropriate widgets. On the source adapter it does not need to hook the XmNdragStart
callback unless it intends to change the vote, images, or offsets to values other than the

162 Chapter 9 Common Widgets Overview

defaults or unless it wants to deny drag and drop in certain cases by setting the doit flag
false. The application will have to hook the XmNdragComplete callback to perform the
operation. The XmNdragChange callback does not need to be hooked, nor does the
XmNdragCancel callback.

On the target adapters, the application will only need to hook the XmNdragOver callback
if it needs to check the kind of items being dragged to ensure that the target widget can
receive them or if it does not want the default target vote. It will have to hook the
XmNdrop callback to perform the operation. It does not need to hook the
XmNdragLeave or XmNdragCancel callbacks.

Drag Drop on Base Widgets

Technically, any base widget that provides mouse and keyboard events can be wrapped in
a source adapter, and any widget can be wrapped in a target adapter. Since there are no
commonly accepted semantics for drag and drop on labels, buttons, forms, or other non-
list-oriented widgets, the application must define what is meant, for example, by
dragging from a label to a toggle button.

Also, since most base widgets are not item-oriented, the target callbacks do not provide
any item under cursor information, and the source callbacks do not provide any source
item information.

Drag and drop is best suited for use on container style extended widgets, as provided by
EwContainerSupport.

Callbacks 163

Chapter 10 Callbacks and Event Handlers

Callbacks
Actions performed on widgets by the user must be communicated back to the application.
One mechanism used for this communication is a callback. A callback method defines
actions to perform in response to some occurrence in a widget. Callbacks are normally
registered just after widgets are created. For example, when a push button widget is
created, the application usually registers an activate callback that is executed when the
button is activated by the user clicking on it. Although it is not necessary for the
application to register callbacks, without them the application is unable to take action
based on the user’s interaction with the widgets.

Callbacks are registered using the
#addCallback:receiver:selector:clientData: method.

Tip: The argBlock argument of a widget creation message can only be used to set
widget resources. The #addCallback:... message cannot be used within the
create argBlock. Callbacks are usually registered immediately after the widget has
been created, and before it is realized.

The #addCallback:receiver:selector:clientData: method takes 4 arguments:

callbackName A constant specifying which callback is being registered, for example,
XmNactivateCallback

receiver The object that will receive the callback message

selector The 3-argument callback message selector (WindowBuilder Pro also
supports unary callback message selectors)

clientData Optional data that will be passed to the callback when it is executed

164 Chapter 10 Callbacks and Event Handlers

When a callback method is executed, it is passed three arguments:

• The widget that caused the callback

• The client data specified when the callback was registered

• Information specific to the type of callback, called the call data

The example below illustrates how to register a callback. First a button is created, in this
case, as the child of a shell, and then an XmNactivateCallback is added to the button.

| shell button |
shell := CwTopLevelShell

createApplicationShell: ‘shell’
argBlock: nil.

button := shell
createPushButton: ‘OK’
argBlock: nil.

button
addCallback: XmNactivateCallback
receiver: self
selector: #pressed:clientData:callData:
clientData: ‘Test data’.

button manageChild.
shell realizeWidget.

When an activate callback occurs due to the button being pressed, the
#pressed:clientData:callData: method, shown below, is executed. The method
prints the string ‘Test data’ in the Transcript window. The widget issuing the callback is
passed as the widget argument. In this case, this is the push button widget. The string
‘Test data’, specified as the client data when the callback was added, is passed as the
clientData argument. The callback-specific data is passed as the callData argument. For
the activate callback of push button widgets, however, the call data provides no new
information.

pressed: widget clientData: clientData callData: callData
“The push button has been pressed.”
Transcript cr; show: clientData

The following table describes the class hierarchy and data accessor method names for
call data objects. All classes are concrete classes.

Callbacks 165

Class Hierarchy Responsibility Data Accessor Methods

CwAnyCallbackData Provides call data for most
callbacks.

reason (a constant, prefixed by
`XmCR’)

CwComboBoxCallbackData Provides call data for combo
box

singleSelectionCallback.
item
itemPosition

CwConfirmationCallbackData Provides call data for vendor
shell windowCloseCallback.
This callback can be cancelled
by the application.

doit
doit:

CwTextVerifyCallbackData Provides call data for text and
combo box
modifyVerifyCallback. These
callbacks can be cancelled by
the application.

currInsert
endPos
startPos
text
text:

CwDrawingCallbackData Provides call data for drawing
area input, expose and
interceptExpose callbacks, and
drawn button activate and
expose callbacks

event
window

CwListCallbackData Provides call data for list
browseSelect, singleSelect,
multipleSelect, extendedSelect,
and defaultAction callbacks.

item
itemPosition
selectedItemCount
selectedItemPositions
selectedItems

CwRowColumnCallbackData Provides call data for row-
column entryCallback.

widget
data
callbackData

CwToggleButtonCallbackDataProvides call data for toggle
button valueChangedCallback.

set

CwValueCallbackData Provides call data for scale
and scroll bar
valueChangedCallback, and
scroll bar decrement,
increment, pageDecrement,
pageIncrement, toBottom, and
toTop callbacks.

value

166 Chapter 10 Callbacks and Event Handlers

The following table lists the callbacks supported by each widget.

Widgets Callbacks Supported

CwArrowButton activate, arm, disarm, destroy, help, resize

CwBasicWidget destroy, resize

CwCascadeButton cascading, destroy, help, resize

CwComboBox activate, destroy, focus, help, losingFocus, modifyVerify, resize,
singleSelection, valueChanged

CwComposite destroy, expose, interceptExpose, resize

CwDialogShell destroy, focus, iconify, popdown, popup, resize, windowClose

CwDrawingArea destroy, expose, focus, help, input, interceptExpose, losingFocus,
resize

CwDrawnButton activate, arm, destroy, disarm, expose, focus, help, losingFocus,
resize

CwForm destroy, expose, focus, help, interceptExpose, losingFocus, map,
resize, unmap

CwFrame destroy, expose, focus, help, interceptExpose, losingFocus, resize

CwLabel destroy, help, resize

CwList browseSelection, defaultAction, destroy, extendedSelection, help,
multipleSelection, resize, singleSelection

CwMainWindow destroy, expose, focus, help, interceptExpose, losingFocus, resize

CwOverrideShell destroy, popdown, popup, resize

CwPrimitive destroy, help, resize

CwPushButton activate, arm, destroy, disarm, help, resize

CwRowColumn destroy, entry, expose, focus, help, interceptExpose, losingFocus,
map, resize, simple, unmap

CwScale destroy, drag, expose, focus, help, interceptExpose, losingFocus,
resize, valueChanged

CwScrollBar decrement, destroy, drag, help, increment, pageDecrement,
pageIncrement, resize, toBottom, toTop, valueChanged

CwScrolledWindow destroy, expose, focus, help, interceptExpose, losingFocus, resize

CwSelectionBox apply, cancel, destroy, expose, focus, help, interceptExpose,
losingFocus, map, noMatch, ok, resize, unmap

CwSeparator destroy, help, resize

CwShell destroy, popdown, popup, resize

CwText activate, destroy, help, focus, losingFocus, modifyVerify, resize,
valueChanged

CwToggleButton arm, destroy, disarm, help, resize, valueChanged

CwTopLevelShell destroy, focus, iconify, popdown, popup, resize, windowClose

Event Handlers 167

Widgets Callbacks Supported

CwWidget destroy, dragDetect, resize

CwWMShell destroy, focus, iconify, popdown, popup, resize, windowClose

WbFrame destroy, expose, focus, help, interceptExpose, losingFocus, resize

WbRadioBox destroy, entry, expose, focus, help, interceptExpose, losingFocus,
map, resize, simple, unmap

WbScrolledList browseSelection, defaultAction, destroy, extendedSelection, help,
multipleSelection, resize, singleSelection

WbScrolledText activate, destroy, help, focus, losingFocus, modifyVerify, resize,
valueChanged

Event Handlers
Event handlers are another mechanism used to inform the application of input actions by
the user. While callbacks notify the application of high level interactions such as the
selection of items in a list widget, event handlers notify the application of low level
interactions, including the following:

• Mouse pointer motion

• Mouse button presses and releases

• Individual key presses and releases

Event handlers are registered using the
#addEventHandler:receiver:selector:clientData: method.

Tip: The argBlock argument of a widget-creation message can only be used to set
widget resources. The #addEventHandler:... message cannot be used within
the create argBlock. Event handlers are usually registered immediately after the
widget has been created, and before it is realized.

The #addEventHandler:receiver:selector:clientData: method takes 4
arguments:

eventMask a bit mask specifying which events to notify the receiver of

receiver the object that is to receive the event handler message

selector the 3-argument event handler message selector (WindowBuilder Pro
also supports unary event handler message selectors)

clientData optional data that is passed to the event handler when it is executed

168 Chapter 10 Callbacks and Event Handlers

The eventMask is specified as the logical-or of one or more of the bit masks described in
the following table.

Event Masks Description

KeyPressMask Keyboard key down events

KeyReleaseMask Keyboard key up events

ButtonPressMask Mouse button down events

ButtonReleaseMask Mouse button up events

PointerMotionMask All pointer motion events

Button1MotionMask Pointer motion events while button 1 is down

Button2MotionMask Pointer motion events while button 2 is down

Button3MotionMask Pointer motion events while button 3 is down

ButtonMotionMask Pointer motion events while any button is down

ButtonMenuMask Button menu request events

When an event handler method is executed, it is passed three arguments:

• The widget to which the handler was added and in which the event occurred

• The client data specified when the event handler was registered

• An object describing the event, called the event

The following table describes the class hierarchy for event objects. Classes in italics are
abstract classes.

Class Hierarchy Responsibility

CwEvent Defines common behavior for event data in event handlers.

CwExposeEvent Provides event data for expose events in expose callbacks (see Note
below).

CwInputEvent Defines common behavior for button, key, and motion event
objects.

CwButtonEvent Provides event data for mouse button press/release events.

CwKeyEvent Provides event data for key press/release events.

CwMotionEvent Provides event data for mouse motion events.

Note: An expose event handler cannot be explicitly added to a widget. A
CwExposeEvent object is passed to an application as part of the call data for an
exposeCallback.

Event Handlers 169

The following messages can be sent to the event object to retrieve information about the
event.

For all events (CwEvent):

type The type of event that occurred. This has one of the following values:
ButtonPress, ButtonRelease, Expose, KeyPress, KeyRelease,
MotionNotify.

window The CgWindow associated with the widget for which the event was
generated.

display The CgDisplay associated with the event.

For expose events (CwExposeEvent):

count The number of expose events which remain for the affected CgWindow.
A simple application might want to ignore all expose events with a
nonzero count, and perform a full redisplay if the count is zero.

rectangle A rectangle describing the damaged area, in the coordinate system of the
affected CgWindow.

x, y The x and y coordinates of the origin of the damaged rectangle.

height, width The height and width, in pixels, of the damaged rectangle.

For input events (CwButtonEvent, CwKeyEvent, and CwMotionEvent):

state A bit mask representing the logical state of modifier keys and pointer
buttons just prior to the event. Possible bit masks include: ControlMask,
ShiftMask, LockMask, Mod1Mask to Mod5Mask, and Button1Mask to
Button3Mask.

x, y The x and y coordinates of the pointer, relative to the widget in which the
event occurred.

point x @ y

xRoot, yRoot The coordinates of the pointer, relative to the screen.

pointRoot xRoot @ yRoot

time The time, in milliseconds, at which the event occurred.

For mouse button events (CwButtonEvent):

button The number of the button that was pressed or released (1, 2 or 3).

For key events (CwKeyEvent):

170 Chapter 10 Callbacks and Event Handlers

keysym A constant describing the keyboard key that was pressed or released.
These constants are found in the CwConstants pool dictionary, and are
prefixed with `XK’.

character The Character describing the keyboard key that was pressed or released,
or nil if it does not represent a valid character.

There are two common uses of event handlers. The first is for handling input in a drawing
area widget. For example, in a graphical drawing application a drawing area widget
would be used to display the drawing under construction. Event handlers would be
registered to notify the application of pointer motion, mouse button, and key press events,
allowing text strings to be edited and graphical objects to be positioned and changed
using the mouse.

The second common use is for handling pop-up menus. An event handler is added for the
ButtonMenuMask event. When the event handler is called, the application pops the menu
up.

Mouse button 3 is used as the menu button. However, some platforms trigger the button
menu event when the button is pressed, and others when the button is released. The
ButtonMenuMask event hides this difference. It should be used, rather than the other
button events, to support pop-up menus in a platform-independent manner.

Tip: On some platforms it is possible for a button release event to be delivered without
a corresponding button press event. Applications should be prepared to ignore
such spurious button release events by only processing a button release event that
is received after a matching button press event.

In the example below, a drawing area is created, and an event handler is added to notify
the application of mouse button presses, key presses, and pointer motion. Label widgets
are used to display information about the events. The variable labels would be
implemented as an instance variable for the class.

| shell rowColumn label drawing |
shell := CwTopLevelShell

createApplicationShell: ‘shell’
argBlock: [:w | w title: ‘Event Handler Example’].

rowColumn := shell
createRowColumn: ‘rowColumn’
argBlock: nil.

rowColumn manageChild.
labels := Array new: 3.
1 to: 3 do: [:i |

label := rowColumn
createLabel: ‘label’
argBlock: nil.

Event Handlers 171

label manageChild.
labels at: i put: label].

(labels at: 1) labelString: ‘Position: ‘.
(labels at: 2) labelString: ‘Button pressed at position: ‘.
(labels at: 3) labelString: ‘Keysym of last pressed key: ‘.
drawing := rowColumn

createDrawingArea: ‘drawing’
argBlock: [:w |

w
borderWidth: 1;
width: 300;
height: 300].

drawing
addEventHandler: ButtonPressMask | KeyPressMask | PointerMotionMask
receiver: self
selector: #eventHandler:clientData:event:
clientData: nil.

drawing manageChild.
shell realizeWidget

When an event occurs, the following method is executed. Information about the event is
determined from the event argument and is displayed in the label widgets.

eventHandler: widget clientData: clientData event: event
“Handle an input event.”
event type = MotionNotify

ifTrue: [(labels at: 1) labelString: ‘Position: ‘,
event point printString].

event type = ButtonPress
ifTrue: [(labels at: 2) labelString: ‘Button ‘,

event button printString,
‘ pressed at position: ‘, event point printString].

event type = KeyPress
ifTrue: [(labels at: 3) labelString:

‘Keysym of last pressed key: ‘,
event keysym printString].

172 Chapter 10 Callbacks and Event Handlers

173

Chapter 11 Common Widget Classes

The previous section provided an overview of how widgets are created and configured,
and how they interact with an application. This section describes how to create and use
specific widgets in the Common Widgets subsystem.

The following widgets are discussed:

• Shells (CwTopLevelShell, CwOverrideShell, CwTransientShell, CwDialogShell)

• Main windows and scrolled windows (CwMainWindow and CwScrolledWindow)

• Text editors and drawing areas (CwText, WbScrolledText and CwDrawingArea)

• Layout widgets (CwForm and CwRowColumn)

• Buttons and labels (CwLabel, CwDrawnButton, CwPushButton, CwToggleButton)

• Lists and combo boxes (CwList, WbScrolledList and CwComboBox)

Shell Widgets
Shell widgets provide the interface between an application and the platform’s window
manager. The window manager is the part of the platform window system that manages
the geometry, appearance, and stacking order of windows on the display. The window
manager may add window decorations to a window, such as a frame, a title, resize
handles, minimize and maximize buttons, and a close button. Window decorations are
described in more detail in the section on “Top-Level Shell Widgets.” The window
manager also keeps track of which window has input focus, that is, which window
receives keyboard input. A shell can receive a focus callback when focus is either lost or
gained.

A shell widget looks like a window on the screen. Shell widgets contain exactly one
child. A CwTopLevelShell provides a normal window with standard appearance and
decorations, and does not have a parent. CwTopLevelShell widgets are described in detail
in the next section. CwOverrideShell, CwTransientShell, and CwDialogShell widgets
must have a parent widget. These shells are described in this section.

174 Chapter 11 Common Widget Classes

CwOverrideShell widgets are used for pop-up windows that bypass window management
and appear in front of all other windows. They do not have a window frame, and cannot
be moved, resized or iconified by the user. CwOverrideShell widgets are created using
the CwShell class method createPopupShell:parent:argBlock: . A CwOverrideShell is
made visible sending it the popup message.

CwTransientShell widgets are pop-up windows that appear in front of all widgets in the
tree of their parent widget. They have a window frame, and can be moved and resized (on
some platforms), but cannot be iconified independently of their parent widget. When the
parent widget’s shell is iconified, the CwTransientShell is removed from the screen. A
CwTransientShell is not usually instantiated directly; instead, an instance of its subclass,
CwDialogShell, is created. A CwTransientShell is made visible sending it the popup
message.

CwDialogShell widgets are pop-up windows used to implement modal or modeless
dialog windows. The child of a CwDialogShell is typically an instance of a subclass of
CwBulletinBoard. A CwDialogShell and its child are typically created automatically by
using one of the dialog convenience methods. Unlike other types of shells, a
CwDialogShell popped up by managing its child. The parent of a CwDialogShell can be
any widget, and the dialog always appears over the window containing its parent widget.
For further information on dialog shells and dialogs, see the section on “Composite Box
Widgets” in the IBM Smalltalk Programmer’s Reference.

Top-Level Shell Widgets
This section describes how to create and use top-level shell widgets (CwTopLevelShell).
Some commonly used shell resources and callbacks are discussed.

The root of a widget tree must be a CwTopLevelShell. A top level shell widget has no
parent. Top level shells are created using the createApplicationShell:argBlock:

method, which is sent to the CwTopLevelShell class. A top level shell widget must have a
child widget before it can be realized.

Tip: A common programming error is to attempt to realize a top level shell that has no
child widget, or whose child widget computes an initial size with zero width or
height. On a Motif platform this normally causes the application to exit with the
message: “Error: Shell widget has zero width and/or height.” VisualAge detects
most common cases and prevents the application from exiting.

The following example creates a top level shell with a main window widget as its child.
In this example, the main window’s width and height are explicitly set. However a main
window is not usually given explicit dimensions. It is usually left to calculate its
dimensions based on the needs of its children.

Shell Widgets 175

| shell mainWindow |
shell := CwTopLevelShell

createApplicationShell: ‘shell’
argBlock: [:w | w title: ‘Shell Example 1’].

mainWindow := shell
createMainWindow: ‘main’
argBlock: [:w | w width: 100; height: 100].

mainWindow manageChild.
shell realizeWidget.

The resources for CwTopLevelShell include title, mwmDecorations, icon, iconPixmap
and iconMask. The mwmDecorations resource indicates which decorations are to be
added to the shell. The following table lists the bit masks used to specify decorations. The
icon (or iconPixmap) resources indicate the icon (or pixmap) to be used by the window
manager for the application’s icon, and the iconMask resource indicates the pixmap to
clip to if the icon is non-rectangular.

Decoration Literal Definition

MWMDECORALL If set, changes the meaning of the other flags to indicate
that the specified decoration should be removed from
the default set.

MWMDECORBORDER Include a border

MWMDECORRESIZEH Include resize frame handles

MWMDECORTITLE Include title bar

MWMDECORMENU Include window close/system menu

MWMDECORMINIMIZE Include minimize window button

MWMDECORMAXIMIZE Include maximize window button

TopLevel Shell Decoration Resource Flags

Note: The top level shell decorations settings indicate the preferred configuration for the
window. The window manager can alter or ignore the settings if particular
combinations are not supported by the platform.

In the example below, the shell’s mwmDecorations resource is explicitly altered in the
create argBlock to specify that the minimize button should not be provided.

| shell main |
shell := CwTopLevelShell

createApplicationShell: ‘shell’
argBlock: [:w |

w
title: ‘Shell Example 2’;
mwmDecorations: MWMDECORALL | MWMDECORMINIMIZE].

176 Chapter 11 Common Widget Classes

main := shell
createMainWindow: ‘main’
argBlock: [:w |

w
width: 100;
height: 100].

main manageChild.
shell realizeWidget.

Main Window Widgets
The main window widget (CwMainWindow) is used to organize the application’s menu
bar and the widgets that define the application’s work region. The CwMainWindow class
also includes all of the functionality provided by the CwScrolledWindow class and can
provide scroll bars for scrolling the work region. If a main window is used, it must be the
immediate child of a top level or dialog shell.

A main window widget is created by sending the #createMainWindow:argBlock:

message to a shell widget.

A CwMainWindow must always be created as the child of a CwTopLevelShell or
CwDialogShell. Creating it as the child of any other widget is an error.

Main Windows and Geometry Management

Like other composite widgets, a main window widget manages the geometry of its
children. In order to manage its children correctly, it must know which widget is the
menu bar, which widget is the work region, and which widgets are the scroll bars. The
#setAreas:horizontalScrollbar: verticalScrollbar:workRegion:
message explicitly tells the main window which of its child widgets are to be used for
these purposes. In the example below, an empty menu bar and a drawing area widget are
created as children of the main window. The #setAreas:... message is sent to the
main window to explicitly set menuBar as the main window’s menu bar, and
drawingArea as the main window’s work region. Because no scroll bars are being defined
by the application, nil is passed in for the scroll bar arguments.

| shell main menuBar drawingArea |
shell := CwTopLevelShell

createApplicationShell: ‘shell’
argBlock: nil.

main := shell
createMainWindow: ‘main’
argBlock: nil.

main manageChild.

Scrolled Window Widgets 177

menuBar := main
createSimpleMenuBar: ‘menu’
argBlock: [:w | w buttons: #(‘‘)].

menuBar manageChild.
drawingArea := main

createDrawingArea: ‘draw’
argBlock: [:w |

w
width: 300;
height: 300].

drawingArea manageChild.
main

setAreas: menuBar
horizontalScrollbar: nil
verticalScrollbar: nil
workRegion: drawingArea.

shell realizeWidget.

Scrolled Window Widgets
The scrolled window widget (CwScrolledWindow) can scroll any other widget by
positioning it behind a clipping area. No special processing by the application is required
to implement scrolling. Any widget tree can be scrolled simply by making it the work
region of a CwScrolledWindow or CwMainWindow widget.

A scrolled window widget is created by sending the
#createScrolledWindow:argBlock: message to its parent. Next, the widget to be
scrolled is created. It is made the work region for the scrolled window by using the
#setAreas:verticalScrollbar:workRegion: message.

Scrolled window widgets support two scrolling policies, specified by the scrollingPolicy
resource. These are XmAPPLICATIONDEFINED (the default) and XmAUTOMATIC.
When the scrolling policy is XmAUTOMATIC, the scrolled window handles all aspects
of scrolling, including creation of the scroll bars. The application can be notified of scroll
bar movements by adding callbacks.

When the scrolling policy is XmAPPLICATIONDEFINED, the application must handle
all aspects of scrolling, including creation of scroll bars. The scroll bars must be set using
the #setAreas:... message.

The scrollBarDisplayPolicy resource defines whether or not scrollbars are always
showing (XmSTATIC) or displayed only if the work region exceeds the clip area
(XmASNEEDED).

178 Chapter 11 Common Widget Classes

Note: The scrollingPolicy and scrollBarDisplayPolicy resources can only be set at
creation time.

The following example creates a scrolled window containing several buttons in a vertical
row-column. The scrolling policy is XmAUTOMATIC.

| shell scroll buttons |
shell := CwTopLevelShell

createApplicationShell: ‘shell’
argBlock: [:w | w title: ‘Scrolled Buttons’].

scroll := shell
createScrolledWindow: ‘scroll’
argBlock: [:w | w scrollingPolicy: XmAUTOMATIC].

buttons := scroll
createRowColumn: ‘buttons’
argBlock: nil.

buttons manageChild.
(Collection withAllSubclasses collect: [:class | class name])

asSortedCollection do: [:name |
(buttons

createPushButton: name
argBlock: nil)

manageChild].
scroll

setAreas: nil
verticalScrollbar: nil
workRegion: buttons.

scroll manageChild.
shell realizeWidget.

Text Widgets

Text widgets (CwText and WbScrolledText) provides text viewing and editing
capabilities to the application. Text widgets can be created using the
#createText:argBlock: and #createScrolledText:argBlock: convenience
methods. The latter method makes the text scrollable, but otherwise provides basically
the same functionality.

Text Widgets 179

The entire contents of the text widget are set and retrieved using the #setString: and
#getString methods.

When a scrolled text widget is created using #createScrolledText:argBlock: , a
CwScrolledWindow widget is inserted between the CwText widget and the original
parent. This is important to know when setting CwForm attachments, because in this case
the attachments must be set on the text widget’s parent (the scrolled window) rather than
the text widget itself. WindowBuilder Pro provides a WbScrolledText widget that
automatically sets up this structure and allows the programmer to differentiate between
single and multi-line text edits (CwText and WbScrolledText respectively)

Two of the text widget’s resources are editMode and wordWrap. The editMode resource
specifies whether the widget supports single-line or multi-line editing of text. It can be set
to XmSINGLELINEEDIT (the default for CwText) or XmMULTILINEEDIT (the default
for WbScrolledText). The wordWrap resource specifies whether lines are to be broken at
word breaks so that text does not go beyond the right edge of the window. The default
setting for wordWrap is false.

Tip: Word wrap and horizontal scrolling are incompatible. In order for word wrap to
work, the text widget must be configured without a horizontal scroll bar by setting
the scrollHorizontal resource to false.

The example below creates a scrollable, multi-line text widget with word wrap on.

| shell text |
shell := CwTopLevelShell

createApplicationShell: ‘shell’
argBlock: [:w | w title: ‘Text Widget Example’].

text := WbScrolledText
createWidget: ‘text’
parent: shell
argBlock: [:w | w

scrollHorizontal: false;
wordWrap: true].

text setString: ‘Edit me!’.
text manageChild.
shell realizeWidget.

CwText and WbScrolledText widgets also have resources to control the initial number of
rows and columns they contain, the position of the insertion point, the width of the tab
character, and whether or not the widget is editable. CwText and WbScrolledText widgets
can also set, get, cut, copy and paste a selection, scroll to a given line, and insert or
replace text at a given position.

A text widget has input focus when it can accept keyboard input. The widget usually
provides some visual indication that the it has focus, such as displaying the insertion
position as a flashing I-beam or drawing a thicker border. Application programmers can

180 Chapter 11 Common Widget Classes

add a focusCallback or a losingFocusCallback to a CwText or WbScrolledText if
additional behavior is required when the widget either gains or loses focus.

Two other callbacks provided by text widgets are modifyVerifyCallback, called just before
text is deleted from or inserted into the widget, and valueChangedCallback, called after
text is deleted from or inserted into the widget. The example below uses a modifyVerify
callback to allow only uppercase letters to be entered into a single-line CwText.

Object subclass: TextExample
 instanceVariableNames: ‘‘
 classVariableNames: ‘‘
 poolDictionaries: ‘CwConstants ‘
open

| shell text |
shell := CwTopLevelShell

createApplicationShell: ‘shell’
argBlock: [:w | w title: ‘Text Widget Example’].

text := CwText
createWidget: ‘test’
parent: shell
argBlock: [:w | w columns: 18].

text
addCallback: XmNmodifyVerifyCallback
receiver: self
selector: #modifyVerify:clientData:callData:
clientData: nil.

text manageChild.
shell realizeWidget.

modifyVerify: widget clientData: clientData callData: callData

“Update the stored version of the string in the callData, so
that the text widget inserts capital letters instead of the
real text typed or pasted by the user.”

callData text: callData text asUppercase

Drawing Area Widgets
The drawing area (CwDrawingArea) widget provides an application with an area in
which application-defined graphics can be drawn using Common Graphics operations
such as #fillRectangle :, #drawArc :, and #drawString :. Consult the Common
Graphics chapter of the IBM Smalltalk Programmer’s Reference for an explanation of
drawing and other graphics operations.

Drawing Area Widgets 181

Drawing is actually done on the CgWindow associated with the CwDrawingArea. Every
CwWidget has a corresponding CgWindow, obtained with aCwWidget window, that can
be used for drawing. Although any widget can be drawn on in this manner,
CwDrawingArea widgets are typically used since they provide additional drawing-related
functionality. CwDrawingArea widgets can be created using the
#createDrawingArea:argBlock: convenience method.

A CwDrawingArea can be told to notify the application with an expose callback
whenever a part of the drawing area needs to be redrawn. The expose callback contains
an expose event with a rectangle describing the damaged area of the widget’s CgWindow.

The example below is a simple application that draws a mandala. (A mandala is a
drawing of lines connecting each of a given number of points on the circumference of a
circle to every other such point.) Four callbacks that are often used in conjunction with
drawing areas are illustrated: exposeCallback (described above), resizeCallback,
inputCallback and destroyCallback.

The resize callback is called when the drawing area changes size, usually due to a change
in the size of a parent widget. If an expose callback is triggered as a result of a resize, the
resize callback is always sent before the expose callback. It is possible for the resize
callback to be executed before the window has been realized. The resize callback handler
should handle the case where the window message returns nil.

The input callback is called when a mouse button is pressed or released inside the widget
or a key on the keyboard has been pressed or released. The destroy callback, executed
when the widget is about to be destroyed, is a good place to free any graphics resources
that have been allocated for drawing.

Object subclass: DrawingAreaExample
 instanceVariableNames: ‘gc radius segments ‘
 classVariableNames: ‘‘
 poolDictionaries: ‘CwConstants CgConstants ‘

example1
“Open the drawing area example.”
| diameter shell draw |
radius := 150.
diameter := radius * 2.
shell := CwTopLevelShell

createApplicationShell: ‘shell’
argBlock: [:w | w title: ‘Drawing Area Example’].

draw := CwDrawingArea
createWidget: ‘draw’
parent: shell
argBlock: [:w | w

width: diameter;
height: diameter].

182 Chapter 11 Common Widget Classes

draw manageChild.
draw

addCallback: XmNexposeCallback
receiver: self
selector: #expose:clientData:callData:
clientData: nil;

addCallback: XmNresizeCallback
receiver: self
selector: #resize:clientData:callData:
clientData: nil;

addCallback: XmNinputCallback
receiver: self
selector: #input:clientData:callData:
clientData: nil;

addCallback: XmNdestroyCallback
receiver: self
selector: #destroy:clientData:callData:
clientData: nil.

shell realizeWidget.
gc := draw window

createGC: None
values: nil.

gc setForeground: draw window blackPixel.

recalculateSegments: widget
“Recalculate the coordinates of the mandala’s line segments.”
| n points x y |
n := 20.
points := OrderedCollection new.
0 to: Float pi * 2 by: Float pi * 2 / n do: [:angle |

x := (angle cos * radius) rounded + (widget width // 2).
y := (angle sin * radius) rounded + (widget height // 2).
points add: x@y].

segments := OrderedCollection new.
1 to: points size - 1 do: [:i |

i + 1 to: points size do: [:j |
segments add:
 (CgSegment

point1: (points at: i)
point2: (points at: j))]].

expose: widget clientData: clientData callData: callData
“Redraw the contents of the drawing area.”
callData event count = 0

ifTrue: [
segments isNil

ifTrue: [self recalculateSegments: widget].
widget window

Drawing Area Widgets 183

drawSegments: gc
segments: segments].

resize: widget clientData: clientData callData: callData
“The drawing area has been resized.”
widget window notNil

ifTrue: [
radius := (widget width min: widget height) // 2.
segments := nil].

input: widget clientData: clientData callData: callData
“The drawing area has received an input callback (button or
 key event).
 Explicitly destroy the widget if one of three things has
happened:

- the user typed ‘Q’ or ‘q’.
- the user typed ‘control-DownArrow’.
- the user did a ‘shift-click’ (shift key pressed, click
 left mouse button).”

| event quit |
quit := false.
event := callData event.
“$Q, $q, or control-End typed”
event type = KeyPress

ifTrue: [
quit := (‘Qq’ includes: event character)

or: [(event state & ControlMask) = ControlMask
and: [event keysym = XKdownarrow]]].

“shift-click”
(event type = ButtonPress and: [event button = 1])

ifTrue: [
quit := (event state & ShiftMask) = ShiftMask].

quit ifTrue: [widget destroyWidget].

destroy: widget clientData: clientData callData: callData
 “The drawing area has been destroyed.
 Free any allocated graphics resources.”

gc freeGC.

Adding an Event Handler to a Drawing Area

In the following example, a button press event handler is used to detect double-clicks in a
drawing area. The open method creates the widgets, and the
#buttonPress:clientData:event: method handles button press events.

Object subclass: #DoubleClick
 instanceVariableNames: ‘clickStartTime ‘
 classVariableNames: ‘‘

184 Chapter 11 Common Widget Classes

 poolDictionaries: ‘CgConstants CwConstants ‘

open
“Create a drawing area inside a shell.”
| shell drawingArea |
clickStartTime := 0.
shell := CwTopLevelShell

createApplicationShell: ‘shell’
argBlock: [:w | w title: ‘Double-click test’].

(drawingArea := CwDrawingArea
createWidget: ‘draw’
parent: shell
argBlock: [:w | w

width: 100;
height: 100])

manageChild.
drawingArea

addEventHandler: ButtonPressMask
receiver: self
selector: #buttonPress:clientData:event:
clientData: nil.

shell realizeWidget.

buttonPress: widget clientData: clientData event: event
“Detect double click by checking whether the time between
 successive presses of the left mouse button is less
 than the system-defined double-click time.”
event button = 1

ifTrue: [
event time - clickStartTime <
widget display doubleClickInterval

ifTrue: [
clickStartTime := 0.
Transcript cr; show: ‘DOUBLE CLICK’]

ifFalse: [
clickStartTime := event time]].

Tip: Adding a mouse down event handler to a widget that processes mouse events
internally, such as a CwPushButton, may result in unpredictable behavior. To
detect double-clicks in a WbScrolledList, use the defaultAction callback.

Layout Widgets
The form (CwForm) and row-column (CwRowColumn) widgets are composite widgets
that allow the application to specify how child widgets of the composite should be laid
out relative to each other and relative to the composite.

Layout Widgets 185

Form Widgets

Form widgets can be created using the #createForm:argBlock: convenience method.
Form widget children are positioned by attaching their sides to other objects.
Attachments are specified by setting each child’s leftAttachment, rightAttachment,
topAttachment and bottomAttachment resources. A side can be attached either to a given
position, to another widget, or to the edge of the form. The attachment types are listed
below. The first four types are the most commonly used. All are described in terms of the
leftAttachment, but the same attachment types apply to the other sides, with
corresponding behavior.

XmATTACHNONE

Default. Do not attach this side.

XmATTACHFORM

Attach the left side of the child to the left side of the form.

XmATTACHWIDGET

Attach the left side of the child to the right side of the widget specified in the leftWidget
resource.

XmATTACHPOSITION

Attach the left side of the child to a relative position in the form. This position is
specified by the leftPosition resource, and is a fractional value of the width of the form,
with the default range being from 0 to 100. The position is relative to the left side of the
form for left and right attachments, and to the top of the form for top and bottom
attachments. A position of 0 places the left side of the child at the left side of the form. A
position of 100 places the left side of the child at the right side of the form.

XmATTACHOPPOSITEFORM

Attach the left side of the child to the right side of the form.

186 Chapter 11 Common Widget Classes

XmATTACHOPPOSITEWIDGET

Attach the left side of the child to the left side of the widget specified in the leftWidget
resource.

XmATTACHSELF

Attach the left side of the child to its initial position in the form.

Note: It is an error for attachments to be recursively defined. For example, if a widget
A is attached to a widget B, then widget B cannot be attached to widget A. More
generally, there must not be a cycle in the widget attachments.

If the attachment is XmATTACHFORM or XmATTACHWIDGET, an offset can also be
specified that adds space between the side of the widget and the object to which it is
attached. Offsets are specified by the leftOffset, rightOffset, topOffset and bottomOffset
resources. Offsets are specified in units of pixels.

Note: The results are undefined if an offset setting is used with an attachment type of
XmATTACHPOSITION.

If attachments have been set on all sides of a widget, the size of the widget is completely
determined by the form and the other child widgets. However, if a side is left unattached,
the widget will use its preferred size in the corresponding dimension. This is useful for
allowing widgets to size themselves automatically based on their font size, contents, and
other attributes.

Some convenience methods, such as those used to create a scrolled list or a scrolled text,
actually create a widget sub-tree, but instead of returning the root of the sub-tree, the
child is returned. In these cases, the form attachments must be set on the returned
widget’s parent, rather than on the widget itself.

The example below illustrates a form containing a drawing area and a text widget. The
right side of the drawing area is attached to a position two-thirds (67 per cent) of the way
from left to right. The left side of the text widget is attached to the right side of the
drawing area. The remaining sides of the text and drawing area widgets are attached to
the form. The widgets are offset from each other by two pixels. (Offsets in the diagram
have been exaggerated to show the attachments.)

The following code example creates the widget tree illustrated above.

| shell form drawing text |
shell := CwTopLevelShell

createApplicationShell: ‘shell’
argBlock: [:w | w title: ‘Form Example’].

form := shell

Layout Widgets 187

createForm: ‘form’
argBlock: nil.

form manageChild.
drawing := form

createDrawingArea: ‘drawing’
argBlock: [:w |

w
borderWidth: 1;
width: 200;
height: 200;
leftAttachment: XmATTACHFORM;
leftOffset: 2;
rightAttachment: XmATTACHPOSITION;
rightPosition: 67;
topAttachment: XmATTACHFORM;
topOffset: 2;
bottomAttachment: XmATTACHFORM;
bottomOffset: 2].

drawing manageChild.
text := form

createText: ‘text’
argBlock: [:w |

w
leftAttachment: XmATTACHWIDGET;
leftWidget: drawing;
leftOffset: 2;
rightAttachment: XmATTACHFORM;
rightOffset: 2;
topAttachment: XmATTACHFORM;
topOffset: 2;
bottomAttachment: XmATTACHFORM;
bottomOffset: 2].

text manageChild.
shell realizeWidget.

188 Chapter 11 Common Widget Classes

Row-Column Widgets

The row-column widget (CwRowColumn) positions its children in rows or columns.
CwRowColumn widgets are frequently used to lay out groups of buttons, including pop-
up and pulldown menus. They can also be used to lay out widgets in a table. Row-column
widgets can be created using the #createRowColumn:argBlock: convenience
method.

Some commonly used row-column resources are the orientation, marginWidth,
marginHeight and spacing resources. The orientation resource specifies that the layout is
either row major or column major. In a column major layout, specified by
XmVERTICAL, the children are laid out in columns top to bottom. In a row major
layout, specified by XmHORIZONTAL, the children are laid out in rows. The default
orientation is XmVERTICAL. The marginWidth and marginHeight resources specify the
size of the margin between the child widgets and the edges of the row-column. The
spacing resource specifies the spacing between child widgets.

In the illustration below, the buttons on the left are organized in a row-column widget.
The row-column and the drawing area are contained in a form, similar to the previous
example.

The following code creates the example shown above.

| shell form rowColumn drawing |
shell := CwTopLevelShell

createApplicationShell: ‘shell’
argBlock: [:w | w title: ‘RowColumn Example’].

form := shell
createForm: ‘form’
argBlock: nil.

form manageChild.
rowColumn := form

createRowColumn: ‘rooms’
argBlock: [:w |

w
orientation: XmVERTICAL;
marginWidth: 10;

Button and Label Widgets 189

marginHeight: 10;
spacing: 20;
leftAttachment: XmATTACHFORM;
topAttachment: XmATTACHFORM;
bottomAttachment: XmATTACHFORM].

rowColumn manageChild.
#(‘Kitchen’ ‘Dining Room’ ‘Living Room’ ‘Washroom’ ‘Bedroom’
‘Workshop’)

do: [:room |
(rowColumn

createPushButton: room
argBlock: nil)

manageChild].
drawing := form

createDrawingArea: ‘drawing’
argBlock: [:w |

w
borderWidth: 1;
width: 300;
leftAttachment: XmATTACHWIDGET;
leftWidget: rowColumn;
leftOffset: 2;
rightAttachment: XmATTACHFORM;
rightOffset: 2;
topAttachment: XmATTACHFORM;
topOffset: 2;
bottomAttachment: XmATTACHFORM;
bottomOffset: 2].

drawing manageChild.
shell realizeWidget.

Button and Label Widgets
The Common Widgets subsystem allows applications to create static text labels
(CwLabel) and several types of buttons:

• Push buttons (CwPushButton)

• On/off toggle buttons (CwToggleButton)

• Application-drawn buttons (CwDrawnButton)

Buttons and labels can display either strings, pixmaps or icons as their contents,
depending on the value of the labelType resource.

190 Chapter 11 Common Widget Classes

The following resources define the visual appearance of labels and buttons: x, y, height,
width, marginTop, marginBottom, marginHeight, marginWidth, marginLeft and
marginRight.

The marginTop, marginBottom, marginRight and marginLeft resources are typically
controlled by subclasses of CwLabel or by the label’s parent. For example, a
CwToggleButton could increase marginRight to make space for the toggle indicator. The
marginHeight and marginWidth resources are usually left alone by subclasses, and can be
manipulated by the application if desired.

Tip: The margin resource settings indicate the preferred appearance of the widget. They
may be ignored if they are not supported by the platform or conflict with the
platform’s look and feel.

By default, the name given in a label or button creation message is used as the widget’s
labelString. The contents of a label or button widget are changed using the
#labelString: resource method.

CwLabel provides accelerator and acceleratorText resources for adding an accelerator
key to a toggle button or push button that is in a popup or pulldown menu. An accelerator
key will activate a button at any time, provided the parent menu is managed. The
accelerator resource is set to an instance of CwAccelerator created using the
#mask:keysym: class method, which takes the following arguments:

mask The modifier key mask. Consists of a logical-or of zero of more of the
following: Mod1Mask, ControlMask and/or ShiftMask.

keysym The unmodified key, which must be a lowercase letter or special key,
represented by a CwConstants ‘XK’ keysym value.

The acceleratorText resource describes the string that is displayed beside the button in the
menu.

Button and Label Widgets 191

Static Label Widgets

Static label widgets (CwLabel) can be created using the #createLabel:argBlock:

convenience method. Static labels do not provide any special callbacks. The following
code creates an simple example.

| shell label |
shell := CwTopLevelShell

createApplicationShell: ‘shell’
argBlock: [:w | w title: ‘Label Example’].

label := shell
createLabel: ‘label’
argBlock: nil.

label labelString: ‘This is a label.’.
label manageChild.
shell realizeWidget.

Push Button Widgets

Push button widgets (CwPushButton) can be created using the
#createPushButton:argBlock: convenience method.

Push buttons call their activate callback when they are pressed and released.

192 Chapter 11 Common Widget Classes

In the example below, three buttons are created in a row-column. An activate callback has
been added to each button. The same callback message is used in all three cases. The
client data of the callback is used to identify which button was pressed.

| shell rowColumn row b1 b2 b3 |
shell := CwTopLevelShell

createApplicationShell: ‘Test’
argBlock: nil.

rowColumn := shell
createRowColumn: ‘buttons’
argBlock: nil.

rowColumn manageChild.
b1 := rowColumn

createPushButton: ‘Top’
argBlock: nil.

b1
addCallback: XmNactivateCallback
receiver: self
selector: #button:clientData:callData:
clientData: ‘top’.

b1 manageChild.
b2 := rowColumn

createPushButton: ‘Middle’
argBlock: nil.

b2
addCallback: XmNactivateCallback
receiver: self
selector: #button:clientData:callData:
clientData: ‘middle’.

b2 manageChild.
b3 := rowColumn
 createPushButton: ‘Bottom’
 argBlock: nil.
b3

addCallback: XmNactivateCallback
receiver: self
selector: #button:clientData:callData:
clientData: ‘bottom’.

b3 manageChild.
shell realizeWidget.
The activate callback used in the code is shown below.
button: widget clientData: clientData callData: callData

“A button has been pressed.”
Transcript cr; show: ‘The ‘, clientData,

‘ button has been pressed.’

Button and Label Widgets 193

Toggle Button Widgets

Toggle button widgets (CwToggleButton) can be created using the
#createToggleButton:argBlock: convenience method.

Toggle buttons have two states: on and off. The state of a toggle button can be queried
and changed using the #getState and #setState:notify: messages, respectively.
Toggle buttons call their valueChanged callback when their state is changed.

Toggle buttons are typically used to create radio button and check box groups using row
column convenience methods described in the next sections. The toggle button
indicatorType resource controls whether the toggle button has a radio button or a check
box appearance. When the resource value is set to XmONEOFMANY, the button has a
radio button appearance. When the value is set to XmNOFMANY, the button has a check
box appearance.

Radio Button Groups

A row-column widget containing several toggle button widgets (CwToggleButton) can be
configured to have radio button behavior. When a button is selected in this mode, any
other selected buttons in the group are automatically deselected, leaving only one button
selected at any time. The radioBehavior resource of the CwRowColumn widget controls
this behavior.

A CwRowColumn with radioBehaviour set to true is created using the convenience
method #createRadioBox:argBlock :. WindowBuilder Pro provides a WbRadioBox
widget that automatically sets up this behavior.

194 Chapter 11 Common Widget Classes

Tip: As a side effect of #createRadioBox:argBlock :, the CwRowColumn’s
isHomogeneous resource is set to true. Children of a homogeneous row-column
widget must all be of the same type. In this case, they must all be CwToggleButton
widgets.

A toggle button can be selected or deselected using the #setState:notify: method.
Its state can be queried using the #getState method. The valueChanged callback of a
toggle button is executed whenever the state of the button changes.

Tip: The valueChanged callback is executed when a button is deselected as well as
when it is selected. The state of the widget should be checked in the callback using
the #getState method, or by checking the set field of the callback data.

In the example below, a radio box row-column is created. Three toggle buttons are added.
The same valueChanged callback is added to each toggle button, with the client data used
to identify the selected button. The resulting radio button group is shown in the left
margin. For simplicity, the shell is not shown.

| shell rowColumn button buttonNames initialValues languageNames|
shell := CwTopLevelShell

createApplicationShell: ‘shell’
argBlock: [:w | w title: ‘Radio Box Example’].

rowColumn := shell
createRadioBox: ‘radio’
argBlock: nil.

rowColumn manageChild.
buttonNames := #(‘Hello’ ‘Bonjour’ ‘Ola’).
initialValues := (Array with: true with: false with: false).
languageNames := #(‘English’ ‘Franch’ ‘Spanish’).
1 to: buttonNames size

do: [:i |
button := rowColumn

createToggleButton: (buttonNames at: i)
argBlock: [:w | w set: (initialValues at: i)].

button
addCallback: XmNvalueChangedCallback
receiver: self
selector: #language:clientData:callData:
clientData: (languageNames at: i).

button manageChild].
shell realizeWidget.

The valueChanged callback used by the code is shown below. The selected language is
indicated by the clientData argument. A message is written to the transcript whenever a
new language is chosen.

Button and Label Widgets 195

language: widget clientData: clientData callData: callData
“A toggle button has changed state.”
callData set

ifTrue: [Transcript cr; show:
‘The selected language is now ‘, clientData, ‘.’].

Check Boxes

Check boxes consist of several toggle buttons that present a set of options to the user. The
user can choose none, all, or any combination of the buttons. A CwRowColumn widget
can be used to contain the buttons. When the row-column’s radioBehavior resource is
false, its default, more than one toggle button can be selected at a time.

The code that follows creates a toggle button group.
| shell rowColumn button buttonNames initialValues |
shell := CwTopLevelShell

createApplicationShell: ‘shell’
argBlock: [:w | w title: ‘Check Box Example’].

rowColumn := shell
createRowColumn: ‘group’
argBlock: nil.

rowColumn manageChild.
buttonNames := #(‘Item 1’ ‘Item 2’ ‘Item 3’).
initialValues := (Array with: false with: true with: true).
1 to: buttonNames size : [:i |

button := rowColumn
createToggleButton: (buttonNames at: i)
argBlock: [:w | w set: (initialValues at: i)].

button
addCallback: XmNvalueChangedCallback
receiver: self
selector: #valueChanged:clientData:callData:
clientData: nil.

button manageChild].
shell realizeWidget.

The valueChanged callback used by the code is shown below. A message is written to the
transcript whenever a button is selected or deselected.

valueChanged: widget clientData: clientData callData: callData
“A toggle button has changed state.”
Transcript cr; show: widget labelString, ‘ has been ‘.
callData set

ifTrue: [Transcript show: ‘selected.’]
ifFalse: [Transcript show: ‘deselected.’].

196 Chapter 11 Common Widget Classes

Icon and Pixmap Label and Button Widgets

The contents of CwLabel, CwPushButton, and CwToggleButton widgets can be a string,
an icon or a pixmap. When the labelType resource is XmSTRING, the labelString
resource specifies the string to display. The default type is string. When labelType is
XmICON, labelIcon specifies the icon to use, and when labelType is XmPIXMAP,
labelPixmap specifies the pixmap to display. Consult “Using Pixmaps” in the IBM
Smalltalk Programmer’s Reference for more information on using pixmaps and icons.

The code below creates a widget tree containing the pixmap button shown at left. Icon
buttons and labels are created in a similar manner. Note that pixmap is an instance
variable.

| shell button questionMark |
shell := CwTopLevelShell

createApplicationShell: ‘shell’
argBlock: [:w | w title: ‘Pixmap Button Example’].

button := shell
createPushButton: ‘button’
argBlock: nil.

button
addCallback: XmNdestroyCallback
receiver: self
selector: #destroy:clientData:callData:
clientData: nil.

questionMark := #(0 0 0 0 255 0 192 255 3 224 255 7
240 255 15 248 255 31 248 255 31 252 255 63
252 227 63 252 193 63 252 193 63 252 193 63
248 224 63 248 240 31 0 248 31 0 252 15
0 252 7 0 254 3 0 254 3 0 254 1
0 254 1 0 252 0 0 252 0 0 0 0
0 252 0 0 254 1 0 254 1 0 254 1
0 254 1 0 252 0 0 0 0 0 0 0).
“Realize the shell without mapping it so we have access to the
button’s window & palette without making the it appear.”
shell

mappedWhenManaged: false;
realizeWidget.

pixmap := button screen rootWindow
createPixmapFromBitmapData: questionMark
width: 24
height: 32
fg: button window blackPixel
bg: (button window getPalette

nearestPixelValue: button backgroundColor)
depth: button depth.

Button and Label Widgets 197

button
setValuesBlock: [:w |

w
labelType: XmPIXMAP;
labelPixmap: pixmap].

button manageChild.
shell mapWidget.
destroy: widget clientData: clientData callData: callData

pixmap freePixmap.

Application-Drawn Buttons

Application-drawn button widgets (CwDrawnButton) enable the application to draw
arbitrary graphics on a button. Drawn buttons behave like push buttons except that they
can be drawn on like drawing area widgets. See the example below.

As with the push button widget, the application can add an activate callback to be
executed when the button is pressed. As with the drawing area widget, expose and resize
callbacks can be added to notify the application when the button requires redrawing and
when it has changed size. Consult “Drawing Operations” in the IBM Smalltalk
Programmer’s Reference for more information on drawing graphics.

In the code below, the drawn button shown at left is created and drawn.

Object subclass: #DrawnButtonExample
 instanceVariableNames: ‘gc ‘
 classVariableNames: ‘‘
 poolDictionaries: ‘CwConstants CgConstants ‘

open
| shell button |
shell := CwTopLevelShell

createApplicationShell: ‘shell’
argBlock: [:w | w title: ‘Drawn Button Example’].

button := shell
createDrawnButton: ‘button’
argBlock: nil.

198 Chapter 11 Common Widget Classes

button
addCallback: XmNactivateCallback
receiver: self
selector: #button:clientData:callData:
clientData: nil;
addCallback: XmNexposeCallback
receiver: self
selector: #expose:clientData:callData:
clientData: nil;
addCallback: XmNdestroyCallback
receiver: self
selector: #destroy:clientData:callData:
clientData: nil.

button manageChild.
shell realizeWidget.
gc := button window

createGC: None
values: nil.

activate: widget clientData: clientData callData: callData
“The drawn button has been pressed.”
Transcript cr; show: ‘The pixmap button has been pressed.’.

expose: widget clientData: clientData callData: callData
“The drawn button has been exposed. Redraw the button.”
| x |
callData event count = 0

ifTrue: [
0 to: 10 do: [:i |

x := widget width * i // 10.
widget window

drawLine: gc
x1: x
y1: 0
x2: widget width - x
y2: widget height - 1]].

destroy: widget clientData: clientData callData: callData
gc freeGC.

List Widgets 199

List Widgets

List widgets (CwList and WbScrolledList) present a list of items and allow the user to
select one or more items from the list. List widgets can be created using the
#createList:argBlock: and #createScrolledList:argBlock: convenience
methods. The latter method makes the list scrollable, but otherwise provides basically the
same functionality. WindowBuilder Pro provides a widget, WbScrolledList, that
automatically sets up the scrollable behavior.

The items in the list and the selected items are specified by the items and selectedItems
resources, respectively. The selectionPolicy resource specifies the policy for selecting
items. It has four possible settings:

XmBROWSESELECT Allows only single selection. Behavior may vary from
platform to platform, but normally the selection moves
when the mouse is dragged. This is the default selection
policy.

XmSINGLESELECT Allows only single selection. Behavior may vary from
platform to platform, but normally the selection remains
the same when the mouse is dragged.

XmMULTIPLESELECT Allows multiple items to be selected. The selection of an
item is toggled when it is clicked on. Clicking on an item
does not deselect previously selected items.

XmEXTENDEDSELECT Allows multiple items to be selected, either by dragging
the selection or by clicking on items with a modifier key
held down. Behavior may vary from platform to platform,
but normally clicking on an item without a modifier key
held down deselects all previously selected items.

Tip: On some platforms, browse select and single select work the same way.

200 Chapter 11 Common Widget Classes

List widgets provide several methods for adding, deleting and replacing items and
selected items in the list.

The selectionPolicy resource determines which callback is used to notify the application
of changes in the selection. List widgets support the following callbacks:

browseSelectionCallback Executed when an item is selected in browse selection
mode

singleSelectionCallback Executed when an item is selected in single selection
mode

multipleSelectionCallback Executed when an item or group of items is selected in
multiple selection mode

extendedSelectionCallback Executed when an item or group of items is selected in
extended selection mode

defaultActionCallback Executed when an item is double clicked (all modes)

The call data of the selection callback specifies the item or items that were selected, and
the position(s) of the selected item(s) in the list. Item positions in the list are numbered
starting from one.

Single Selection Lists

In the example below, the list widget shown at left is created with its selection policy set
to XSINGLESELECT. A singleSelection callback is added, to correspond with the
selection policy.

| items shell list |
items := #(‘item1’ ‘item2’ ‘item3’ ‘item4’ ‘item5’).
shell := CwTopLevelShell

createApplicationShell: ‘shell’
argBlock: nil.

list := WbScrolledList
createWidget: ‘list’
parent: shell
argBlock: [:w | w

selectionPolicy: XmSINGLESELECT;
items: items].

list
addCallback: XmNsingleSelectionCallback
receiver: self
selector: #singleSelect:clientData:callData:

List Widgets 201

clientData: nil.
list manageChild.
shell realizeWidget.

The call data of the singleSelection callback specifies the item that was selected. The
callback method below prints the entire callback data on the transcript. All components of
the call data can be retrieved using the corresponding accessor method.

singleSelect: widget clientData: clientData callData: callData
“Print the call data.”
Transcript cr; show: ‘Single selection call data: ‘,

callData printString

If Item 2 was selected, as in the illustration, the transcript output would be:

Single selection call data: CwListCallbackData(
 reason -> 23
 item -> ‘Item 2’
 itemPosition -> 2
 selectedItems -> nil
 selectedItemCount -> nil
 selectedItemPositions -> nil

Multiple Selection Lists

In the example below, the list widget shown at left is created with its selection policy set
to XmMULTIPLESELECT. A multipleSelection callback is added, to correspond with
the selection policy.

| items shell list |
items := #(‘item1’ ‘item2’ ‘item3’ ‘item4’ ‘item5’).
shell := CwTopLevelShell

createApplicationShell: ‘shell’
argBlock: nil.

list := WbScrolledList
createWidget: ‘list’
parent: shell
argBlock: [:w | w

selectionPolicy: XmMULTIPLESELECT;
items: items].

list
addCallback: XmNmultipleSelectionCallback
receiver: self
selector: #multipleSelect:clientData:callData:
clientData: nil.

list manageChild.
shell realizeWidget.

202 Chapter 11 Common Widget Classes

The call data of the multipleSelection callback specifies the items that were selected. The
callback method below prints the entire callback data on the transcript. All components of
the call data can be retrieved using the corresponding accessor method.

multipleSelect: widget clientData: clientData callData: callData
“Print the call data.”
Transcript cr; show: ‘Multiple selection call data: ‘,

callData printString

If Item 2 and Item 3 were selected in order, as in the illustration, the transcript output
would be:

Multiple selection call data: CwListCallbackData(
 reason -> 24
 item -> ‘Item 3’
 itemPosition -> 3
 selectedItems -> OrderedCollection (‘Item 2’ ‘Item 3’)
 selectedItemCount -> 2
 selectedItemPositions -> OrderedCollection(2 3))

Combo Box Widgets

Like list widgets, combo box widgets (CwComboBox) enable the user to select from a
list of available items. A combo box also displays the last selected item in a text box
above the list. Combo box widgets can only have one item selected at a time. Combo box
widgets can be created using the #createComboBox:argBlock: convenience method.

There are two styles of combo boxes, specified by the comboBoxType resource:

XmDROPDOWN The list is displayed only when dropped down by pressing a button
beside the text box. When a selection is made, the list disappears
(default).

XmSIMPLE The list is always displayed

As with the list widget, the items in the combo box are specified by the items resource.
The application can add a singleSelection callback to be executed whenever the selection

Combo Box Widgets 203

changes. Several methods are provided for adding, deleting, and replacing items in the
list.

The contents of the text part of the combo box can be set and retrieved using the
#setString: and #getString methods.

The following example creates the drop down combo box shown at left. Its items are set,
the contents of the text box are initialized to the first item, and a singleSelection callback
is added.

| items shell combo |
items := #(‘Item 1’ ‘Item 2’ ‘Item 3’ ‘Item 4’).
shell := CwTopLevelShell

createApplicationShell: ‘shell’
argBlock: [:w | w title: ‘Combo Box Example’].

combo := CwComboBox
createWidget: ‘combo’
parent: shell
argBlock: [:w | w

comboBoxType: XmDROPDOWN;
items: items].

combo setString: items first.
combo

addCallback: XmNsingleSelectionCallback
receiver: self
selector: #singleSelect:clientData:callData:
clientData: nil.

combo manageChild.
shell realizeWidget.

204 Chapter 11 Common Widget Classes

All Widgets 205

Chapter 12 Widget Encyclopedia

This chapter provides descriptions of each method and callback that is understood by the
widgets supported by WindowBuilder Pro. The first section describes protocols that are
understood by all widgets. Each following section describes the protocols understood by
a particular widget class. For resource get and set protocols, only the set version of the
protocol has been described. For each set protocol (e.g., #height :, #x :,
#borderWidth :, etc.), there is a corresponding get protocol (e.g., #height , #x ,
#borderWidth , etc.).

All Widgets
Protocol

addCallback: callbackName receiver: receiver selector: selector
clientData: clientData
Add a callback to one of the receiver’s callback lists. Generally speaking, a widget
expecting to interact with an application will declare one or more callback lists as
resources; the application adds callbacks to these callback lists, which will be invoked
whenever the predefined callback conditions are met. Callback lists are resources, so that
the application can set or change the function that will be invoked.

Callbacks are not necessarily invoked in response to any event; a widget can call the
specified routines at any arbitrary point in its code, whenever it wants to provide a ‘hook’
for application interaction. For example, all widgets provide a destroyCallback resource
to allow applications to interpose a routine to be executed when the widget is destroyed.

This message adds a new callback to the end of the callback list. A callback will be
invoked as many times as it occurs in the callback list.

callbackName The resource name of the callback list to which the callback is to be
appended.

receiver The object to send the callback message to.

206 Chapter 12 Widget Encyclopedia

selector The 3-parameter message selector to send (WindowBuilder Pro also
supports unary message selectors).

clientData An object to be passed to the receiver of the callback message as the
clientData parameter when the callback is invoked, or nil.

addEventHandler: eventMask receiver: receiver selector: selector
clientData: clientData
Register an event handler. This message registers with the dispatch mechanism. The
handler thus registered will be called when an event matching the eventMask occurs in
the receiver. This message can be sent at any time during the widget’s lifetime.

A handler may be registered with the same clientData to handle multiple events. Further,
more than one event handler can be registered for a given event. If multiple handlers are
registered, the handlers will all be called, but in an indeterminate order.

NOTE:

1) Event handlers are not supported for menu bars, menus or any widget that is part of a
menu.

2) Event handlers are not supported for ‘private’ pseudo-widgets that make up the
implementation of widgets such as scrolled text, scrolled list, combo box, scale, and
scrolled window. Depending on the particular platform, such private widgets may or
may not actually exist.

3) Exposure events are not supported through the event handler mechanism. Widgets
that support exposure notification (e.g. CwDrawingArea and CwDrawnButton)
provide callbacks for this purpose.

4) Since the proper event to trigger a menu popup varies among different platforms, the
ButtonMenuMask is defined to select for the correct event for the platform, and
should always be used for event handlers which pop up menus.

eventMask An integer valued event mask specifying the events interest. The
eventMask parameter is constructed as a bitwise OR of the individual
event masks.

receiver The object to send the event handler message to.

selector The 3-parameter message selector to send (WindowBuilder Pro also
supports unary message selectors).

clientData An object to be passed to the receiver of the event handler as the
clientData parameter when the event handler is invoked, or nil.

All Widgets 207

allChildren
Answer a collection of all of the receiver’s children.

allMajorChildren
Answer a collection of all of the receiver’s major children. This collection excludes
widgets such as the scrollbar children of a scrolled list.

allParents
Answer a collection of the receiver’s parents until the top level shell is reached.

ancestorSensitive
Specifies whether the immediate parent of the widget will react to input events.

backgroundColor: aCgRGBColor
Specifies the background drawing color. NOTE: The particular aspects of the widget’s
appearance which are affected by changing this resource are dependent on platform-
specific styles and capabilities and vary from platform to platform.

basicWidget
Answer the receiver’s basic widget. The basic widget is any instance of a subclass of
CwBasicWidget.

Extended widgets are implemented using basic widgets, or other extended widgets. While
extended widgets are normally implemented using portable calls available from basic
widgets, basic widgets are highly platform specific, and are normally implemented by the
native windowing or operating system. While the #primaryWidget message for an
extended widget may answer another extended widget, the #basicWidget message
always returns the basic widget at the end of the chain i.e. the basic widget which
represents the extended widget(s) to the native window system.

For CwBasicWidget’s, this message returns the receiver itself. For CwExtendedWidgets,
this message (recursively) returns the basic widget of the receiver’s primary widget.

borderWidth: anInteger
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Default: 0 (No Border)
Valid resource values:

0 (No Border) - Causes the widget to have no border.
1 (Border) - Causes the widget to have a border.

208 Chapter 12 Widget Encyclopedia

boundingBox
Answer a rectangle whose origin is the receiver’s x @ y and whose extent is the
receiver’s width @ height.

bringToFront
Move the receiver to the top of the stacking order among the receiver’s siblings.

bringToFrontOf: aCwWidget
Move the receiver in front of aCwWidget in the stacking order among the receiver’s
siblings.

children
Answer a collection of the children of the receiver.

configureWidget: x y: y width: width height: height borderWidth: borderWidth
Move and/or resize the receiver, bypassing normal geometry management. This message
moves and/or resizes a widget according to the specified width, height, and position
values. It returns immediately if the specified geometry fields are the same as the old
values. Otherwise, it writes the new x, y, width, height, and borderWidth values into the
widget and, if the widget is realized, make the changes visible on the display. A parent
widget can use this message to set the geometry of its children. It may also be used to
reconfigure a sibling widget.

If only the size of a widget is to be changed, #resizeWidget:... is simpler to use;
similarly, if only the location of a widget is to be changed, use #moveWidget:...

Note that once a widget is resized or otherwise reconfigured by its parent, it may need to
do additional processing in its own resize method. Widgets usually need to know when
they have changed size so that they can lay out their displayed data again to match the
new size. When a parent resizes a child, it calls #resizeWidget:...

x,y The receiver’s new integer x and y coordinates.

width,height,borderWidth The receiver’s new integer dimensions.

corner
Answer a Point which is the receiver’s (x + width) @ (y + height).

deferRedraw: aBlock
Hint that widget display updates for the receiver should be deferred during execution of a
block of code. This message is provided as a mechanism to allow the application to
provide a hint that the widget updates caused by operations executed in the provided
block should be deferred and performed all at once when execution of the block is
completed.

All Widgets 209

The actual effect varies from platform to platform. In general, this should only be used
when testing shows it to provide a visual improvement on one or more platforms.

NOTE: Care must be taken not to return out of the middle of aBlock.

destroyWidget
Destroy the receiver and its children and release all associated OS resources. When an
application needs to perform additional processing during the destruction of a widget, it
should register a destroy callback message for the widget. The destroy callback list is
identified by the resource name XmNdestroyCallback. The destroy callback is called just
prior to destroying the widget.

display
Answer the CgDisplay associated with the receiver.

disable
Disable the widget.

disableAll
Disable the receiver and all its children, forwarding the #disable message to all
children. Sending #disableAll will result in all children updating their visual
appearance to indicate that they are disabled, whereas #disable does not.”

dynamicPopupMenu: aSymbolOrWbMenu owner: aWbApplication
Add a dynamic popup menu to the receiver. aSymbolOrWbMenu can either be a
WbMenu or a symbol that when executed in the context of aWbApplication returns a
WbMenu. aSymbol will be evaluated every time the menu is requested

enable
Enable the widget.

enableAll
Enable the receiver and all its children, forwarding the #enable message to all children.
Sending #enableAll will result in all children updating their visual appearance to
indicate that they are enabled, whereas #enable does not.”

enabled: aBoolean
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

extendedWidget
Answer the extended widget that manages the receiver.

210 Chapter 12 Widget Encyclopedia

extendedWidgetOrSelf
Answer the extended widget that manages the receiver. If none exists, answer the
receiver.

extent
Answer a Point which is the receiver’s width @ height.

font: aFontName
Set the font of the receiver to aFontName.

foregroundColor: aCgRGBColor
Specifies the foreground drawing color. NOTE: The particular aspects of the widget’s
appearance which are affected by changing this resource are dependent on platform-
specific styles and capabilities and vary from platform to platform.

hasChildren
Answer whether the receiver has children.

hasFocus
Answer true if the receiver has keyboard focus. Otherwise answer false.

height: anInteger
Specifies the height of the widget’s window in pixels, not including the border area.

hideWindow
Make the receiver invisible.

isVisible
Answer true if the window is visible.

manageChild
Add the receiver to its parent’s list of managed children. This message brings a child
widget under the geometry management of its parent. A widget cannot be made visible
until it is managed.

mapWidget
Map the receiver to its display. This message maps a widget’s window to its display,
causing it to become visible. A widget must be realized before it can be mapped.

moveWidget: x y: y
Move the receiver on the display. This returns immediately if the specified geometry
fields for the widget are the same as the old values. Otherwise, this message writes the
new x and y values into the widget and, if the widget is realized, moves the widget on the
display.

All Widgets 211

name
Answer the receiver’s name.

navigationType: anInteger
Specifies if tab group navigation is activated for this widget.

Default: XmNONE (None)
Valid resource values:

XmNONE (None) - Indicates that the Widget is not a navigation group
XmTABGROUP (Group) - Indicates that the Widget is included automatically in

keyboard navigation

origin
Answer a Point which is the receiver’s x @ y.

owner
Answer the owner of the receiver.

parent
Answer the parent widget of the receiver, or nil if the receiver has no parent.

popupMenu
Answer the popupMenu property (generally a symbol).

popupMenu: aSymbolOrWbMenu
Add a popup menu to the receiver. aSymbolOrWbMenu can either be a WbMenu or a
symbol that when executed in the context of the receiver’s owner returns a WbMenu.

popupMenu: aSymbolOrWbMenu owner: aWbApplication
Add a popup menu to the receiver. aSymbolOrWbMenu can either be a WbMenu or a
symbol that when executed in the context of aWbApplication returns a WbMenu.

primaryWidget
Answer the receiver’s primary widget. The primary widget is any instance of a subclass
of CwWidget. For CwBasicWidget’s, the primaryWidget is the receiver itself. For
CwExtendedWidgets, the primaryWidget is another CwExtendedWidget, or a
CwBasicWidget.

properties
Answer the receiver’s property dictionary.

properties: anIdentityDictionary
Set the receiver’s property dictionary.

212 Chapter 12 Widget Encyclopedia

propertyAt: aSymbol
Answer the receiver’s property named aSymbol.

propertyAt: aSymbol ifAbsent: aBlock
Answer the receiver’s property named aSymbol. If no such property exists, evaluate
aBlock.

propertyAt: aSymbol ifAbsentPut: aBlock
Answer the receiver’s property named aSymbol. If no such property exists, store the value
of aBlock there.

propertyAt: aSymbol ifMissing: anObject
Answer the receiver’s property named aSymbol. If no such property exists, store
anObject there.

propertyAt: aSymbol put: anObject
Set the receiver’s property named aSymbol to anObject.

realChildren
Answer a collection of all of the receivers real children.

realizeWidget
Realize the receiver on the display. This message causes widgets to set create their
windows on the display, and perform their final initializations.

realWidget
Answer the receiver’s real widget. For most widgets, this is the widget itself. For tightly
coupled scrolling widgets, it is the scrolling widget’s work window.

redraw
Force the receiver and all children to redraw.

redrawOff
Set redraw off.

redrawOn
Set redraw on.

redraw: x y: y width: width height: height
Force the receiver and all children to redraw the specified area of the receiver.

removeAllCallbacks: callbackName
Delete all callbacks from a callback list. This message removes all the widget’s callback
messages identified by callbackName, regardless of the value of the clientData associated
with each message. This is in contrast to #removeCallback:... and
#removeCallbacks:... , which remove the specified callback only if a specified
clientData argument also matches.

All Widgets 213

callbackName The resource name of the callback list to which the callback is to be
appended.

removeCallback: callbackName receiver: receiver selector: selector clientData:
clientData
Delete a callback from a callback list. This message removes a callback message
identified by callbackName.

The callback is removed only if both the callback object and clientData match a
callback/data pair on the list. No warning message is generated if a callback to be
removed fails to match a callback or clientData on the list. Use
#removeAllCallbacks:... if you want to remove a particular callback regardless of
the value of its clientData.

callbackName The resource name of the callback list from which the callback is to be
deleted.

receiver The object to match against the callback receiver in the callback list.

selector The 3-parameter message selector which is to be used to match against
the callback in the callback list.

clientData The object to match with the clientData object in the callback list entry.

removeEventHandler: eventMask receiver: receiver selector: selector
clientData: clientData
Remove a previously registered event handler. This message stops the specified handler
from being called in response to the specified events.

A handler is removed only if both the event handler receiver, selector, and clientData
match a previously registered handler/clientData pair.

If a handler to be removed fails to match, or if it has been registered with a different
value of clientData, this message returns without reporting an error.

To stop a handler from being called at all, all events for which it is registered must be
provided in eventMask. Otherwise, the handler remains registered for the remaining
events.

eventMask An integer valued event mask specifying the events of interest. The
eventMask parameter is constructed as a bitwise OR of the individual
event masks.

receiver The object to match against the event handler receiver in the callback
list.

214 Chapter 12 Widget Encyclopedia

selector The 3-parameter message selector which is to be used to match against
the event handler in the callback list.

clientData An object to be passed to the receiver of the event handler message as
the clientData parameter when the event handler is invoked, or nil.

resizeWidget: width height: height borderWidth: borderWidth
Resize a child or sibling widget, bypassing normal geometry management. This message
is customarily used by a parent to resize its children.

This message returns immediately if the specified geometry fields are the same as the old
values. Otherwise, it writes the new width, height, and borderWidth values into the
widget and, if the widget is realized, makes the changes visible.

width,height,borderWidth The receiver’s new integer dimensions.

scale
Scale the receiver as needed. This insures that windows laid out under one resolution will
look OK under other resolutions.

scaleFactor: aPoint
Set the scaling factor to use in laying out the window.

screen
Return the screen for the specified widget. This message returns a CgScreen which
describes the screen that the widget is displayed on.

scrolledWidget
Answer the receiver’s scrolling widget. For most widgets, this is the widget itself. For
tightly coupled scrolling widgets, it is the widget’s scrolling parent.

sendToBack
Move the receiver to the bottom of the stacking order among the receiver’s siblings.

sendToBackOf: aCwWidget
Move the receiver behind aCwWidget in the stacking order among the receiver’s siblings.

setInputFocus
This message is used to give the receiver the keyboard input focus. If the receiver is a
Shell widget, it is activated and brought to the front. If the receiver is not a shell widget,
its shell is activated and brought to the front, and then it is given focus.

There are several general rules governing the transfer of keyboard focus:

• A widget can not receive input focus unless its XmNtraversalOn resource is set to
true and the XmNtraversalOn resource for all of its ancestors (not including the
shell) is set to true.

All Widgets 215

• An attempt to set focus to a CwComposite widget that has no children will cause the
CwComposite widget to take keyboard focus, allowing keyboard events to be
received through an event handler.

• An attempt to set focus to a CwComposite widget that has children will cause the
CwComposite widget to immediately transfer the keyboard focus to its first child
that can receive focus. CwComposite widgets that have children will not normally
take keyboard focus.

setSensitive: sensitive
Set the sensitivity state of a widget. Many widgets have a mode in which they assume a
different appearance (for example, grayed out or stippled), do not respond to user events,
and become dormant. When dormant, a widget is insensitive. This means that the widget
does not respond to user input events.

setValuesBlock: argBlock
This message is provided to allow the values of multiple resources to be set together.
Some resources, such as the constraint resources for CwForm are required to be set
simultaneously to achieve correct behavior. The argBlock must contain resource set
messages to the receiver. The receiver is also passed as the single parameter to the
argBlock, and the messages should be sent to this parameter.

shell
Answer the shell widget in which the receiver is contained. Shell widgets answer
themselves.

showWindow
Make the receiver visible.

translateCoords: widgetPoint
Converts widget-relative coordinates to screen-relative coordinates and answer a Point
representing the translated coordinates.

widgetPoint The Point in widget-relative coordinates which is to be translated to
screen-relative coordinates.

traversalOn: aBoolean
Specifies if traversal is activated for this widget.

unmanageChild
Remove a widget from its parent’s managed list.

unmapWidget
Unmap a widget explicitly. This message unmaps a widget’s window from its display,
causing it to become invisible.

216 Chapter 12 Widget Encyclopedia

updateDisplay
Synchronize the display by forcing all pending updates for the receiver’s display to be
processed immediately. All updates for the receiver’s display are guaranteed to be
processed before the call returns.

NOTE: This can not be called inside an XmNexposeCallback.

updateWidget
Synchronize the display by forcing all pending updates for the receiver to be processed
immediately. This may cause pending updates for other widgets to also be processed but
at minimum, all updates for the receiver are guaranteed to be processed before the call
returns.

NOTE: This can not be called inside an XmNexposeCallback.

visible: aBoolean
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

wbCursorPosition
Answer the position of the cursor relative to the receiver.

wbHasFocus
Answer whether the receiver has focus.

wbSetFocusToNext
Set focus to the next widget in the z-order order.

widgetNamed: aString
Answer the child of the receiver’s named aString.

width: anInteger
Specifies the width of the widget’s window in pixels, not including the border area.

window
Return the CgWindow associated with the receiver.

NOTE: This may return nil if the receiver has not been realized.

withAllChildren
Answer a collection of all of the receiver and the receiver’s children.

withAllMajorChildren
Answer a collection of all of the receiver and the receiver’s major children.

All Widgets 217

x: anInteger
Specifies the x-coordinate of the widget’s upper left-hand corner (excluding the border)
in relation to its parent widget.

y: anInteger
Specifies the y-coordinate of the widget’s upper left-hand corner (excluding the border)
in relation to its parent widget.

Callbacks & Events

About To Close Widget
These callbacks are triggered right before the widget is closed.

About To Manage Widget
These callbacks are triggered right after the widget is created but before it is managed.

About To Open Widget
These callbacks are triggered right before the widget is opened.

Button Press
These event handlers are triggered for any mouse button down events.

Button Release
These event handlers are triggered for any mouse button up events.

Button Menu
These event handlers are triggered for any button menu request events.

Button Motion
These event handlers are triggered for any pointer motion events while any button is
down.

Button1 Motion
These event handlers are triggered for any pointer motion events while button 1 is down.

Button2 Motion
These event handlers are triggered for any pointer motion events while button 2 is down.

Button3 Motion
These event handlers are triggered for any pointer motion events while button 3 is down.

Closed Widget
These callbacks are triggered right after the widget is closed.

218 Chapter 12 Widget Encyclopedia

Destroy Callback
These callbacks are triggered when the widget is destroyed. This provides an opportunity
to perform any final cleanup activities such as releasing operating system resources.

Help Callback
These callbacks are triggered when the help key sequence is pressed.

Key Press
These event handlers are triggered for any keyboard key down events.

Key Release
These event handlers are triggered for any keyboard key up events.

Opened Widget
These callbacks are triggered right after the widget is opened.

Pointer Motion
These event handlers are triggered for all pointer motion events.

CwArrowButton 219

CwArrowButton

Arrow buttons are specialized forms of buttons that display an arrow image in one of four
directions. Arrow buttons call their activate callback when they are pressed and released.

Protocol

arrowDirection: anInteger
Sets the arrow direction.

Default: XmARROWUP (Up Arrow)
Valid resource values:

XmARROWUP (Up Arrow) - Set the arrow direction to up
XmARROWDOWN (Down Arrow) - Set the arrow direction to down
XmARROWLEFT (Left Arrow) - Set the arrow direction to left
XmARROWRIGHT (Right Arrow) - Set the arrow direction to right

Callbacks & Events

Activate Callback
These callbacks are triggered when the button has been activated. Buttons are activated
when the mouse is clicked and released within the button. Buttons may also be activated
via the space bar when the button has focus or via a carriage return when a button is a
default button.

Arm Callback
These callbacks are triggered when the button is armed. Buttons are armed and appear
pressed whenever the moused is pressed within the button and not yet released. If the
mouse is moved outside of the button while still pressed, the button will be disarmed and
appear unpressed. If the mouse is released while still in the button, the button is activated

Disarm Callback
These callbacks are triggered when the button is disarmed. Buttons are disarmed
whenever the mouse is moved outside of the button after it has been armed. Moving the
mouse back over the button while the mouse button is still down will cause the button to
become rearmed.

220 Chapter 12 Widget Encyclopedia

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

Editor

Arrow Direction
Sets the arrow direction.

Down Arrow - Set the arrow direction to down
Left Arrow - Set the arrow direction to left
Right Arrow - Set the arrow direction to right
Up Arrow - Set the arrow direction to up

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

CwComboBox 221

CwComboBox

Combo box widgets enable the user to select from a list of available items. A combo box
also displays the last selected item in a text box above the list. Combo box widgets can
only have one item selected at a time.

Protocol

addItem: item position: position
Add an item to the list. This message adds an item to the list at the given position. A
position value of 1 makes the first new item the first item in the list; a value of 2 makes it
the second item; and so on. A value of 0 makes the first new item follow the last item in
the list.

addItems: items position: position
Add items to the list. This message adds the specified items to the list at the given
position. A position value of 1 makes the first new item the first item in the list; a value of
2 makes it the second item; and so on. A value of 0 makes the first new item follow the
last item in the list.

comboBoxType: anInteger
Specifies the style of combo box.

Default: XmDROPDOWN (Drop Down)
Valid resource values:

XmSIMPLE (Simple) - The combo box always displays its list box.
XmDROPDOWN (Drop Down) - the combo box displays its list box only if the user

presses the drop down button. When the button is pressed, the list box drops
down, allowing the user to make a selection from the list. After the selection is
made, the list disappears.

deleteAllItems
This message deletes all items from the list.

222 Chapter 12 Widget Encyclopedia

deleteItem: item
Delete an item from the list.

deleteItemsPos: itemCount position: position
Delete items from the list by position. This message deletes the specified number of items
from the list starting at the specified position.

deletePos: position
Delete an item from the list by position. This message deletes an item at a specified
position. A warning message appears if the position does not exist.

editable: aBoolean
Indicates that the user can edit the text string when set to true. A false value will prohibit
the user from editing the text.

getString
This message accesses the String value of the text part of the combo box.

itemCount
Specifies the total number of items in the list. It is automatically updated by the list
whenever an element is added to or deleted from the list.

itemExists: item
Check if a specified item is in the list. This message is a Boolean function that checks if a
specified item is present in the list.

items: anOrderedCollection
An array of Strings that are to be displayed as the list items.

maxLength: anInteger
Specifies the maximum length of the text string that can be entered into text from the
keyboard.

replaceItemsPos: newItems position: position
Replace items in the list by position. This message replaces the specified number of items
of the List with new items, starting at the specified position in the List. Beginning with
the item specified in position, the items in the list are replaced with the corresponding
elements from newItems. That is, the item at position is replaced with the first element of
newItems; the item after position is replaced with the second element of newItems; and
so on, until itemCount is reached.

selectedIndex
Answer the index of the selected item.

CwComboBox 223

selectedItem
Answer the item selected in the combobox.

selectedItems
Answer an array of Strings that represents list items that are currently selected, either by
the user or the application.

NOTE: For combo boxes, the collection will contain either 0 or 1 elements.

selectIndex:itemIndex
Select the item at itemIndex. Index starts at 1.

selectItem: anObject
Select the item anObject. anObject can be an index or a string.

setString: value
This message sets the string value of the text part of the combo box.

verifyBell: aBoolean
Specifies whether the bell should sound when the verification returns without continuing
the action.

visibleItemCount: anInteger
Specifies the number of items that can fit in the visible space of the List work area. The
list will use this value to determine its height.

Callbacks & Events

Activate Callback
These callbacks are triggered when the user presses the default action key. This is
typically a carriage return.

Focus Callback
These callbacks are triggered before the widget has accepted input focus.

Losing Focus Callback
These callbacks are triggered before the widget loses input focus. This callback can be
used to perform input validation of the user entered data.

Modify Verify Callback
These callbacks are triggered before text is deleted from or inserted into the widget. This
callback can be used to check a character value after it is entered by the user and before it
is accepted by the control.

224 Chapter 12 Widget Encyclopedia

Call data arguments:
text - a String which contains the text which is to be inserted.
currInsert - the current position of the insert cursor.
startPos - the starting position of the text to modify.
endPos - the ending position of the text to modify.

Popdown Callback
These callbacks are triggered when the item list disappears

Popup Callback
These callbacks are triggered when the item list appears

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

Single Selection Callback
These callbacks are triggered when the user selects an item in the list, or presses an arrow
key to move through the list.

Call data arguments:
item - the String which is the selected item.
itemPosition - the integer position of the selected item in the list.

Value Changed Callback
These callbacks are triggered after text is deleted from or inserted into the widget. This
callback can be used to retrieve the current value of the widget.

Editor

CwComboBox 225

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Combo Box Type
Specifies the style of combo box.

Drop Down - the combo box displays its list box only if the user presses the drop
down button. When the button is pressed, the list box drops down, allowing the
user to make a selection from the list. After the selection is made, the list
disappears.

Simple - The combo box always displays its list box.

Editable
Indicates that the user can edit the text string when set to true. A false value will prohibit
the user from editing the text.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Items
An array of Strings that are to be displayed as the list items.

Max Length
Specifies the maximum length of the text string that can be entered into text from the
keyboard.

Verify Bell
Specifies whether the bell should sound when the verification returns without continuing
the action.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

Visible Item Count
Specifies the number of items that can fit in the visible space of the List work area. The
list will use this value to determine its height.

226 Chapter 12 Widget Encyclopedia

CwDrawingArea

The drawing area widget provides an application with an area in which application-
defined graphics can be drawn using Common Graphics operations such as
#fillRectangle :, #drawArc :, and #drawString :. Consult the Common Graphics
chapter of the VisualAge Programmer’s Reference for an explanation of drawing and
other graphics operations.

Drawing is actually done on the CgWindow associated with the CwDrawingArea. Every
CwWidget has a corresponding CgWindow, obtained with aCwWidget window, that can
be used for drawing. Although any widget can be drawn on in this manner,
CwDrawingArea widgets are typically used since they provide additional drawing-related
functionality.

A CwDrawingArea can be told to notify the application with an expose callback
whenever a part of the drawing area needs to be redrawn. The expose callback contains
an expose event with a rectangle describing the damaged area of the widget’s CgWindow.

Protocol

marginHeight: anInteger
Specifies the minimum spacing in pixels between the top or bottom edge of the widget
and any child widget.

marginWidth: anInteger
Specifies the minimum spacing in pixels between the left or right edge of the widget and
any child widget.

CwDrawingArea 227

resizePolicy: anInteger
Specifies the resize policy of the widget.

Default: XmRESIZEANY (Any)
Valid resource values:

XmRESIZENONE (None) - Resize none.
XmRESIZEGROW (Grow) - Resize grow.
XmRESIZEANY (Any) - Resize any.

Callbacks & Events

Expose Callback
These callbacks are triggered when the widget receives an exposure event requiring it to
repaint itself.

Call data arguments:
event - the CwEvent associated with the receiver.
window - the widget’s CgWindow which can be used for drawing purposes.

Focus Callback
These callbacks are triggered before the widget has accepted input focus.

Input Callback
These callbacks are triggered when the widget processes a keyboard or mouse event (key
or button, up or down).

Call data arguments:
event - the CwEvent associated with the receiver.
window - the widget’s CgWindow which can be used for drawing purposes.

Intercept Expose Callback
These callbacks are triggered when any area of the widget or its children is exposed.

Call data arguments:
event - the CwEvent associated with the receiver.
window - the widget’s CgWindow which can be used for drawing purposes.

Losing Focus Callback
These callbacks are triggered before the widget loses input focus. This callback can be
used to perform input validation of the user entered data.

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

228 Chapter 12 Widget Encyclopedia

Editor

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Margin Height
Specifies the minimum spacing in pixels between the top or bottom edge of the widget
and any child widget.

Margin Width
Specifies the minimum spacing in pixels between the left or right edge of the widget and
any child widget.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

CwDrawnButton 229

CwDrawnButton

Application-drawn button widgets enable the application to draw arbitrary graphics on a
button. Drawn buttons behave like push buttons except that they can be drawn on like
drawing area widgets.

As with the push button widget, the application can add an activate callback to be
executed when the button is pressed. As with the drawing area widget, expose and resize
callbacks can be added to notify the application when the button requires redrawing and
when it has changed size.

Protocol

alignment: anInteger
Specifies the label alignment for text or pixmap.

Default: XmALIGNMENTCENTER (Center)
Valid resource values:

XmALIGNMENTBEGINNING (Left) - Causes the left sides of the lines of text to
be vertically aligned with the left edge of the widget window. For a pixmap, its
left side is vertically aligned with the left edge of the widget window.

XmALIGNMENTCENTER (Center) - Causes the centers of the lines of text to be
vertically aligned in the center of the widget window. For a pixmap, its center is
vertically aligned with the center of the widget window

XmALIGNMENTEND (Right) - Causes the right sides of the lines of text to be
vertically aligned with the right edge of the widget window. For a pixmap, its
right side is vertically aligned with the right edge of the widget window.

click
Programatically click the button.

labelInsensitivePixmap: aCgPixmap
Specifies a pixmap used as the button face if label type is Pixmap and the button is
insensitive.

230 Chapter 12 Widget Encyclopedia

labelPixmap: aCgPixmap
Specifies the pixmap when label type is Pixmap.

labelString: aString
Specifies the label string when the label type is String.

labelType: anInteger
Specifies the label type.

Default: XmSTRING (Text)
Valid resource values:

XmPIXMAP (Pixmap) - Causes the label to display a pixmap
XmSTRING (Text) - Causes the label to display text
XmICON (Icon) - Causes the label to display an icon

mnemonic: aCharacter
Provides the user with alternate means for selecting a button.

pushButtonEnabled: aBoolean
Enables or disables the three-dimensional shadow drawing as in PushButton.

recomputeSize: aBoolean
Specifies a Boolean value that indicates whether or not the widget always attempts to be
big enough to contain the label.

Callbacks & Events

Activate Callback
These callbacks are triggered when the button has been activated. Buttons are activated
when the mouse is clicked and released within the button. Buttons may also be activated
via the space bar when the button has focus or via a carriage return when a button is a
default button.

Call data arguments:
event - the CwEvent associated with the receiver.
window - the widget’s CgWindow which can be used for drawing purposes.

Arm Callback
These callbacks are triggered when the button is armed. Buttons are armed and appear
pressed whenever the moused is pressed within the button and not yet released. If the
mouse is moved outside of the button while still pressed, the button will be disarmed and
appear unpressed. If the mouse is released while still in the button, the button is activated

CwDrawnButton 231

Disarm Callback
These callbacks are triggered when the button is disarmed. Buttons are disarmed
whenever the mouse is moved outside of the button after it has been armed. Moving the
mouse back over the button while the mouse button is still down will cause the button to
become rearmed.

Expose Callback
These callbacks are triggered when the button receives an exposure event requiring it to
repaint itself.

Call data arguments:
event - the CwEvent associated with the receiver.
window - the widget’s CgWindow which can be used for drawing purposes.

Focus Callback
These callbacks are triggered before the widget has accepted input focus.

Losing Focus Callback
These callbacks are triggered before the widget loses input focus. This callback can be
used to perform input validation of the user entered data.

Resize Callback
These callbacks are triggered when the button receives a resize event. This allows the
button to perform any calculation to adjust the size of the image that it displays.

Editor

232 Chapter 12 Widget Encyclopedia

Alignment
Specifies the label alignment for text or pixmap.

Center - Causes the centers of the lines of text to be vertically aligned in the center of
the widget window. For a pixmap, its center is vertically aligned with the center
of the widget window

Left - Causes the left sides of the lines of text to be vertically aligned with the left
edge of the widget window. For a pixmap, its left side is vertically aligned with
the left edge of the widget window.

Right - Causes the right sides of the lines of text to be vertically aligned with the
right edge of the widget window. For a pixmap, its right side is vertically
aligned with the right edge of the widget window.

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Label Insensitive Pixmap
Specifies a pixmap used as the button face if label type is Pixmap and the button is
insensitive.

Label Pixmap
Specifies the pixmap when label type is Pixmap.

Label String
Specifies the label string when the label type is String.

Label Type
Specifies the label type.

Icon - Causes the label to display an icon
Pixmap - Causes the label to display a pixmap
Text - Causes the label to display text

Mnemonic
Provides the user with alternate means for selecting a button.

Push Button Enabled
Enables or disables the three-dimensional shadow drawing as in PushButton.

CwDrawnButton 233

Recompute Size
Specifies a Boolean value that indicates whether or not the widget always attempts to be
big enough to contain the label.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

234 Chapter 12 Widget Encyclopedia

CwForm

Form widgets are composite widgets that allow the application to specify how child
widgets of the composite should be laid out relative to each other and relative to the
composite. Form widget children are positioned by attaching their sides to other objects.
Attachments are specified by setting each child’s leftAttachment, rightAttachment,
topAttachment and bottomAttachment resources. A side can be attached either to a given
position, to another widget, or to the edge of the form. The attachment types are listed
below. The first four types are the most commonly used. All are described in terms of the
leftAttachment, but the same attachment types apply to the other sides, with
corresponding behavior.

Protocol

fractionBase: anInteger
Specifies the denominator used in calculating the relative position of the child widgets.

horizontalSpacing: anInteger
Specifies the offset for right and left attachments.

marginHeight: anInteger
Specifies the minimum spacing in pixels between the top or bottom edge of the widget
and any child widget.

marginWidth: anInteger
Specifies the minimum spacing in pixels between the left or right edge of the widget and
any child widget.

CwForm 235

resizePolicy: anInteger
Specifies the resize policy of the widget.

Default: XmRESIZEANY (Any)
Valid resource values:

XmRESIZENONE (None) - Resize none.
XmRESIZEGROW (Grow) - Resize grow.
XmRESIZEANY (Any) - Resize any.

rubberPositioning: aBoolean
Indicates the default attachment for a child of the Form. If this Boolean resource is set to
false, then the left and top of the child defaults to being attached to the left and top side
of the Form. If this resource is set to true, then the child defaults to being attached to its
initial position in the Form.

verticalSpacing: anInteger
Specifies the offset for top and bottom attachments.

Callbacks & Events

Expose Callback
These callbacks are triggered when the widget receives an exposure event requiring it to
repaint itself.

Focus Callback
These callbacks are triggered before the widget has accepted input focus.

Intercept Expose Callback
These callbacks are triggered when any area of the widget or its children is exposed.

Losing Focus Callback
These callbacks are triggered before the widget loses input focus. This callback can be
used to perform input validation of the user entered data.

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

236 Chapter 12 Widget Encyclopedia

Editor

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Fraction Base
Specifies the denominator used in calculating the relative position of the child widgets.

Horizontal Spacing
Specifies the offset for right and left attachments.

Margin Height
Specifies the minimum spacing in pixels between the top or bottom edge of the widget
and any child widget.

Margin Width
Specifies the minimum spacing in pixels between the left or right edge of the widget and
any child widget.

Resize Policy
Specifies the resize policy of the widget.

Any - Resize any.
Grow - Resize grow.
None - Resize none.

CwForm 237

Rubber Positioning
Indicates the default attachment for a child of the Form. If this Boolean resource is set to
false, then the left and top of the child defaults to being attached to the left and top side
of the Form. If this resource is set to true, then the child defaults to being attached to its
initial position in the Form.

Vertical Spacing
Specifies the offset for top and bottom attachments.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

238 Chapter 12 Widget Encyclopedia

CwFrame

Frame widgets are used to visually indicate and label groups of related controls. They are
composed of a box with an optional label in the upper left corner.

Note: Frame widgets in VisualAge Smalltalk are allowed to have one and only one child.
In order for a frame to group multiple widgets, a form widget should be inserted into the
frame as its sole child. The form then acts as the parent of any other widgets placed
within the bounds of the frame. The Always Add Forms To Frames command will cause a
form to be automatically inserted into any new frame.

Protocol

labelString: aString
Specifies the label string.

marginHeight: anInteger
Specifies the padding space on the top and bottom sides between the child of Frame and
Frame’s shadow drawing.

marginWidth: anInteger
Specifies the padding space on the left and right sides between the child of Frame and
Frame’s shadow drawing.

shadowType: anInteger
Describes the drawing style for Frame.

Default: XmSHADOWDEFAULT (Default)
Valid resource values:

XmSHADOWDEFAULT (Default) - Draws Frame in a platform specific manner.
XmSHADOWETCHEDIN (Etched In) - Draws Frame using a double line giving the

effect of a line etched into the window.
XmSHADOWETCHEDOUT (Etched Out) - Draws Frame using a double line giving

the effect of a line coming out of the window.

CwFrame 239

XmSHADOWIN (In) - Draws Frame such that it appears inset. This means that the
bottom shadow visuals and top shadow visuals are reversed.

XmSHADOWOUT (Out) - Draws Frame such that it appears outset.

Callbacks & Events

Expose Callback
These callbacks are triggered when the widget receives an exposure event requiring it to
repaint itself.

Focus Callback
These callbacks are triggered before the widget has accepted input focus.

Intercept Expose Callback
These callbacks are triggered when any area of the widget or its children is exposed.

Losing Focus Callback
These callbacks are triggered before the widget loses input focus. This callback can be
used to perform input validation of the user entered data.

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

Editor

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

240 Chapter 12 Widget Encyclopedia

Label String
Specifies the label string.

Shadow Type
Describes the drawing style for Frame.

Default - Draws Frame in a platform specific manner.
Etched In - Draws Frame using a double line giving the effect of a line etched into

the window.
Etched Out - Draws Frame using a double line giving the effect of a line coming out

of the window.
In - Draws Frame such that it appears inset. This means that the bottom shadow

visuals and top shadow visuals are reversed.
Out - Draws Frame such that it appears outset.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

CwHierarchyList 241

CwHierarchyList

Hierarchy lists extend the capabilities of a normal list box to view a hierarchy of objects,
rather than simply a flat list of strings. With them you can view any group of objects that
have a hierarchical ordering. Objects that are children if other objects will be so indicated
with indentation, and parent objects can be expanded/collapsed to reveal/hide their
children.

Protocol

addAllShowing: aCollection
Add the items in aCollection to the set of objects which are showing their children.

addItem: item position: position
Add an item to the list. This message adds an item to the list at the given position. When
the item is inserted into the list, it is compared with the current selectedItems list. If the
new item matches an item on the selected list, it appears selected.

addItems: items position: position
Add items to the list. This message adds the specified items to the list at the given
position. When the items are inserted into the list, they are compared with the current
selectedItems list. If any of the new items matches an item on the selected list, it appears
selected.

addItemUnselected: item position: position
Add an item to the list, forcing it to be unselected. This message adds an item to the list at
the given position. The item does not appear selected, even if it matches an item in the
current selectedItems list.

addShowing: anItem
Add anItem to the collection of objects which are showing their children.

242 Chapter 12 Widget Encyclopedia

childrenSelector: aSymbol
Specify the selector which determines the children of each child of the list. The selector
should expect a parameter (a list item).

deleteAllItems
This message deletes all items from the list.

deleteItem: item
Delete an item from the list.

deleteItems: items
This message deletes the specified items from the list. A warning message appears if any
of the items do not exist.

deleteItemsPos: itemCount position: position
Delete items from the list by position. This message deletes the specified number of items
from the list starting at the specified position.

deletePos: position
Delete an item from the list by position. This message deletes an item at a specified
position. A warning message appears if the position does not exist.

deselectAllItems
Unhighlight and remove all elements from the selectedItems list.

deselectItem: item
Unhighlight and remove the specified item from the selected list.

deselectPos: position
Unhighlight and remove an item from the selected list by position.

getMatchPos: item
This message returns an Array of Integer positions where a specified item is found in a
List. If the item does not occur in the list the resulting Array is empty. The #= operator is
used for the search.

getSelectedPos
Return an Array containing the positions of every selected item in the list.

hasChildrenSelector: aSymbol
Specify the selector which the model uses to determine whether an item in the list has
children. The selector is expected to return a Boolean. Note that it is the model’s
responsibility to ensure that if this selector is used, that it returns a value consistent with
that returned by the #childrenSelector . i.e. If the #hasChildrenSelector returns
false, then the #childrenSelector should not return a non-empty collection.

CwHierarchyList 243

hideShow
Toggle whether the objects in aCollection should have their children shown in the pane.
Objects which are to be hidden must not have all of their descendants removed from the
showing list as well. This means that if the contents of the object are shown again, the
entire previously shown hierarchy will be shown, without requiring the user to re-select
the items to show. Refresh the display list and restore the selected items.

hideShowAll
Toggle whether the objects in aCollection should have their descendants shown in the
pane. Objects which are to be hidden will have all of their descendants removed from the
showing list as well. Objects which are to be shown will have all of their descendants
added to the showing list. Refresh the display list and the restore the currently selected
items.

hierarchySelector: aSymbol
Specify the selector which the model uses to set the initial hierarchy dictionary of the
receiver. The selector is expected to return an IdentityDictionary which maps the items in
the list to their contents. Note that the hierarchy does NOT have to include all of the
possible elements in the list. Any descendants from the roots which have are not included
in the dictionary will be added as required using the #membersSelector .

isShowing: anItem
Return whether the receiver has anItem as one of the items which are showing their
descendants in the pane.

itemCount
Answer the total number of items. It is automatically updated by the list whenever an
element is added to or deleted from the list.

itemExists: item
Check if a specified item is in the list. This message is a Boolean function that checks if a
specified item is present in the list. The #= operator is used for the search.

listMsg: aSymbol
Specifies the selector that is sent to the model to return the initial list.

parentSelector: aSymbol
Specify the selector which determines parent of a list item. Used (among other things) to
determine the indentation of the items in the list. The selector should expect a parameter
(a list item).

printItems: aCollection
Answer the printable string representations for the aCollection to be used as the items
collection for the primary widget.

244 Chapter 12 Widget Encyclopedia

printSelector: aSymbol
Specifies the selector that is used to obtain printable string representations for the items
by evaluating it with each item.

removeShowing: anItem
Remove anItem from the collection of objects which are showing their children. Do
nothing if anItem is missing from the collection.

removeShowing: anItem ifAbsent: aBlock
Remove anItem from the collection of objects which are showing their children. Return
the value of aBlock if anItem is missing from the collection.

replaceItems: oldItems newItems: newItems
This message replaces each specified item of the list with a corresponding new item.
Every occurrence of each element of oldItems is replaced with the corresponding element
from newItems. That is, the first element of oldItems is replaced with the first element of
newItems. The second element of oldItems is replaced with the second element of
newItems, and so on. The #= operator is used for the search.

replaceItemsPos: newItems position: position
Replace items in the list by position. This message replaces the specified number of items
of the List with new items, starting at the specified position in the List. Beginning with
the item specified in position, the items in the list are replaced with the corresponding
elements from newItems. That is, the item at position is replaced with the first element of
newItems; the item after position is replaced with the second element of newItems; and so
on, until itemCount is reached.

scrollHorizontal: aBoolean
This resource is a hint that a horizontal scroll bar is desired for this list. The hint is
ignored on platforms where the feature is not configurable.

selectedItems: aCollection
Set the array of Objects that represents the list items that are currently selected, either by
the user or the application.

selectionPolicy: anInteger
Defines the interpretation of the selection action.

Default: XmBROWSESELECT (Browse Select)
Valid resource values:

XmSINGLESELECT (Single Select) - Allows only single selections. Under
Windows and OS/2, this is the same as Browse Select

XmMULTIPLESELECT (Multiple Select) - Allows multiple items to be selected.
The selection of an item is toggled when it is clicked on. Clicking on an item
does not deselect previously selected items.

CwHierarchyList 245

XmEXTENDEDSELECT (Extended Select) - Allows multiple items to be selected,
either by dragging the selection or by clicking on items with a modifier key held
down. Clicking on an item without a modifier key held down deselects all
previously selected items.

XmBROWSESELECT (Browse Select) - Allows only single selection. The selection
changes when the mouse is dragged. This is the default Selection Policy. Under
Windows and OS/2, this is the same as Single Select

selectItem: item notify: notify
Select an item in the list. This message highlights and adds the specified item to the
current selected list. notify specifies a Boolean value that when true invokes the selection
callback for the current mode. From an application interface view, calling this function
with notify true is indistinguishable from a user initiated selection action.

selectPos: position notify: notify
Select an item in the list by position. This message highlights a List item at the specified
position and adds it to the list of selected items. notify specifies a Boolean value that
when true invokes the selection callback for the current mode. From an application
interface view, calling this function with notify true is indistinguishable from a user
initiated selection action.

setBottomItem: item
Make an existing item the last visible item in the list. This message makes an existing
item the last visible item in the list. The item can be any valid item in the list.

setBottomPos: position
Make an item the last visible item in the list by position. This message makes the item at
the specified position the last visible item in the List.

setItem: item
Make an existing item the first visible item in the list. This message makes an existing
item the first visible item in the list. The item can be any valid item in the list.

setPos: position
Make an item the first visible item in the list by position. This message makes the item at
the given position the first visible position in the List.

showing: aCollection
Set the collection of objects which are showing their children to be aCollection.

topItemPosition: anInteger
Specifies the position of the item that is the first visible item in the list.

update
Update the receiver list and the items displayed.

246 Chapter 12 Widget Encyclopedia

updateItems
Update the display using the collection of items that have been determined that need to
be displayed. It is assumed that itemList contains this list. items is a collection relating to
the underlying primary widget.

visibleItemCount: anInteger
Specifies the number of items that can fit in the visible space of the List work area. The
list will use this value to determine its height.

Callbacks & Events

Browse Selection Callback
These callbacks are triggered when an item is selected in the browse selection mode. It is
only valid when Selection Policy is Browse Select.

Default Action Callback
These callbacks are triggered when an item is double clicked.

Extended Selection Callback
These callbacks are triggered when items are selected using the extended selection mode.
It is only valid when Selection Policy is Extended Select.

Modify Verify Callback
Specifies a list of callbacks that is called when the selection is about to be changed. The
application may ‘undo’ the selection change by setting the doit field of the callData to
false.

Call data arguments:
doit - Indicates whether the action that invoked the callback is performed. Setting

doit to false negates the action.

Multiple Selection Callback
These callbacks are triggered when an item is selected in multiple selection mode. It is
only valid when Selection Policy is Multiple Select.

Single Selection Callback
These callbacks are triggered when an item is selected in single selection mode. It is only
valid when Selection Policy is Single Select.

CwHierarchyList 247

Editor

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Children Selector
Specify the selector which determines the children of each child of the list. The selector
should expect a parameter (a list item).

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Has Children Selector
Specify the selector which the model uses to determine whether an item in the list has
children. The selector is expected to return a Boolean. Note that it is the model’s
responsibility to ensure that if this selector is used, that it returns a value consistent with
that returned by the #childrenSelector . i.e. If the #hasChildrenSelector returns
false, then the #childrenSelector should not return a non-empty collection.

248 Chapter 12 Widget Encyclopedia

Hierarchy Selector
Specify the selector which the model uses to set the initial hierarchy dictionary of the
receiver. The selector is expected to return an IdentityDictionary which maps the items in
the list to their contents. Note that the hierarchy does NOT have to include all of the
possible elements in the list. Any descendants from the roots which have are not included
in the dictionary will be added as required using the #membersSelector.

List Msg Selector
Specifies the selector that is sent to the model to return the initial list.

Parent Selector
Specify the selector which determines parent of a list item. Used (among other things) to
determine the indentation of the items in the list. The selector should expect a parameter
(a list item).

Print Selector
Specifies the selector that is used to obtain printable string representations for the items
by evaluating it with each item.

Scroll Horizontal
This resource is a hint that a horizontal scroll bar is desired for this list. The hint is
ignored on platforms where the feature is not configurable.

Selection Policy
Defines the interpretation of the selection action.

Browse Select - Allows only single selection. The selection changes when the mouse
is dragged. This is the default Selection Policy. Under Windows and OS/2, this is
the same as Single Select

Extended Select - Allows multiple items to be selected, either by dragging the
selection or by clicking on items with a modifier key held down. Clicking on an
item without a modifier key held down deselects all previously selected items.

Multiple Select - Allows multiple items to be selected. The selection of an item is
toggled when it is clicked on. Clicking on an item does not deselect previously
selected items.

Single Select - Allows only single selections. Under Windows and OS/2, this is the
same as Browse Select

Top Item Position
Specifies the position of the item that is the first visible item in the list.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

CwLabel 249

 CwLabel

Labels are static controls that can display either strings, pixmaps or icons as their
contents, depending on the value of the labelType resource. Static labels do not provide
any special callbacks.

Protocol

alignment: anInteger
Specifies the label alignment for text or pixmap.

Default: XmALIGNMENTCENTER (Center)
Valid resource values:

XmALIGNMENTBEGINNING (Left) - Causes the left sides of the lines of text to
be vertically aligned with the left edge of the widget window. For a pixmap, its
left side is vertically aligned with the left edge of the widget window.

XmALIGNMENTCENTER (Center) - Causes the centers of the lines of text to be
vertically aligned in the center of the widget window. For a pixmap, its center is
vertically aligned with the center of the widget window

XmALIGNMENTEND (Right) - Causes the right sides of the lines of text to be
vertically aligned with the right edge of the widget window. For a pixmap, its
right side is vertically aligned with the right edge of the widget window.

labelInsensitivePixmap: aCgPixmap
Specifies a pixmap used as the button face if label type is Pixmap and the button is
insensitive.

labelPixmap: aCgPixmap
Specifies the pixmap when label type is Pixmap.

labelString: aString
Specifies the label string when the label type is String.

250 Chapter 12 Widget Encyclopedia

labelType: anInteger
Specifies the label type.

Default: XmSTRING (Text)
Valid resource values:

XmPIXMAP (Pixmap) - Causes the label to display a pixmap
XmSTRING (Text) - Causes the label to display text
XmICON (Icon) - Causes the label to display an icon

mnemonic: aCharacter
Provides the user with alternate means for selecting a button.

recomputeSize: aBoolean
Specifies a Boolean value that indicates whether or not the widget always attempts to be
big enough to contain the label.

Callbacks & Events

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

Editor

CwLabel 251

Alignment
Specifies the label alignment for text or pixmap.

Center - Causes the centers of the lines of text to be vertically aligned in the center of
the widget window. For a pixmap, its center is vertically aligned with the center
of the widget window

Left - Causes the left sides of the lines of text to be vertically aligned with the left
edge of the widget window. For a pixmap, its left side is vertically aligned with
the left edge of the widget window.

Right - Causes the right sides of the lines of text to be vertically aligned with the
right edge of the widget window. For a pixmap, its right side is vertically
aligned with the right edge of the widget window.

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Label Insensitive Pixmap
Specifies a pixmap used as the button face if label type is Pixmap and the button is
insensitive.

Label Pixmap
Specifies the pixmap when label type is Pixmap.

Label String
Specifies the label string when the label type is String.

Label Type
Specifies the label type.

Icon - Causes the label to display an icon
Pixmap - Causes the label to display a pixmap
Text - Causes the label to display text

Mnemonic
Provides the user with alternate means for selecting a button.

Recompute Size
Specifies a Boolean value that indicates whether or not the widget always attempts to be
big enough to contain the label.

252 Chapter 12 Widget Encyclopedia

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

Graphics Editor

File Name
Specifies the file name of the graphic file to be used as the label for the widget. A variety
of graphics file formats are supported including standard bitmaps (BMP files), icons
(ICO files), PCX file and TIFF files. If the file name does not include a path, the file is
assumed to reside in the local directory or in the system bitmaps directory.

Preferred Icon Extent
Specifies preferred icon extent which is used in the event that the icon file contains
multiple icon resources of different sizes.

Module Name
Specifies the name of the module (DLL) containing the bitmap or icon to be used as the
label for the widget

CwLabel 253

ID
Specifies the ID of the of the bitmap in the specified module.

Browse
Opens a file dialog from which a graphics file may be selected.

Clear
Clears any graphic choice that has been made.

254 Chapter 12 Widget Encyclopedia

CwObjectList

Object lists extend the capabilities of a normal list box to view a collection of objects,
rather than simply a flat list of strings.

Protocol

addItem: item position: position
Add an item to the list. This message adds an item to the list at the given position. When
the item is inserted into the list, it is compared with the current selectedItems list. If the
new item matches an item on the selected list, it appears selected.

addItems: items position: position
Add items to the list. This message adds the specified items to the list at the given
position. When the items are inserted into the list, they are compared with the current
selectedItems list. If the any of the new items matches an item on the selected list, it
appears selected.

addItemUnselected: item position: position
Add an item to the list, forcing it to be unselected. This message adds an item to the list at
the given position. The item does not appear selected, even if it matches an item in the
current selectedItems list.

deleteAllItems
This message deletes all items from the list.

deleteItem: item
Delete an item from the list.

deleteItems: items
This message deletes the specified items from the list. A warning message appears if any
of the items do not exist.

CwObjectList 255

deleteItemsPos: itemCount position: position
Delete items from the list by position. This message deletes the specified number of items
from the list starting at the specified position.

deletePos: position
Delete an item from the list by position. This message deletes an item at a specified
position. A warning message appears if the position does not exist.

deselectAllItems
Unhighlight and remove all elements from the selectedItems list.

deselectItem: item
Unhighlight and remove the specified item from the selected list.

deselectPos: position
Unhighlight and remove an item from the selected list by position.

getMatchPos: item
This message returns an Array of Integer positions where a specified item is found in a
List. If the item does not occur in the list the resulting Array is empty. The #= operator is
used for the search.

getSelectedPos
Return an Array containing the positions of every selected item in the list.

itemCount
Answer the total number of items. It is automatically updated by the list whenever an
element is added to or deleted from the list.

itemExists: item
Check if a specified item is in the list. This message is a Boolean function that checks if a
specified item is present in the list. The #= operator is used for the search.

items: anOrderedCollection
An array of Strings that are to be displayed as the list items.

printSelector: aSymbol
Specifies the selector that is used to obtain printable string representations for the items
by evaluating it with each item.

replaceItems: oldItems newItems: newItems
This message replaces each specified item of the list with a corresponding new item.
Every occurrence of each element of oldItems is replaced with the corresponding element
from newItems. That is, the first element of oldItems is replaced with the first element of

256 Chapter 12 Widget Encyclopedia

newItems. The second element of oldItems is replaced with the second element of
newItems, and so on. The #= operator is used for the search.

replaceItemsPos: newItems position: position
Replace items in the list by position. This message replaces the specified number of items
of the List with new items, starting at the specified position in the List. Beginning with
the item specified in position, the items in the list are replaced with the corresponding
elements from newItems. That is, the item at position is replaced with the first element of
newItems; the item after position is replaced with the second element of newItems; and so
on, until itemCount is reached.

scrollHorizontal: aBoolean
This resource is a hint that a horizontal scroll bar is desired for this list. The hint is
ignored on platforms where the feature is not configurable.

selectedItemCount
Answer the number of strings in the selected items list.

selectedItems: anOrderedCollection
An array of Strings that represents the list items that are currently selected, either by the
user or the application.

selectionPolicy: anInteger
Defines the interpretation of the selection action.

Default: XmBROWSESELECT (Browse Select)
Valid resource values:

XmSINGLESELECT (Single Select) - Allows only single selections. Under
Windows and OS/2, this is the same as Browse Select.

XmMULTIPLESELECT (Multiple Select) - Allows multiple items to be selected.
The selection of an item is toggled when it is clicked on. Clicking on an item
does not deselect previously selected items.

XmEXTENDEDSELECT (Extended Select) - Allows multiple items to be selected,
either by dragging the selection or by clicking on items with a modifier key held
down. Clicking on an item without a modifier key held down deselects all
previously selected items.

XmBROWSESELECT (Browse Select) - Allows only single selection. The selection
changes when the mouse is dragged. This is the default Selection Policy. Under
Windows and OS/2, this is the same as Single Select.

selectItem: item notify: notify
Select an item in the list. This message highlights and adds the specified item to the
current selected list. notify specifies a Boolean value that when true invokes the selection
callback for the current mode. From an application interface view, calling this function
with notify true is indistinguishable from a user initiated selection action.

CwObjectList 257

selectPos: position notify: notify
Select an item in the list by position. This message highlights a List item at the specified
position and adds it to the list of selected items. notify specifies a Boolean value that
when true invokes the selection callback for the current mode. From an application
interface view, calling this function with notify true is indistinguishable from a user
initiated selection action.

setBottomItem: item
Make an existing item the last visible item in the list. This message makes an existing
item the last visible item in the list. The item can be any valid item in the list.

setBottomPos: position
Make an item the last visible item in the list by position. This message makes the item at
the specified position the last visible item in the List.

setItem: item
Make an existing item the first visible item in the list. This message makes an existing
item the first visible item in the list. The item can be any valid item in the list.

setPos: position
Make an item the first visible item in the list by position. This message makes the item at
the given position the first visible position in the List.

topItemPosition: anInteger
Specifies the position of the item that is the first visible item in the list.

visibleItemCount: anInteger
Specifies the number of items that can fit in the visible space of the List work area. The
list will use this value to determine its height.

Callbacks & Events

Browse Selection Callback
These callbacks are triggered when an item is selected in the browse selection mode. It is
only valid when Selection Policy is Browse Select.

Default Action Callback
These callbacks are triggered when an item is double clicked.

Extended Selection Callback
These callbacks are triggered when items are selected using the extended selection mode.
It is only valid when Selection Policy is Extended Select.

258 Chapter 12 Widget Encyclopedia

Modify Verify Callback
Specifies a list of callbacks that is called when the selection is about to be changed. The
application may ‘undo’ the selection change by setting the doit field of the callData to
false.

Call data arguments:
doit - Indicates whether the action that invoked the callback is performed. Setting

doit to false negates the action.

Multiple Selection Callback
These callbacks are triggered when an item is selected in multiple selection mode. It is
only valid when Selection Policy is Multiple Select.

Single Selection Callback
These callbacks are triggered when an item is selected in single selection mode. It is only
valid when Selection Policy is Single Select.

Editor

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

CwObjectList 259

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Items
An array of Strings that are to be displayed as the list items.

Print Selector
Specifies the selector that is used to obtain printable string representations for the items
by evaluating it.

Scroll Horizontal
This resource is a hint that a horizontal scroll bar is desired for this list. The hint is
ignored on platforms where the feature is not configurable.

Selected Items
An array of Strings that represents the list items that are currently selected, either by the
user or the application.

Selection Policy
Defines the interpretation of the selection action.

Browse Select - Allows only single selection. The selection changes when the mouse
is dragged. This is the default Selection Policy. Under Windows and OS/2, this is
the same as Single Select.

Extended Select - Allows multiple items to be selected, either by dragging the
selection or by clicking on items with a modifier key held down. Clicking on an
item without a modifier key held down deselects all previously selected items.

Multiple Select - Allows multiple items to be selected. The selection of an item is
toggled when it is clicked on. Clicking on an item does not deselect previously
selected items.

Single Select - Allows only single selections. Under Windows and OS/2, this is the
same as Browse Select.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

260 Chapter 12 Widget Encyclopedia

CwProgressBar

CwProgressBar is a visual control which is used to show the progress of a time
consuming operation by the gradual filling from left to right of a long flat rectangle. You
can use it to give a user of your application an indication, time-wise, of how an operation
is progressing. A progress bar has minimum, maximum, and value properties. The
minimum and maximum properties define the range of an operation, the operation on
which you wish to report progress. The value property defines a point within the range
and by doing so, specifies the operation’s progress. For example, a progress bar with
minimum of 0, maximum of 10, and value of 5, indicates an operation that is 50%
complete. You convey status to a user of your application during a time consuming
operation by incrementing, decrementing, or setting the value of the value attribute. This
causes appropriate changes in the filling of the progress bar. This widget is only available
in the Windows version of VisualAge.

Protocol

maximum: anInteger
Specifies the maximum value of the progress bar.

minimum: anInteger
Specifies the minimum value of the progress bar.

value: anInteger
Specifies the current position of the progress bar.

Callbacks & Events

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

CwProgressBar 261

Editor

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Maximum
Specifies the slider maximum value.

Minimum
Specifies the slider minimum value.

Value
Specifies the slider current position along the scale, between minimum and maximum.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

262 Chapter 12 Widget Encyclopedia

CwPushButton

Push buttons provide a mechanism to initiate an action when clicked on. They call their
activate callback when they are pressed and released. Buttons can display either strings,
pixmaps or icons as their contents, depending on the value of the labelType resource.

Protocol

click
Programatically click the button.

defaultButton: aBoolean
Set the receiver to be the default button

labelInsensitivePixmap: aCgPixmap
Specifies a pixmap used as the button face if label type is Pixmap and the button is
insensitive.

labelPixmap: aCgPixmap
Specifies the pixmap when label type is Pixmap.

labelString: aString
Specifies the label string when the label type is String.

labelType: anInteger
Specifies the label type.

Default: XmSTRING (Text)
Valid resource values:

XmPIXMAP (Pixmap) - Causes the label to display a pixmap
XmSTRING (Text) - Causes the label to display text
XmICON (Icon) - Causes the label to display an icon

mnemonic: aCharacter
Provides the user with alternate means for selecting a button.

CwPushButton 263

recomputeSize: aBoolean
Specifies a Boolean value that indicates whether or not the widget always attempts to be
big enough to contain the label.

showAsDefault: anInteger
Specifies a shadow thickness for a second shadow to be drawn around the PushButton to
visually mark it as a default button. When the resource is set to 0, the button appears as a
normal button.

Default: 0 (Normal)
Valid resource values:

0 (Normal) - Causes the PushButton to look like a normal button
1 (Default) - Causes the PushButton to look like a default button

Callbacks & Events

Activate Callback
These callbacks are triggered when the button has been activated. Buttons are activated
when the mouse is clicked and released within the button. Buttons may also be activated
via the space bar when the button has focus or via a carriage return when a button is a
default button.

Arm Callback
These callbacks are triggered when the button is armed. Buttons are armed and appear
pressed whenever the mouse is pressed within the button and not yet released. If the
mouse is moved outside of the button while still pressed, the button will be disarmed and
appear unpressed. If the mouse is released while still in the button, the button is activated.

Disarm Callback
These callbacks are triggered when the button is disarmed. Buttons are disarmed
whenever the mouse is moved outside of the button after it has been armed. Moving the
mouse back over the button while the mouse button is still down will cause the button to
become rearmed.

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

264 Chapter 12 Widget Encyclopedia

Editor

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Label Insensitive Pixmap
Specifies a pixmap used as the button face if label type is Pixmap and the button is
insensitive.

Label Pixmap
Specifies the pixmap when label type is Pixmap.

Label String
Specifies the label string when the label type is String.

Label Type
Specifies the label type.

Icon - Causes the label to display an icon
Pixmap - Causes the label to display a pixmap
Text - Causes the label to display text

Mnemonic
Provides the user with alternate means for selecting a button.

Recompute Size
Specifies a Boolean value that indicates whether or not the widget always attempts to be
big enough to contain the label.

CwPushButton 265

Show As Default
Specifies a shadow thickness for a second shadow to be drawn around the PushButton to
visually mark it as a default button. When the resource is set to 0, the button appears as a
normal button.

Default - Causes the PushButton to look like a default button
Normal - Causes the PushButton to look like a normal button

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

Graphics Editor

File Name
Specifies the file name of the graphic file to be used as the label for the widget. A variety
of graphics file formats are supported including standard bitmaps (BMP files), icons
(ICO files), PCX file and TIFF files. If the file name does not include a path, the file is
assumed to reside in the local directory or in the system bitmaps directory.

Preferred Icon Extent
Specifies preferred icon extent which is used in the event that the icon file contains
multiple icon resources of different sizes.

266 Chapter 12 Widget Encyclopedia

Module Name
Specifies the name of the module (DLL) containing the bitmap or icon to be used as the
label for the widget

ID
Specifies the ID of the of the bitmap in the specified module.

Browse
Opens a file dialog from which a graphics file may be selected.

Clear
Clears any graphic choice that has been made.

CwRowColumn 267

CwRowColumn

Row-column widgets are composite widgets that allow the application to specify how
child widgets of the composite should be laid out relative to each other and relative to the
composite. The row-column widget positions its children in rows or columns.
CwRowColumn widgets are frequently used to lay out groups of buttons. They can also
be used to lay out widgets in a table.

Protocol

adjustLast: aBoolean
Extends the last row of children to the bottom edge of RowColumn (when orientation is
horizontal) or extends the last column to the right edge of RowColumn (when orientation
is vertical). This feature is disabled by setting XmNadjustLast to false.

buttonSet: anInteger
Specifies which button of a RadioBox or OptionMenu Pulldown submenu is initially set.
The value is an integer n indicating the nth ToggleButton specified for a RadioBox or the
nth PushButton specified for an OptionMenu Pulldown submenu. The first button
specified is number 0.

entryAlignment: anInteger
Specifies the alignment type for CwLabel children.

Default: XmALIGNMENTBEGINNING (Left)
Valid resource values:

XmALIGNMENTBEGINNING (Left) - Left align children.
XmALIGNMENTCENTER (Center) - Center align children.
XmALIGNMENTEND (Right) - Right align children.

268 Chapter 12 Widget Encyclopedia

entryBorder: anInteger
Imposes a uniform border width upon all RowColumn’s children.

Default: 0 (No Change)
Valid resource values:

0 (No Change) - Has no effect on widget borders.
1 (Uniform Borders) - Causes the widget to have a uniform border.

isAligned: aBoolean
Specifies text alignment for each item within the RowColumn widget; this only applies to
items which are a subclass of CwLabel, and on some platforms, applies only to instances
of CwLabel.

isHomogeneous: aBoolean
Indicates if the RowColumn widget should enforce exact homogeneity among the items it
contains.

marginHeight: anInteger
Specifies the amount of blank space between the top edge of the RowColumn widget and
the first item in each column, and the bottom edge of the RowColumn widget and the last
item in each column.

marginWidth: anInteger
Specifies the amount of blank space between the left edge of the RowColumn widget and
the first item in each row, and the right edge of the RowColumn widget and the last item
in each row.

numColumns: anInteger
For vertically-oriented RowColumn widgets, this attribute indicates how many columns
are built; the number of entries per column are adjusted to maintain this number of
columns, if possible. For horizontally-oriented RowColumn widgets, this attribute
indicates how many rows are built.

orientation: anInteger
Determines whether RowColumn layouts are row major or column major.

Default: XmVERTICAL (Column)
Valid resource values:

XmVERTICAL (Column) - In a column major layout, the children of the
RowColumn are laid out in columns top to bottom within the widget.

XmHORIZONTAL (Row) - In a row major layout the children of the RowColumn
are laid out in rows left to right within the widget.

CwRowColumn 269

packing: anInteger
Specifies how to pack the items contained within a RowColumn widget.

Default: XmPACKTIGHT (Pack Tight)
Valid resource values:

XmPACKTIGHT (Pack Tight) - Indicates that given the current major dimension,
entries are placed one after the other until the RowColumn widget must wrap.

XmPACKCOLUMN (Pack Column) - Indicates that all entries are placed in
identically sized boxes.

XmPACKNONE (Pack None) - Indicates that no packing is performed.

radioAlwaysOne: aBoolean
Forces the active ToggleButton to be automatically selected after having been unselected
(if no other toggle was activated), if true. If false, the active toggle may be unselected.
The default value is true.

radioBehavior: aBoolean
Specifies that the RowColumn widget should enforce a RadioBox-type behavior on all of
its children which are ToggleButtons.

resizeHeight: aBoolean
Requests a new height if necessary, when set to true. When set to false, the widget does
not request a new height regardless of any changes to the widget or its children.

resizeWidth: aBoolean
Requests a new width if necessary, when set to true. When set to false, the widget does
not request a new width regardless of any changes to the widget or its children.

spacing: anInteger
Specifies the horizontal and vertical spacing between items contained within the
RowColumn widget.

Callbacks & Events

Entry Callback
Supply a single callback routine for handling all items contained in a RowColumn
widget. This disables the activation callbacks for all ToggleButton and PushButton
widgets contained within the RowColumn widget.

Call data arguments:
widget - the value of widget. This is the widget that triggered the Entry Callback.
callbackData - the callData from the widget that triggered the Entry Callback.
data - the value of data.

270 Chapter 12 Widget Encyclopedia

Expose Callback
These callbacks are triggered when the widget receives an exposure event requiring it to
repaint itself.

Focus Callback
These callbacks are triggered before the widget has accepted input focus.

Intercept Expose Callback
These callbacks are triggered when any area of the widget or its children is exposed.

Losing Focus Callback
These callbacks are triggered before the widget loses input focus. This callback can be
used to perform input validation of the user entered data.

Map Callback
These callbacks are triggered when the window associated with the RowColumn widget
is about to be mapped.

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

Simple Callback
These callbacks are triggered when a button is activated or when its value changes.

Unmap Callback
These callbacks are triggered after the window associated with the RowColumn widget
has been unmapped.

CwRowColumn 271

Editor

Adjust Last
Extends the last row of children to the bottom edge of RowColumn (when orientation is
horizontal) or extends the last column to the right edge of RowColumn (when orientation
is vertical). This feature is disabled by setting XmNadjustLast to false.

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Button Set
Specifies which button of a RadioBox or OptionMenu Pulldown submenu is initially set.
The value is an integer n indicating the nth ToggleButton specified for a RadioBox or the
nth PushButton specified for an OptionMenu Pulldown submenu. The first button
specified is number 0.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Entry Alignment
Specifies the alignment type for CwLabel children.

Center - Center align children.
Left - Left align children.
Right - Right align children.

272 Chapter 12 Widget Encyclopedia

Entry Border
Imposes a uniform border width upon all RowColumn’s children.

No Change - Has no effect on widget borders.
Uniform Borders - Causes the widget to have a uniform border.

Is Aligned
Specifies text alignment for each item within the RowColumn widget; this only applies to
items which are a subclass of CwLabel, and on some platforms, applies only to instances
of CwLabel.

Is Homogeneous
Indicates if the RowColumn widget should enforce exact homogeneity among the items it
contains.

Margin Height
Specifies the amount of blank space between the top edge of the RowColumn widget and
the first item in each column, and the bottom edge of the RowColumn widget and the last
item in each column.

Margin Width
Specifies the amount of blank space between the left edge of the RowColumn widget and
the first item in each row, and the right edge of the RowColumn widget and the last item
in each row.

Num Columns
For vertically-oriented RowColumn widgets, this attribute indicates how many columns
are built; the number of entries per column are adjusted to maintain this number of
columns, if possible. For horizontally-oriented RowColumn widgets, this attribute
indicates how many rows are built.

Orientation
Determines whether RowColumn layouts are row major or column major.

Column - In a column major layout, the children of the RowColumn are laid out in
columns top to bottom within the widget.

Row - In a row major layout the children of the RowColumn are laid out in rows left
to right within the widget.

Packing
Specifies how to pack the items contained within a RowColumn widget.

Pack Column - Indicates that all entries are placed in identically sized boxes.
Pack None - Indicates that no packing is performed.
Pack Tight - Indicates that given the current major dimension, entries are placed one

after the other until the RowColumn widget must wrap.

CwRowColumn 273

Radio Always One
Forces the active ToggleButton to be automatically selected after having been unselected
(if no other toggle was activated), if true. If false, the active toggle may be unselected.
The default value is true.

Radio Behavior
Specifies that the RowColumn widget should enforce a RadioBox-type behavior on all of
its children which are ToggleButtons.

Resize Height
Requests a new height if necessary, when set to true. When set to false, the widget does
not request a new height regardless of any changes to the widget or its children.

Resize Width
Requests a new width if necessary, when set to true. When set to false, the widget does
not request a new width regardless of any changes to the widget or its children.

Spacing
Specifies the horizontal and vertical spacing between items contained within the
RowColumn widget.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

274 Chapter 12 Widget Encyclopedia

 CwSash

CwSash is a spilt bar widget providing a mechanism for resizing widgets within a
composite. The split bar is represented by a thin bordered area, whose color may be
specified by the user. The bar may be repositioned by pressing and holding mouse button
one while the cursor is over the split bar, then moving the mouse to the desired position.
Upon release of the mouse button, other widgets on the composite that are attached to it
will update their sizes and positions.

Protocol
bottomLimitWidget: aWidget
For horizontally-oriented CwSash widgets, this attribute indicates the bottom most
widget to which it is constrained. For vertically-oriented CwSash widgets, this attribute
does not apply.

leftLimitWidget: aWidget
For vertically-oriented CwSash widgets, this attribute indicates the left most widget to
which it is constrained. For horizontally-oriented CwSash widgets, this attribute does not
apply.

orientation: anInteger
Displays Sash vertically or horizontally.

Default: XmVERTICAL (Vertical)
Valid resource values:

XmVERTICAL (Vertical) - Displays Scale vertically.
XmHORIZONTAL (Horizontal) - Displays Scale horizontally.

rightLimitWidget: aWidget
For vertically-oriented CwSash widgets, this attribute indicates the right most widget to
which it is constrained. For horizontally-oriented CwSash widgets, this attribute does not
apply.

topLimitWidget: aWidget
For horizontally-oriented CwSash widgets, this attribute indicates the top most widget to
which it is constrained. For vertically-oriented CwSash widgets, this attribute does not
apply.

CwSash 275

Callbacks & Events
None

Editor

Bottom Limit Widget
Indicates the bottom most widget to which it is constrained.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Left Limit Widget
Indicates the left most widget to which it is constrained.

Orientation
Displays Scale vertically or horizontally. This attribute can only be set at creation time
and will always be greyed out in the editor.

Horizontal - Displays Scale horizontally.
Vertical - Displays Scale vertically.

Right Limit Widget
Indicates the right most widget to which it is constrained.

Top Limit Widget
Indicates the top most widget to which it is constrained.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

276 Chapter 12 Widget Encyclopedia

CwScale

Scale widgets are specialized slider controls used to select a number from a range of
allowed values. They may be either vertical or horizontal and can have their own
arbitrary ranges.

Protocol

decimalPoints: anInteger
Specifies the number of decimal points to shift the slider value when displaying it.

getValue
Return the current slider position.

maximum: anInteger
Specifies the slider maximum value.

minimum: anInteger
Specifies the slider minimum value.

orientation: anInteger
Displays Scale vertically or horizontally.

Default: XmVERTICAL (Vertical)
Valid resource values:

XmVERTICAL (Vertical) - Displays Scale vertically.
XmHORIZONTAL (Horizontal) - Displays Scale horizontally.

processingDirection: anInteger
Specifies whether the value for maximum is on the right or left side of minimum for
horizontal Scales or above or below minimum for vertical Scales.

Default: XmMAXONTOP (Top)
Valid resource values:

XmMAXONTOP (Top) - Maximum value is on top.
XmMAXONBOTTOM (Bottom) - Maximum value is on bottom.
XmMAXONLEFT (Left) - Maximum value is on left.
XmMAXONRIGHT (Right) - Maximum value is on right.

CwScale 277

setValue: anInteger
Set the slider value to anInteger.

showValue: aBoolean
Specifies if a label for the current slider value should be displayed next to the slider. If it
is true, the current slider value is displayed.

titleString: aString
Specifies the title text string to appear in the scale widget window.

value: anInteger
Specifies the slider current position along the scale, between minimum and maximum.

Callbacks & Events

Drag Callback
Specifies the list of callbacks that is called when the slider position changes as the slider
is being dragged.

Call data arguments:
value - the current value.

Expose Callback
These callbacks are triggered when the widget receives an exposure event requiring it to
repaint itself.

Focus Callback
These callbacks are triggered before the widget has accepted input focus.

Intercept Expose Callback
These callbacks are triggered when any area of the widget or its children is exposed.

Losing Focus Callback
These callbacks are triggered before the widget loses input focus. This callback can be
used to perform input validation of the user entered data.

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

Value Changed Callback
These callbacks are triggered when the value of the slider has changed.

Call data arguments:
value - the current value.

278 Chapter 12 Widget Encyclopedia

Editor

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Decimal Points
Specifies the number of decimal points to shift the slider value when displaying it.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Maximum
Specifies the slider maximum value.

Minimum
Specifies the slider minimum value.

Orientation
Displays Scale vertically or horizontally.

Horizontal - Displays Scale horizontally.
Vertical - Displays Scale vertically.

Processing Direction
Specifies whether the value for maximum is on the right or left side of minimum for
horizontal Scales or above or below minimum for vertical Scales.

Bottom - Maximum value is on bottom.
Left - Maximum value is on left.
Right - Maximum value is on right.
Top - Maximum value is on top.

CwScale 279

Show Value
Specifies if a label for the current slider value should be displayed next to the slider. If it
is true, the current slider value is displayed.

Title String
Specifies the title text string to appear in the scale widget window.

Value
Specifies the slider current position along the scale, between minimum and maximum.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

280 Chapter 12 Widget Encyclopedia

 CwScrollBar

Scrollbars are generic slider controls used to select a number from a range of allowed
values. They may be either vertical or horizontal and can have their own arbitrary ranges.

Protocol

increment: anInteger
Specifies the amount to move the slider when the corresponding arrow is selected.

maximum: anInteger
Specifies the slider maximum value.

minimum: anInteger
Specifies the slider minimum value.

orientation: anInteger
Specifies whether the ScrollBar is displayed vertically or horizontally.

Default: XmVERTICAL (Vertical)
Valid resource values:

XmVERTICAL (Vertical) - Displays Scale vertically.
XmHORIZONTAL (Horizontal) - Displays Scale horizontally.

pageIncrement: anInteger
Specifies the amount to move the slider when selection occurs on the slide area.

processingDirection: anInteger
Specifies whether the value for maximum should be on the right or left side of minimum
for horizontal ScrollBars or above or below minimum for vertical ScrollBars.

Default: XmMAXONBOTTOM (Bottom)
Valid resource values:

CwScrollBar 281

XmMAXONTOP (Top) - Maximum value is on top.
XmMAXONBOTTOM (Bottom) - Maximum value is on bottom.
XmMAXONLEFT (Left) - Maximum value is on left.
XmMAXONRIGHT (Right) - Maximum value is on right.

sliderSize: anInteger
Specifies the size of the slider between the values of 0 and maximum - minimum.

value: anInteger
Specifies the slider position between minimum and maximum.

Callbacks & Events

Decrement Callback
These callbacks are triggered when an arrow is selected which decreases the slider value
by one increment.

Call data arguments:
value - the current value.

Drag Callback
These callbacks are triggered on each incremental change of position when the slider is
being dragged.

Call data arguments:
value - the current value.

Increment Callback
These callbacks are triggered when an arrow is selected which increases the slider value
by one increment.

Call data arguments:
value - the current value.

Page Decrement Callback
These callbacks are triggered when the slider area is selected and the slider value is
decreased by one page increment.

Call data arguments:
value - the current value.

Page Increment Callback
These callbacks are triggered when the slider area is selected and the slider value is
increased by one page increment.

Call data arguments:
value - the current value.

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

282 Chapter 12 Widget Encyclopedia

To Bottom Callback
These callbacks are triggered when the user moves the slider to the bottom of the scroll
bar.

Call data arguments:
value - the current value.

To Top Callback
These callbacks are triggered when the user moves the slider to the top of the scroll bar.

Call data arguments:
value - the current value.

Value Changed Callback
These callbacks are triggered when the slider is released while being dragged.

Call data arguments:
value - the current value.

Editor

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Increment
Specifies the amount to move the slider when the corresponding arrow is selected.

Maximum
Specifies the slider maximum value.

Minimum
Specifies the slider minimum value.

CwScrollBar 283

Orientation
Specifies whether the ScrollBar is displayed vertically or horizontally.

Horizontal - Displays Scale horizontally.
Vertical - Displays Scale vertically.

Page Increment
Specifies the amount to move the slider when selection occurs on the slide area.

Processing Direction
Specifies whether the value for maximum should be on the right or left side of minimum
for horizontal ScrollBars or above or below minimum for vertical ScrollBars.

Bottom - Maximum value is on bottom.
Left - Maximum value is on left.
Right - Maximum value is on right.
Top - Maximum value is on top.

Slider Size
Specifies the size of the slider between the values of 0 and maximum - minimum.

Value
Specifies the slider position between minimum and maximum.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

284 Chapter 12 Widget Encyclopedia

CwScrolledWindow

Scrolled windows are used to provide scrolling capabilities to other widgets. They may
be used implicitly as with WbScrolledText or WbScrolledList or explicitly as with
frames, row columns, icon and table widgets. For example, to make an EwTableList,
EwIconList or similar widget scrollable, drop it into an exiting CwScrolledWindow
instance. Note that without a CwScrolledWindow as a parent, these widgets will not have
scrollbars. See Chapter 8 of the IBM Smalltalk Programmer’s Reference for further
details.

Protocol

clipBackgroundPixmap: aCgPixmap
 Specifies a pixmap for tiling the background of the clip area. This will be used to fill
areas within the scrolledWindow that are outside the workWindow. This is only used if
the workWindow is smaller than the clip area.

scrollBarDisplayPolicy: anInteger
Controls the automatic placement of the ScrollBars. If it is set to As Needed and if
scrollingPolicy is set to Automatic, ScrollBars will only be displayed if the workspace
exceeds the clip area in one or both dimensions. A resource value of Static will cause the
ScrolledWindow to display the ScrollBars whenever they are managed, regardless of the
relationship between the clip area and the work area.

Default: XmSTATIC (Static)
Valid resource values:

XmSTATIC (Static) - Causes the ScrolledWindow to display the ScrollBars
whenever they are managed, regardless of the relationship between the clip area
and the work area.

XmASNEEDED (As Needed) - If scrollingPolicy is set to Automatic, ScrollBars will
only be displayed if the workspace exceeds the clip area in one or both
dimensions.

CwScrolledWindow 285

scrollingPolicy: anInteger
Performs automatic scrolling of the work area with no application interaction. If the
value of this resource is Automatic, ScrolledWindow automatically creates the
ScrollBars; sets the visual policy to Constant; and automatically moves the work area
through the clip area in response to any user interaction with the ScrollBars. An
application can also add its own callbacks to the ScrollBars. This allows the application
to be notified of a scroll event without having to perform any layout procedures.

Default: XmAPPLICATIONDEFINED (Application Defined)
Valid resource values:

XmAUTOMATIC (Automatic) - ScrolledWindow automatically creates the
ScrollBars; sets the visual policy to Constant; and automatically moves the work
area through the clip area in response to any user interaction with the ScrollBars.

XmAPPLICATIONDEFINED (Application Defined) - The application is responsible
for all aspects of scrolling. The ScrollBars must be created by the application,
and it is responsible for performing any visual changes in the work area in
response to user input.

visualPolicy: anInteger
Grows the ScrolledWindow to match the size of the work area, or it can be used as a
static viewport onto a larger data space. If the visual policy is Variable, the
ScrolledWindow will force the ScrollBar display policy to Static and allow the work area
to grow or shrink at any time and will adjust its layout to accommodate the new size.
When the policy is Constant, the work area will be allowed to grow or shrink as
requested, but a clipping window will force the size of the visible portion to remain
constant. The only time the viewing area can grow is in response to a resize from the
ScrolledWindow’s parent.

Default: XmVARIABLE (Variable)
Valid resource values:

XmVARIABLE (Variable) - The ScrolledWindow will force the ScrollBar display
policy to Static and allow the work area to grow or shrink at any time and will
adjust its layout to accommodate the new size.

XmCONSTANT (Constant) - The work area will be allowed to grow or shrink as
requested, but a clipping window will force the size of the visible portion to
remain constant. The only time the viewing area can grow is in response to a
resize from the ScrolledWindow’s parent.

Callbacks & Events

Expose Callback
These callbacks are triggered when the widget receives an exposure event requiring it to
repaint itself.

Focus Callback
These callbacks are triggered before the widget has accepted input focus.

286 Chapter 12 Widget Encyclopedia

Intercept Expose Callback
These callbacks are triggered when any area of the widget or its children is exposed.

Losing Focus Callback
These callbacks are triggered before the widget loses input focus. This callback can be
used to perform input validation of the user entered data.

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

Editor

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Clip Background Pixmap
 Specifies a pixmap for tiling the background of the clip area. This will be used to fill
areas within the scrolledWindow that are outside the workWindow. This is only used if
the workWindow is smaller than the clip area.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

CwScrolledWindow 287

Scroll Bar Display Policy
Controls the automatic placement of the ScrollBars. If it is set to As Needed and if
scrollingPolicy is set to Automatic, ScrollBars will only be displayed if the workspace
exceeds the clip area in one or both dimensions. A resource value of Static will cause the
ScrolledWindow to display the ScrollBars whenever they are managed, regardless of the
relationship between the clip area and the work area.

As Needed - If scrollingPolicy is set to Automatic, ScrollBars will only be displayed
if the workspace exceeds the clip area in one or both dimensions.

Static - Causes the ScrolledWindow to display the ScrollBars whenever they are
managed, regardless of the relationship between the clip area and the work area.

Scrolling Policy
Performs automatic scrolling of the work area with no application interaction. If the
value of this resource is Automatic, ScrolledWindow automatically creates the
ScrollBars; sets the visual policy to Constant; and automatically moves the work area
through the clip area in response to any user interaction with the ScrollBars. An
application can also add its own callbacks to the ScrollBars. This allows the application
to be notified of a scroll event without having to perform any layout procedures.

Application Defined - The application is responsible for all aspects of scrolling. The
ScrollBars must be created by the application, and it is responsible for
performing any visual changes in the work area in response to user input.

Automatic - ScrolledWindow automatically creates the ScrollBars; sets the visual
policy to Constant; and automatically moves the work area through the clip area
in response to any user interaction with the ScrollBars.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

288 Chapter 12 Widget Encyclopedia

 CwSeparator

Separators are used to visually separate groups of widgets from one another. The support
a variety of visual styles and can be displayed horizontally or vertically.

Protocol

margin: anInteger
Specifies the space on the left and right sides between the border of the Separator and the
line drawn for horizontal orientation. For vertical orientation, specifies the space on the
top and bottom between the border of the Separator and the line drawn.

orientation: anInteger
Displays Separator vertically or horizontally.

Default: XmHORIZONTAL (Horizontal)
Valid resource values:

XmVERTICAL (Vertical) - Displays Separator vertically.
XmHORIZONTAL (Horizontal) - Displays Separator horizontally.

separatorType: anInteger
Specifies the type of line drawing to be done in the Separator widget.

Default: XmSHADOWETCHEDIN (Etched In)
Valid resource values:

XmNOLINE (No Line) - No line.
XmSINGLELINE (Single Line) - Draws Separator using a single line.
XmDOUBLELINE (Double Line) - Draws Separator using a double line.
XmSINGLEDASHEDLINE (Single Dashed Line) - Draws Separator using a single

dashed line.
XmDOUBLEDASHEDLINE (Double Dashed Line) - Draws Separator using a

double dashed line.
XmSHADOWETCHEDIN (Etched In) - Draws Separator using a double line giving

the effect of a line etched into the window.

CwSeparator 289

Callbacks & Events

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

Editor

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Margin
Specifies the space on the left and right sides between the border of the Separator and the
line drawn for horizontal orientation. For vertical orientation, specifies the space on the
top and bottom between the border of the Separator and the line drawn.

Orientation
Displays Separator vertically or horizontally.

Horizontal - Displays Separator horizontally.
Vertical - Displays Separator vertically.

Separator Type
Specifies the type of line drawing to be done in the Separator widget.

Double Dashed Line - Draws Separator using a double dashed line.
Double Line - Draws Separator using a double line.
Etched In - Draws Separator using a double line giving the effect of a line etched

into the window.
No Line - No line.
Single Dashed Line - Draws Separator using a single dashed line.
Single Line - Draws Separator using a single line.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

290 Chapter 12 Widget Encyclopedia

CwStatusBar

CwStatusBars provide an area, usually located along the bottom of a window, for an
application to provide status information. A status bar can be divided up into a number of
status panels. The appearance of status panels within status bars can be tailored by setting
their shadow property. Using this property, you can have the entire status bar appear flat,
“indented,” or “outdented,” similar to a push button. This widget is only available in the
Windows version of VisualAge.

Protocol

createPanel: theName argBlock: argBlock
Create a CwPanel as a child of the receiver.

deleteAllItems
Delete all the items from the receiver and release all OS resources associated with the
items.

deleteItem: anItem
Delete the item from the receiver and release all OS resources associated with the item.

items
Answer the items in the receiver.

labelString: aString
Specifies the label displayed when the receiver has showPanels false.

numItems
Answer the number of items in the receiver.

showPanels: aBoolean
If true, the statusbar shows all panels. If false, the status displays one large panel.

Callbacks & Events

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

CwStatusBar 291

CwPanel
Protocol
labelString: aString
Specifies the label that appears on the item.

recomputeSize: aBoolean
Specifies a Boolean value that indicates whether or not the widget always attempts to be
big enough to contain the label.

shadowType: anInteger
Specifies the shadow type used by the panel.

None - The panel displays no shadow.

Shadow In - The panel appears to be inset into the status bar.

Shadow Out - The panel appears to be raised above the status bar.

width: anInteger
Specifies the width of the panel.

Editor

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

292 Chapter 12 Widget Encyclopedia

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Label String
Specifies the label displayed when the receiver has showPanels false.

Show Panels
If true, the statusbar shows all panels. If false, the status displays one large panel.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

Panels
An array of CwPanels that are to be displayed as the status boxes.

Selected Panel
The currently edited CwPanel.

Label String
Specifies the label that appears on the panel.

Name
The name of the panel.

Recompute Size
Specifies a Boolean value that indicates whether or not the widget always attempts to
be big enough to contain the label.

Shadow Type
Specifies the shadow type used by the panel.

None - The panel displays no shadow.
Shadow In - The panel appears to be inset into the status bar.
Shadow Out - The panel appears to be raised above the status bar.

Width
Specifies the width of the panel.

CwTabStrip 293

CwTabStrip

CwTabStrip and CwTab are used to organize information better by defining multiple
viewable “pages” for some area of a window. A CwTabStrip appears as a set of notebook
page tabs. A user of your application navigates through the pages you have defined by
clicking on their respective tabs. This causes the selected page to be brought to the front.
CwTabs can be labeled with text, bitmaps, or both. This widget is only available in the
Windows version of VisualAge.

Note that the CwTabStrip widget does not provide for any automatic linkage between a
tab and a tab page. Tab pages must be set up as CwForms that are direct children of the
CwTabStrip. They must then be managed and unmanaged programatically based upon
tab selection (and example is provided in the WbTabStripExample class). For this reason,
it is strongly recommended that you use the EwWINNotebook widget rather than the
CwTabStrip widget.

Protocol

createTab: theName argBlock: argBlock
Create a CwTab as a child of the receiver.

deleteAllItems
Delete all the items from the receiver and release all OS resources associated with the
items.

deleteItem: anItem
Delete the item from the receiver and release all OS resources associated with the item.

deleteItems: items
Delete the specified items from the receiver and release all OS resources associated with
the items.

294 Chapter 12 Widget Encyclopedia

items
Answer the items in the receiver.

numItems
Answer the number of items in the receiver.

selectedItems
The selected tab items.

selectItem: item notify: notify
Select an item in the receiver and optionally invoke the selection callback.

showTips: aBoolean
Determines if the tabstrip will show tooltips on the tabs.

Callbacks & Events

Expose Callback
These callbacks are triggered when the widget receives an exposure event requiring it to
repaint itself.

Focus Callback
These callbacks are triggered before the widget has accepted input focus.

Intercept Expose Callback
These callbacks are triggered when any area of the widget or its children is exposed.

Losing Focus Callback
These callbacks are triggered before the widget loses input focus. This callback can be
used to perform input validation of the user entered data.

Modify Verify Callback
These callbacks are triggered when a tab is selected.

Call data arguments:
doit - Indicates whether the action that invoked the callback is performed. Setting

doit to false negates the action.

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

Single Selection Callback
These callbacks are triggered when a tab is selected.

CwTabStrip 295

CwTab

Protocol

image: aPixmap
Specifies the image displayed by the tab.

labelString: aString
Specifies the label that appears by th etab.

toolTipText: aString
Specifies text for the tab’s tooltip

Editor

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Show Tips
Determines if the tabstrip will show tooltips on the tabs.

296 Chapter 12 Widget Encyclopedia

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

Tabs
An array of CwTabs that are to be displayed as the status boxes.

Selected Tab
The currently edited CwTab.

Name
The name of the panel.

Image
Specifies the image displayed by the tab.

Label
Specifies the label that appears by th etab.

Tip Text
Specifies text for the tab’s tooltip

CwText 297

CwText

Text widgets provide text viewing and editing capabilities to the application. If the user
types more text than can be accommodated within the field, it will automatically scroll.

Protocol

alignment: anInteger
Specifies the text alignment used by the widget.

Default: XmALIGNMENTBEGINNING (Left)
Valid resource values:

XmALIGNMENTBEGINNING (Left) - Causes the left side of the line of text to be
vertically aligned with the left edge of the widget window.

XmALIGNMENTCENTER (Center) - Causes the center of the line of text to be
vertically aligned in the center of the widget window.

XmALIGNMENTEND (Right) - Causes the right side of the line of text to be
vertically aligned with the right edge of the widget window.

clear
Clear the contents of the receiver.

clearSelection
Clear the selection.

columns: anInteger
Specifies the initial width of the text window measured in character spaces.

copySelection
Copy the selection to the clipboard. Answer true if the operation is successful, or false if
the text could not be placed in the clipboard.

cursorPosition: anInteger
Indicates the position in the text where the current insert cursor is to be located. Position
is determined by the number of characters from the beginning of the text.

298 Chapter 12 Widget Encyclopedia

cutSelection
Cut the selection to the clipboard. Answer true if the operation is successful, or false if
the text could not be placed in the clipboard.

editable: aBoolean
Indicates that the user can edit the text string when set to true. A false value will prohibit
the user from editing the text.

editMode: anInteger
Specifies whether the widget supports single line or multi line editing of text.

Default: XmSINGLELINEEDIT (Single Line)
Valid resource values:

XmMULTILINEEDIT (Multi Line) - Multi line text edit.
XmSINGLELINEEDIT (Single Line) - Single line text edit.

getEditable
This message accesses the edit permission state of the Text widget.

getInsertionPosition
Return the position of the insert cursor. The return value is an integer number of
characters from the beginning of the text buffer. The first character position is 0.

NOTE: Some platforms use a 1-character line delimiter and some use a 2-character line
delimiter. The position value is consistent with the standard platform line delimiter
sequence.

getLastPosition
This message returns an Integer value that indicates the position of the last character in
the text buffer. This is an integer number of characters from the beginning of the buffer.
The first character position is 0.

NOTE: Some platforms use a 1-character line delimiter and some use a 2-character line
delimiter. The position value is consistent with the standard platform line delimiter
sequence.

getSelection
Return a String containing the selection, or nil if there is no selection.

getSelectionPosition
Return a Point describing the selection position, where the x value is the start of the
selection, and the y value is the end of the selection. The positions are an integer number
of characters from the beginning of the buffer. The first character position is 0.

CwText 299

NOTE: Some platforms use a 1-character line delimiter and some use a 2-character line
delimiter. The position value is consistent with the standard platform line delimiter
sequence.

getString
This message accesses the String value of the Text widget.

getTopCharacter
This message returns an Integer value that indicates the number of characters from the
beginning of the text buffer. The first character position is 0.

insert: position value: value
Insert a String into the text. This message inserts a character string into the text string in
the Text widget. The character positions begin at zero and are numbered sequentially
from the beginning of the text. For example, to insert a string after the fourth character,
the parameter position must be 4. This routine also calls the widget’s
XmNmodifyVerifyCallback and XmNvalueChangedCallback callbacks.

NOTE: Some platforms use a 1-character line delimiter and some use a 2-character line
delimiter. The position value is consistent with the standard platform line delimiter
sequence.

insertAndShow: position value: value
Insert a String into the text and ensure that the text widget is scrolled such that the line
containing the last new character inserted is visible. Vertical and/or horizontal scrolling
may occur to accomplish this. This specification does not require that the text widget
scroll horizontally but allows it. The character positions begin at zero and are numbered
sequentially from the beginning of the text. For example, to insert a string after the fourth
character, the parameter position must be 4. This message also calls the widget’s
XmNmodifyVerifyCallback and XmNvalueChangedCallback callbacks.

NOTE: Some platforms use a 1-character line delimiter and some use a 2-character line
delimiter. The position value is consistent with the standard platform line delimiter
sequence.

largeText: aBoolean
This is a hint that indicates that the receiver will be processing a large amount of text. If
this flag is false, text operations may fail due to space limitations. If this hint is true, text
operations will not fail.

lineDelimiter
Answer a String containing the line delimiting sequence used by the receiver. This value
and number of characters may vary from platform to platform. The sequence is usually
the standard end of line sequence for the platform. For example, on X/MOTIF this value
is a String containing an ASCII LF character. On Windows, this value is a String
containing ASCII CR and LF characters. All computations involving text positions operate

300 Chapter 12 Widget Encyclopedia

consistently with the number of characters in the lineDelimiter String. Thus an end of
line takes up 1 character position on X and 2 character positions on Windows.

maxLength: anInteger
Specifies the maximum length of the text string that can be entered into text from the
keyboard.

paste
Insert the clipboard selection into the text. Answer true if the operation is successful, or
false if the text could not be retrieved from the clipboard.

readOnly
Set the readonly property of the receiver.

readWrite
Clear the readonly property of the receiver.

remove
Delete the selection.

replace: fromPos toPos: toPos value: value
Replace part of the receiver’s text String. This message replaces part of the text string in
the Text widget. The character positions begin at zero and are numbered sequentially
from the beginning of the text. An example text replacement would be to replace the
second and third characters in the text string. To accomplish this, the parameter fromPos
must be 1 and toPos must be 3. To insert a string after the fourth character, both
parameters, fromPos and toPos, must be 4. This message also calls the widget’s
XmNmodifyVerifyCallback and XmNvalueChangedCallback callbacks.

rows: anInteger
Specifies the initial height of the text window measured in character heights.

scroll: lines
Scroll the text. This message scrolls text in a Text widget. lines specifies the number of
lines of text to scroll. A positive value causes text to scroll upward; a negative value
causes text to scroll downward.

scrollHorizontal: aBoolean
Adds a ScrollBar that allows the user to scroll horizontally through text.

scrollVertical: aBoolean
Adds a ScrollBar that allows the user to scroll vertically through text.

CwText 301

selectAll
Select the entire text of the receiver.

selectAtEnd
Place the gap selection at the end of the text.

selectedItem
Answer a String containing the text selected in clipboard format.

setEditable: aBoolean
This message sets the edit permission state of the Text widget. When set to True, the text
string can be edited.

setHighlight: positions mode: mode
Set the text highlight. This message sets highlights text between the two specified
character positions. The mode parameter determines the type of highlighting.
Highlighting text merely changes the visual appearance of the text; it does not set the
selection.

setInsertionPosition: position
Set the position of the insert cursor. This message sets the insertion cursor position of the
Text widget.

setSelection: positions
Set the selection. This message sets the primary selection of the text in the widget. It also
sets the insertion cursor position to the last position of the selection.

setString: value
This message sets the string value of the Text widget.

setTopCharacter: topCharacter
This message sets the position of the text at the top of the Text widget. If the editMode is
XmMULTILINEEDIT, the line of text that contains topCharacter is displayed at the top
of the widget without shifting the text left or right.

showPosition: position
Force text at the specified position to be displayed. This message forces text at the
specified position to be displayed.

tabSpacing: anInteger
Indicates the tab stop spacing.

topCharacter: anInteger
Displays the position of text at the top of the window. Position is determined by the
number of characters from the beginning of the text.

302 Chapter 12 Widget Encyclopedia

value: aString
Specifies the displayed text String.

verifyBell: aBoolean
Specifies whether the bell should sound when the verification returns without continuing
the action.

wordWrap: aBoolean
Indicates that lines are to be broken at word breaks (i.e., the text does not go off the right
edge of the window).

Callbacks & Events

Activate Callback
These callbacks are triggered when the user presses the default action key. This is
typically a carriage return.

Focus Callback
These callbacks are triggered before the widget has accepted input focus.

Losing Focus Callback
These callbacks are triggered before the widget loses input focus. This callback can be
used to perform input validation of the user entered data.

Modify Verify Callback
These callbacks are triggered before text is deleted from or inserted into the widget. This
callback can be used to check a character value after it is entered by the user and before it
is accepted by the control.

Call data arguments:
text - a String which contains the text which is to be inserted.
currInsert - the current position of the insert cursor.
startPos - the starting position of the text to modify.
endPos - the ending position of the text to modify.

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

Value Changed Callback
These callbacks are triggered after text is deleted from or inserted into the widget. This
callback can be used to retrieve the current value of the widget.

CwText 303

Editor

Alignment
Specifies the text alignment used by the widget.

Left - Causes the left side of the line of text to be vertically aligned with the left edge
of the widget window.

Center - Causes the center of the line of text to be vertically aligned in the center of
the widget window.

Right - Causes the right side of the line of text to be vertically aligned with the right
edge of the widget window.

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Editable
Indicates that the user can edit the text string when set to true. A false value will prohibit
the user from editing the text.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Max Length
Specifies the maximum length of the text string that can be entered into text from the
keyboard.

Value
Specifies the displayed text String.

Verify Bell
Specifies whether the bell should sound when the verification returns without continuing
the action.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

304 Chapter 12 Widget Encyclopedia

 CwToggleButton

Toggle buttons have two states: on, and off. The state of a toggle button can be queried
and changed using the #getState and #setState:notify: messages, respectively.
Toggle buttons call their valueChanged callback when their state is changed. Toggle
buttons are typically used to create radio button and check box groups. The toggle button
indicatorType resource controls whether the toggle button has a radio button or a check
box appearance.

Protocol

check
Set the receiver's state to checked (true).

click
Programatically click the button.

getState
Answers the state of the receiver.

indicatorOn: aBoolean
Specifies that a toggle indicator is drawn to the left of the toggle text or pixmap when set
to true. When set to false, no space is allocated for the indicator, and it is not displayed.

indicatorType: anInteger
Specifies if the indicator is a 1-of or N-of indicator.

Default: XmNOFMANY (N-of-Many)
Valid resource values:

XmNOFMANY (N-of-Many) - Causes the ToggleButton to look like a CheckBox
XmONEOFMANY (1-of-Many) - Causes the ToggleButton to look like a

RadioButton

labelInsensitivePixmap: aCgPixmap
Specifies a pixmap used as the button face if label type is Pixmap and the button is
insensitive.

CwToggleButton 305

labelPixmap: aCgPixmap
Specifies the pixmap when label type is Pixmap.

labelString: aString
Specifies the label string when the label type is String.

labelType: anInteger
Specifies the label type.

Default: XmSTRING (Text)
Valid resource values:

XmPIXMAP (Pixmap) - Causes the label to display a pixmap
XmSTRING (Text) - Causes the label to display text

mnemonic: aCharacter
Provides the user with alternate means for selecting a button.

recomputeSize: aBoolean
Specifies a Boolean value that indicates whether or not the widget always attempts to be
big enough to contain the label.

set: aBoolean
Displays the button in its selected state if set to true.

setState: state notify: notify
Sets or changes the CwToggleButton’s current state. state specifies a Boolean value that
indicates whether the ToggleButton state is selected or unselected. If true, the button state
is selected; if false, the button state is unselected. notify indicates whether
XmNvalueChangedCallback is called; it can be either true or false.

turnOff
Set the receiver's state to checked (false).

turnOn
Set the receiver's state to checked (true).

uncheck
Set the receiver's state to checked (false).

Callbacks & Events

Arm Callback
These callbacks are triggered when the button is armed. Buttons are armed and appear
pressed whenever the moused is pressed within the button and not yet released. If the

306 Chapter 12 Widget Encyclopedia

mouse is moved outside of the button while still pressed, the button will be disarmed and
appear unpressed. If the mouse is released while still in the button, the button is activated

Disarm Callback
These callbacks are triggered when the button is disarmed. Buttons are disarmed
whenever the mouse is moved outside of the button after it has been armed. Moving the
mouse back over the button while the mouse button is still down will cause the button to
become rearmed.

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

Value Changed Callback
These callbacks are triggered when the ToggleButton value is changed.

Call data arguments:
set - a Boolean value indicating if the CwToggleButton is toggle on (true) or off

(false).

Editor

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

CwToggleButton 307

Indicator On
Specifies that a toggle indicator is drawn to the left of the toggle text or pixmap when set
to true. When set to false, no space is allocated for the indicator, and it is not displayed.

Indicator Type
Specifies if the indicator is a 1-of or N-of indicator.

1-of-Many - Causes the ToggleButton to look like a RadioButton
N-of-Many - Causes the ToggleButton to look like a CheckBox

Label Insensitive Pixmap
Specifies a pixmap used as the button face if label type is Pixmap and the button is
insensitive.

Label Pixmap
Specifies the pixmap when label type is Pixmap.

Label String
Specifies the label string when the label type is String.

Label Type
Specifies the label type.

Icon - Causes the label to display an icon
Pixmap - Causes the label to display a pixmap
Text - Causes the label to display text

Mnemonic
Provides the user with alternate means for selecting a button.

Recompute Size
Specifies a Boolean value that indicates whether or not the widget always attempts to be
big enough to contain the label.

Set
Displays the button in its selected state if set to true.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

308 Chapter 12 Widget Encyclopedia

Graphics Editor

File Name
Specifies the file name of the graphic file to be used as the label for the widget. A variety
of graphics file formats are supported including standard bitmaps (BMP files), icons
(ICO files), PCX file and TIFF files. If the file name does not include a path, the file is
assumed to reside in the local directory or in the system bitmaps directory.

Preferred Icon Extent
Specifies preferred icon extent which is used in the event that the icon file contains
multiple icon resources of different sizes.

Module Name
Specifies the name of the module (DLL) containing the bitmap or icon to be used as the
label for the widget

ID
Specifies the ID of the of the bitmap in the specified module.

CwToggleButton 309

Browse
Opens a file dialog from which a graphics file may be selected.

Clear
Clears any graphic choice that has been made.

310 Chapter 12 Widget Encyclopedia

CwToolBar

CwToolBar is a collection of buttons, CwToolButtons, which is typically used to provide
quick access to an application’s frequently used commands and functions.
CwToolButtons can be labeled with text, images, or both. In addition to CwToolButtons,
there are separators which provide extra space between CwToolButtons and allow for
logical grouping. CwToolButtons have slightly different behavior from CwPushButtons
in that they cannot be resized and that they will always orient themselves to the upper-left
position in the CwToolBar. Separators can be resized to define extra space between
CwToolButtons. This widget is only available in the Windows version of VisualAge.

Protocol

createToolButton: theName argBlock: argBlock
Create a CwToolButton as a child of the receiver.

deleteAllItems
Delete all the items from the receiver and release all OS resources associated with the
items.

deleteItem: anItem
Delete the item from the receiver and release all OS resources associated with the item.

deleteItems: items
Delete the specified items from the receiver and release all OS resources associated with
the items.

items
Answer the items in the receiver.

numItems
Answer the number of items in the receiver.

showTips: aBoolean
Determines if the tabstrip will show tooltips on the tabs.

CwToolBar 311

Callbacks & Events

Expose Callback
These callbacks are triggered when the widget receives an exposure event requiring it to
repaint itself.

Focus Callback
These callbacks are triggered before the widget has accepted input focus.

Intercept Expose Callback
These callbacks are triggered when any area of the widget or its children is exposed.

Losing Focus Callback
These callbacks are triggered before the widget loses input focus. This callback can be
used to perform input validation of the user entered data.

Modify Verify Callback
These callbacks are triggered when a tab is selected.

Call data arguments:
doit - Indicates whether the action that invoked the callback is performed. Setting

doit to false negates the action.

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

Single Selection Callback
These callbacks are triggered when a tab is selected.

CwToolButton
Protocol

buttonType: anInteger
Specifies the appearance and behavior of the button.

Default: XmPUSHBUTTON (Push Button)
Valid resource values:

XmPUSHBUTTON (Push Button) - The button is a push button.
XmCHECKBUTTON (Check Button) - The button is a check button.
XmRADIOBUTTON (Radio Button) - The button remains pressed until another

button in the group is pressed. Exactly one button in the group can be pressed at
any one moment. A radio group is defined as consecutive buttons with the
XmRADIOBUTTON type.

XmSEPARATOR (Separator) - The button functions as a separator.

312 Chapter 12 Widget Encyclopedia

image: aPixmap
Specifies the image displayed by the button.

labelString: aString
Specifies the label that appears on the item.

sensitive: aBoolean
Specifies whether a button will react to input events.

separatorWidth: anInteger
Specifies width of the separator when the style is XmSEPARATOR.

set: aBoolean
Displays the button in its selected state if set to true.

toolTipText: aString
Specifies text for the button’s tooltip

Editor

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

CwToolBar 313

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Show Tips
Determines if the tabstrip will show tooltips on the tabs.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

Buttons
An array of CwToolButtons that are to be displayed within the toolbar.

Selected Button
The currently edited CwToolButton.

Button Type
Specifies the appearance and behavior of the button.

Push Button - The button is a push button.
Check Button - The button is a check button.
Radio Button - The button remains pressed until another button in the group is

pressed. Exactly one button in the group can be pressed at any one moment.
A radio group is defined as consecutive buttons with the
XmRADIOBUTTON type.

Separator - The button functions as a separator.

Name
The name of the button.

Image
Specifies the image displayed by the button.

Label
Specifies the label displayed by the button.

Sensitive
Specifies whether a button will react to input events.

Separator Width
Specifies width of the separator when the button type is Separator

Set
Displays the button in its selected state if set to true.

Tip Text
Specifies text for the button’s tooltip

314 Chapter 12 Widget Encyclopedia

CwTrackBar

CwTrackBar is a visual control with a sliding marker and optional tick marks. It can be
oriented either horizontally or vertically. It is useful when you wish the user of your
application to select a discrete value from a range of values. The ticks marks can appear
above or below the sliding marker for horizontally oriented track bars, to the left or right
of the sliding marker for vertically oriented track bars, or can be omitted all together. You
specify the minimum and maximum values for the track bar which define the range of
values your user can select, and an increment, that is the granularity of movement of the
marker. You can also specify the spacing of the tick marks. For example, a track bar with
a minimim of 0, maximum of 10, and increment of 1 will permit the user to select
integers between 0 and 10 inclusive. The same track bar with an increment of 2 will
permit selection only of even integers. You obtain and set the value of the track bar
through its value attribute. This widget is only available in the Windows version of
VisualAge.

Protocol

increment: anInteger
Specifies the number of ticks the slider will move when the left or right arrows are
pressed.

maximum: anInteger
Specifies the maximum value of the slider.

minimum: anInteger
Specifies the minimum value of the slider.

CwTrackBar 315

orientation: anInteger
Determines whether the slider is oriented horizontally or vertically.

Default: XmHORIZONTAL (Horizontal)
Valid resource values:

XmVERTICAL (Vertical) - The slider moves vertically.
XmHORIZONTAL (Horizontal) - The slider moves horizontally.

pageIncrement: anInteger
Specifies the number of ticks the slider will move when the PAGEUP or PAGEDOWN
keys are pressed, or when the mouse is clicked to the left or right of the slider.

selection: aPoint
Specifies the start and end of the select range in the slider. This is valid if the select range
is enabled.

showSelection: aBoolean
Determine if the slider can have a select range.

showTickBottom: aBoolean
Specifies the positioning of the tick marks displayed on the receiver. If true, tick marks
are positioned along the bottom of the slider if it is horizontal, or along the right side if it
is vertical. If false, no tick marks are placed on the bottom/right.

showTickTop: aBoolean
Specifies the positioning of the tick marks displayed on the receiver. If true, tick marks
are positioned along the top of the slider if it is horizontal, or along the left side if it is
vertical. If false, no tick marks are placed on the top/left.

tickFrequency: anInteger
Specifies the frequency of the tick marks on a slider in relation to its range.

value: anInteger
Specifies the current position of the slider.

Callbacks & Events

Drag Callback
These callbacks are triggered when the slider is moved either by clicking or using the
keyboard.

Call data arguments:
value - the current value.

316 Chapter 12 Widget Encyclopedia

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

Value Changed Callback
These callbacks are triggered when the slider is released while being dragged.

Call data arguments:
value - the current value.

Editor

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Increment
Specifies the number of ticks the slider will move when the left or right arrows are
pressed.

Maximum
Specifies the maximum value of the slider.

CwTrackBar 317

Minimum
Specifies the minimum value of the slider.

Orientation
Determines whether the slider is oriented horizontally or vertically.

Vertical - The slider moves vertically.
Horizontal - The slider moves horizontally.

Page Increment
Specifies the number of ticks the slider will move when the PAGEUP or PAGEDOWN
keys are pressed, or when the mouse is clicked to the left or right of the slider.

Selection
Specifies the start and end of the select range in the slider. This is valid if the select range
is enabled.

Show Selection
Determine if the slider can have a select range.

Show Tick Bottom/Right
Specifies the positioning of the tick marks displayed on the receiver. If true, tick marks
are positioned along the bottom of the slider if it is horizontal, or along the right side if it
is vertical. If false, no tick marks are placed on the bottom/right.

Show Tick Top/Left
Specifies the positioning of the tick marks displayed on the receiver. If true, tick marks
are positioned along the top of the slider if it is horizontal, or along the left side if it is
vertical. If false, no tick marks are placed on the top/left.

Tick Frequency
Specifies the frequency of the tick marks on a slider in relation to its range.

Value
Specifies the current position of the slider.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

318 Chapter 12 Widget Encyclopedia

CwTreeView

CwTreeView is a visual control useful for displaying information in a hierarchical
organization. It consists of a list of objects. These objects can be comprised of other
objects, which in turn can be comprised of other objects, and so on. A user navigates
through the lists by expanding and collapsing objects to view and to hide their
component objects. There are a number of attributes you can set to control the behavior
of a tree view. You can define the default bitmaps for selected and non-selected objects.
You can set the level of indentation for the display of an object’s component objects. You
can specify to have lines from an object to its component objects or lines to the root
object shown or not shown.. This widget is only available in the Windows version of
VisualAge.

Protocol

indentation: anInteger
Specifies the amount each node is indented.

showImages: aBoolean
Determines if the receiver displays images. Labels are always displayed.

showLines: aBoolean
Determines whether to display lines between the nodes.

showPlusMinus: aBoolean
Determines if the receiver displays plus/minus icons. Labels are always displayed.

showRootLines: aBoolean
Determines whether to display lines between the roots.

CwTreeView 319

visibleItemCount: anInteger
Specifies the number of items that can fit in the visible space of the List work area. The
list will use this value to determine its height.

Callbacks & Events

Collapse Callback
These callbacks are triggered when a node is collapsed.

Call data arguments:
value - the current value.

Expand Callback
These callbacks are triggered when a node is expanded.

Call data arguments:
value - the current value.

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

Single Selection Callback
These callbacks are triggered when an item is selected.

Editor

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

320 Chapter 12 Widget Encyclopedia

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Indentation
Specifies the amount each node is indented.

Show Images
Determines if the receiver displays images. Labels are always displayed.

Show Lines
Determines whether to display lines between the nodes.

Show Plus Minus
Determines if the receiver displays plus/minus icons. Labels are always displayed.

Show Root Lines
Determines whether to display lines between the roots.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

EwDrawnList 321

EwDrawnList

The application-drawn list widget (EwDrawnList) allows an application to draw arbitrary
graphics to represent each object in the list. It combines list behavior with a drawing
area-based widget..

An application hooks the displayCallback to draw the items in the list. If the items in the
list have different sizes, an application should hook the measureCallback to specify the
height of each individual item in the list. If all items have the same height, the itemHeight
resource can be used to specify the height in pixels.

The applicationDrawnStates resource allows for the specification of visuals for any of the
emphasis states in the list, such as selection emphasis or cursored emphasis. Applications
can choose to allow the drawn list to provide these emphasis visuals. In the following
code, a list of CgFontStructs is added to a drawn list, and each font name in the list is
drawn with the font that it describes.

Note: This widget does not provide scrollbars on is own. In order to have scrollbars, it
must be placed within a CwScrolledWindow instance. The widget may be either initially
created within the scrolled window, or it may be dragged into an existing scrolled
window. Once this has been done, the two widgets are coupled such that they may not be
separated.

322 Chapter 12 Widget Encyclopedia

Protocol

applicationDrawnStates: anInteger
Describes which visual states will be custom drawn by the application in the Display
Callback.

Default: XmDRAWNONE (No Custom Drawing)
Valid resource values:

XmDRAWNONE (No Custom Drawing) - No Custom Drawing.
XmDRAWSELECTION (Draw Selection) - Custom draw the selection.
XmDRAWCURSORED (Draw Cursored) - Custom draw the cursored item.
XmDRAWSELECTION | XmDRAWCURSORED (Draw Selection+Cursored) -

Custom draw the selection and cursored item.

itemHeight: anInteger
Specifies the height in pixels of items in the list. This includes the margin height on the
top and bottom of the item as well as two pixels for emphasis.

items: anOrderedCollection
An array of objects that are to be displayed as the list items.

itemWidth: anInteger
Specifies the width in pixels of items in the list. This includes the two pixels for
emphasis.

scrollHorizontal: aBoolean
This resource specifies whether a horizontal scroll bar should be used for the list.

selectedItems: anOrderedCollection
An OrderedCollection of Objects that represents the list items that are currently selected,
either by the user or the application.

selectionPolicy: anInteger
Defines the interpretation of the selection action.

Default: XmBROWSESELECT (Browse Select)
Valid resource values:

XmSINGLESELECT (Single Select) - Allows only single selections. Under
Windows and OS/2, this is the same as Browse Select

XmMULTIPLESELECT (Multiple Select) - Allows multiple items to be selected.
The selection of an item is toggled when it is clicked on. Clicking on an item
does not deselect previously selected items.

XmEXTENDEDSELECT (Extended Select) - Allows multiple items to be selected,
either by dragging the selection or by clicking on items with a modifier key held
down. Clicking on an item without a modifier key held down deselects all
previously selected items.

EwDrawnList 323

XmBROWSESELECT (Browse Select) - Allows only single selection. The selection
changes when the mouse is dragged. This is the default Selection Policy. Under
Windows and OS/2, this is the same as Single Select

XmREADONLYSELECT (Read Only Select) - Allows navigation, but no selection
or callbacks.

topItemPosition: anInteger
Specifies the Integer position of the item that is the first visible item in the list.

Callbacks & Events

Browse Selection Callback
These callbacks are triggered when an item is selected in the browse selection mode. It is
only valid when Selection Policy is Browse Select.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Default Action Callback
These callbacks are triggered when an item is double clicked.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Display Callback
These callbacks are triggered when an item is to be drawn.

Extended Selection Callback
These callbacks are triggered when items are selected using the extended selection mode.
It is only valid when Selection Policy is Extended Select.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the positions of the selected items.
selectedItems - a Collection of items which are the selected items.

324 Chapter 12 Widget Encyclopedia

Measure Callback
These callbacks are triggered in order to obtain the height of an item. The application
specifies the height by setting the height field of the callData to the Integer pixel height
of the item.

Modify Verify Callback
These callbacks are triggered when the selection is about to be changed. The application
may ‘undo’ the selection change by setting the doit field of the callData to false.

Call data arguments:
doit - Indicates whether the action that invoked the callback is performed.

Setting doit to false negates the action.

Multiple Selection Callback
These callbacks are triggered when an item is selected in multiple selection mode. It is
only valid when Selection Policy is Multiple Select.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Single Selection Callback
These callbacks are triggered when an item is selected in single selection mode. It is only
valid when Selection Policy is Single Select.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

EwDrawnList 325

Editor

Application Drawn States (Custom Drawing)
Describes which visual states will be custom drawn by the application in the Display
Callback.

Draw Cursored - Custom draw the cursored item.
Draw Selection - Custom draw the selection.
Draw Selection+Cursored - Custom draw the selection and cursored item.
No Custom Drawing - No Custom Drawing.

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Item Height
Specifies the height in pixels of items in the list. This includes the margin height on the
top and bottom of the item as well as two pixels for emphasis.

326 Chapter 12 Widget Encyclopedia

Item Width
Specifies the width in pixels of items in the list. This includes the two pixels for
emphasis.

Items
An array of objects that are to be displayed as the list items.

Scroll Horizontal
This resource specifies whether a horizontal scroll bar should be used for the list.

Selection Policy
Defines the interpretation of the selection action.

Browse Select - Allows only single selection. The selection changes when the mouse
is dragged. This is the default Selection Policy. Under Windows and OS/2, this is
the same as Single Select

Extended Select - Allows multiple items to be selected, either by dragging the
selection or by clicking on items with a modifier key held down. Clicking on an
item without a modifier key held down deselects all previously selected items.

Multiple Select - Allows multiple items to be selected. The selection of an item is
toggled when it is clicked on. Clicking on an item does not deselect previously
selected items.

Read Only Select - Allows navigation, but no selection or callbacks.
Single Select - Allows only single selections. Under Windows and OS/2, this is the

same as Browse Select

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

EwFlowedIconList 327

EwFlowedIconList

This class provides a vertical, multi-column list of items with an icon and a label for each
item. The items in the list are typically actual application objects, not strings or arrays.

The items are arranged in rows with as many items per row as can fit in the available
width. Each items width and height are determined by the XmNitemWidth and
XmNitemHeight resources. Thus, the dimensions of the rows and columns are fixed.

The widget then fires the visualInfo callback to obtain the label and icon for each item in
the list as well as its inUse state. It only fires this callback for items which are visible on
the screen. The application must hook the visualInfo callback and set the callData label
to be the string (or other renderable object) which is to be the label for the item in
callData item. The application must set the callData icon to be the CgIcon (or other
renderable object) which is to be the icon for the item in callData item.

If the application desires a view with only a single icon or label per item, this can be
achieved by setting the icon to nil for each item, setting the label to the desired visual for
each item, setting the labelOrientation to XmRIGHT.

The objects used for item labels are typically Strings, and those used for item icons are
typically CgIcons, but this is not a requirement. It is possible for an application to use any
object as the label and icon for an item. Any item which understands
#ewHeightUsing :, #ewWidthUsing : and #ewDrawUsing : (called a “renderable
object”) can be used for the label and icon. Since String and CgIcon already implement
the standard renderable object protocol, they can easily be used. Also, since Object
provides default renderable behavior, any object can be rendered, although the default
rendering is to render the object’s printString.

For example, if an application wishes to have different item’s labels be different colors, it
should implement a “ColoredString” class. This could then override the default

328 Chapter 12 Widget Encyclopedia

rendering protocol and always render the string in a particular color, overriding the color
in the gc of the EwRenderContext given. The same approach can be applied to handle
item labels with different fonts, fixed alignments, etc.

Label editing can take place under program control only. When a label is about to be
edited, the widget fires its beginEditCallback. The application must hook this callback or
else editing will never occur. At a minimum, the application must set the callData doit:

true to allow editing to begin.

The callData also includes a default editPolicy. The edit policy defines the type of widget
to be used for editing as well as some other edit semantics. The default edit policy is an
EwTextEditPolicy set up to use a single-line CwText as the edit widget. The application
can substitute a more appropriate edit policy for the item label about to be edited. For
example, if the item label contains a day of the week, the application may wish to use an
EwComboBoxEditPolicy. Applications can define their own custom edit policies by
overriding the behavior in EwEditPolicy as required. The supplied subclasses of
EwEditPolicy serve as good examples for this.

When editing is about to end, or when the value in the edit widget has been changed (the
exact details of when a change has occurred depend on the edit policy), the widget fires
its endEditCallback. The callData includes the old value and the new value. The
application should hook this callback and use the newValue to change some application
object. The label is then automatically refreshed after the callback fires, so the new value
is obtained and displayed.

Note: This widget does not provide scrollbars on is own. In order to have scrollbars, it
must be placed within a CwScrolledWindow instance. The widget may be either initially
created within the scrolled window, or it may be dragged into an existing scrolled
window. Once this has been done, the two widgets are coupled such that they may not be
separated.

Protocol

applicationDrawnBackground: aBoolean
Specifies whether the application wants the Draw Background Callback to fire when an
item’s background needs to be drawn. If this value is false, then the widget will draw the
normal default background for each selected and non-selected item.

emphasisPolicy: anInteger
Specifies whether to draw the icon and label emphasis as one single rectangle or as two
separate rectangles.

Default: XmSEPARATE (Separate)
Valid resource values:

XmTOGETHER (Together) - Draw the icon and label emphasis as one single
rectangle.

XmSEPARATE (Separate) - Draw the icon and label emphasis as two separate
rectangles.

EwFlowedIconList 329

innerMargin: anInteger
Specifies the margin width to be used between each item’s icon and its label.

itemHeight: anInteger
Specifies the height in pixels of items in the list. This includes the margin height on the
top and bottom of the item as well as two pixels for emphasis.

items: anOrderedCollection
An array of objects that are to be displayed as the list items.

itemWidth: anInteger
Specifies the width in pixels of items in the list. This includes the two pixels for
emphasis.

labelOrientation: anInteger
Specifies the label position associated with the items.

Default: XmRIGHT (Right)
Valid resource values:

XmRIGHT (Right) - Position the label to the right of the icon.
XmBOTTOM (Bottom) - Position the label beneath the icon.

scrollHorizontal: aBoolean
This resource specifies whether a horizontal scroll bar should be used for the list.

selectedItems: anOrderedCollection
An OrderedCollection of Objects that represents the list items that are currently selected,
either by the user or the application.

selectionPolicy: anInteger
Defines the interpretation of the selection action.

Default: XmBROWSESELECT (Browse Select)
Valid resource values:

XmSINGLESELECT (Single Select) - Allows only single selections. Under
Windows and OS/2, this is the same as Browse Select.

XmMULTIPLESELECT (Multiple Select) - Allows multiple items to be selected.
The selection of an item is toggled when it is clicked on. Clicking on an item
does not deselect previously selected items.

XmEXTENDEDSELECT (Extended Select) - Allows multiple items to be selected,
either by dragging the selection or by clicking on items with a modifier key held
down. Clicking on an item without a modifier key held down deselects all
previously selected items.

XmBROWSESELECT (Browse Select) - Allows only single selection. The selection
changes when the mouse is dragged. This is the default Selection Policy. Under
Windows and OS/2, this is the same as Single Select.

330 Chapter 12 Widget Encyclopedia

XmREADONLYSELECT (Read Only Select) - Allows navigation, but no selection
or callbacks.

topItemPosition: anInteger
Specifies the Integer position of the item that is the first visible item in the list.

Callbacks & Events

Begin Edit Callback
These callbacks are triggered when an item is about to be edited.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
doit - indicates whether the action that invoked the callback is performed.
editPolicy - the edit policy to be used to edit the cell value.
value - the value of the cell which is about to be edited.

Browse Selection Callback
These callbacks are triggered when an item is selected in the browse selection mode. It is
only valid when Selection Policy is Browse Select.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Default Action Callback
These callbacks are triggered when an item is double clicked.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Draw Background Callback
These callbacks are triggered when an item’s background needs to be drawn.

Call data arguments:
item - the item which is the selected item.
doit - indicates whether the action that invoked the callback is performed.
value - the value which is the renderable whose background needs drawing.
selected - indicates whether the item whose background needs to be drawn is

selected.

EwFlowedIconList 331

renderContext - the render context to be used in drawing the item’s background
region - the region of the item whose background needs to be drawn.

End Edit Callback
These callbacks are triggered when an item is done being edited.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
doit - indicates whether the action that invoked the callback is performed.
editPolicy - the edit policy to be used to edit the cell value.
value - the value of the cell which is about to be edited.

Extended Selection Callback
These callbacks are triggered when items are selected using the extended selection mode.
It is only valid when Selection Policy is Extended Select.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Modify Verify Callback
These callbacks are triggered when the selection is about to be changed. The application
may ‘undo’ the selection change by setting the doit field of the callData to false.

Call data arguments:
doit - Indicates whether the action that invoked the callback is performed.

Setting doit to false negates the action.

Multiple Selection Callback
These callbacks are triggered when an item is selected in multiple selection mode. It is
only valid when Selection Policy is Multiple Select.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Single Selection Callback
These callbacks are triggered when an item is selected in single selection mode. It is only
valid when Selection Policy is Single Select.

332 Chapter 12 Widget Encyclopedia

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Visual Info Callback
These callbacks are triggered when an item’s icon, label and isInUse are needed. The
application MUST hook this callback and set the callData icon to the CgIcon (or other
renderable object) to be displayed as the icon for the item in callData item. It must also
set the callData label to the String (or other renderable object) to be displayed as the label
for the item.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
isInUse - the inUse status (Boolean) which is the default to be used for the item in

the callback.
icon - the icon which is the default icon to be used for the item in the callback.
label - the label which is the default label to be used for the item in the callback.

Editor

EwFlowedIconList 333

Application Drawn Background
Specifies whether the application wants the Draw Background Callback to fire when an
item’s background needs to be drawn. If this value is false, then the widget will draw the
normal default background for each selected and non-selected item.

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Emphasis Policy
Specifies whether to draw the icon and label emphasis as one single rectangle or as two
separate rectangles.

Separate - Draw the icon and label emphasis as two separate rectangles.
Together - Draw the icon and label emphasis as one single rectangle.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Inner Margin
Specifies the margin width to be used between each item’s icon and its label.

Item Height
Specifies the height in pixels of items in the list. This includes the margin height on the
top and bottom of the item as well as two pixels for emphasis.

Item Width
Specifies the width in pixels of items in the list. This includes the two pixels for
emphasis.

Items
An array of objects that are to be displayed as the list items.

Label Orientation
Specifies the label position associated with the items.

Bottom - Position the label beneath the icon.
Right - Position the label to the right of the icon.

Scroll Horizontal
This resource specifies whether a horizontal scroll bar should be used for the list.

334 Chapter 12 Widget Encyclopedia

Selection Policy
Defines the interpretation of the selection action.

Browse Select - Allows only single selection. The selection changes when the mouse
is dragged. This is the default Selection Policy. Under Windows and OS/2, this is
the same as Single Select

Extended Select - Allows multiple items to be selected, either by dragging the
selection or by clicking on items with a modifier key held down. Clicking on an
item without a modifier key held down deselects all previously selected items.

Multiple Select - Allows multiple items to be selected. The selection of an item is
toggled when it is clicked on. Clicking on an item does not deselect previously
selected items.

Read Only Select - Allows navigation, but no selection or callbacks.
Single Select - Allows only single selections. Under Windows and OS/2, this is the

same as Browse Select

Top Item Position
Specifies the Integer position of the item that is the first visible item in the list.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

EwIconArea 335

EwIconArea

This class provides a free-form display of items with an icon and a label for each item.
The items in the list are typically actual application objects, not strings or arrays.

The widget then fires the visualInfo callback to obtain the label and icon for each item in
the list as well as its inUse state. It only fires this callback for items which are visible on
the screen. The application must hook the visualInfo callback and set the callData label
to be the string (or other renderable object) which is to be the label for the item in
callData item. The application must set the callData icon to be the CgIcon (or other
renderable object) which is to be the icon for the item in callData item.

If the application desires a view with only a single icon or label per item, this can be
achieved by setting the icon to nil for each item, setting the label to the desired visual for
each item, setting the labelOrientation to XmRIGHT.

The objects used for item labels are typically Strings, and those used for item icons are
typically CgIcons, but this is not a requirement. It is possible for an application to use any
object as the label and icon for an item. Any item which understands
#ewHeightUsing :, #ewWidthUsing : and #ewDrawUsing : (called a “renderable
object”) can be used for the label and icon. Since String and CgIcon already implement
the standard renderable object protocol, they can easily be used. Also, since Object
provides default renderable behavior, any object can be rendered, although the default
rendering is to render the object’s printString.

For example, if an application wishes to have different item’s labels be different colors, it
should implement a “ColoredString” class. This could then override the default
rendering protocol and always render the string in a particular color, overriding the color

336 Chapter 12 Widget Encyclopedia

in the gc of the EwRenderContext given. The same approach can be applied to handle
item labels with different fonts, fixed alignments, etc.

Label editing can take place under program control only. When a label is about to be
edited, the widget fires its beginEditCallback. The application must hook this callback or
else editing will never occur. At a minimum, the application must set the callData doit:

true to allow editing to begin.

The callData also includes a default editPolicy. The edit policy defines the type of widget
to be used for editing as well as some other edit semantics. The default edit policy is an
EwTextEditPolicy set up to use a single-line CwText as the edit widget. The application
can substitute a more appropriate edit policy for the item label about to be edited. For
example, if the item label contains a day of the week, the application may wish to use an
EwComboBoxEditPolicy. Applications can define their own custom edit policies by
overriding the behavior in EwEditPolicy as required. The supplied subclasses of
EwEditPolicy serve as good examples for this.

When editing is about to end, or when the value in the edit widget has been changed (the
exact details of when a change has occurred depend on the edit policy), the widget fires
its endEditCallback. The callData includes the old value and the new value. The
application should hook this callback and use the newValue to change some application
object. The label is then automatically refreshed after the callback fires, so the new value
is obtained and displayed.

Note: This widget does not provide scrollbars on is own. In order to have scrollbars, it
must be placed within a CwScrolledWindow instance. The widget may be either initially
created within the scrolled window, or it may be dragged into an existing scrolled
window. Once this has been done, the two widgets are coupled such that they may not be
separated.

Protocol

applicationDrawnBackground: aBoolean
Specifies whether the application wants the Draw Background Callback to fire when an
item’s background needs to be drawn. If this value is false, then the widget will draw the
normal default background for each selected and non-selected item.

innerMargin: anInteger
Specifies the margin width to be used between each item’s icon and its label.

items: anOrderedCollection
An array of objects that are to be displayed as the list items.

EwIconArea 337

labelOrientation: anInteger
Specifies the label position associated with the items.

Default: XmRIGHT (Right)
Valid resource values:

XmRIGHT (Right) - Position the label to the right of the icon.
XmBOTTOM (Bottom) - Position the label beneath the icon.

scrollHorizontal: aBoolean
This resource specifies whether a horizontal scroll bar should be used for the list.

selectedItems: anOrderedCollection
An OrderedCollection of Objects that represents the list items that are currently selected,
either by the user or the application.

selectionPolicy: anInteger
Defines the interpretation of the selection action.

Default: XmBROWSESELECT (Browse Select)
Valid resource values:

XmSINGLESELECT (Single Select) - Allows only single selections. Under
Windows and OS/2, this is the same as Browse Select.

XmMULTIPLESELECT (Multiple Select) - Allows multiple items to be selected.
The selection of an item is toggled when it is clicked on. Clicking on an item
does not deselect previously selected items.

XmEXTENDEDSELECT (Extended Select) - Allows multiple items to be selected,
either by dragging the selection or by clicking on items with a modifier key held
down. Clicking on an item without a modifier key held down deselects all
previously selected items.

XmBROWSESELECT (Browse Select) - Allows only single selection. The selection
changes when the mouse is dragged. This is the default Selection Policy. Under
Windows and OS/2, this is the same as Single Select.

XmREADONLYSELECT (Read Only Select) - Allows navigation, but no selection
or callbacks.

Callbacks & Events

Begin Edit Callback
These callbacks are triggered when an item is about to be edited.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
doit - indicates whether the action that invoked the callback is performed.
editPolicy - the edit policy to be used to edit the cell value.
value - the value of the cell which is about to be edited.

338 Chapter 12 Widget Encyclopedia

Browse Selection Callback
These callbacks are triggered when an item is selected in the browse selection mode. It is
only valid when Selection Policy is Browse Select.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Default Action Callback
These callbacks are triggered when an item is double clicked.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Draw Background Callback
These callbacks are triggered when an item’s background needs to be drawn.

Call data arguments:
item - the item which is the selected item.
doit - indicates whether the action that invoked the callback is performed.
value - the value which is the renderable whose background needs drawing.
selected - indicates whether the item whose background needs to be drawn is

selected.
renderContext - the render context to be used in drawing the item’s background
region - the region of the item whose background needs to be drawn.

End Edit Callback
These callbacks are triggered when an item is done being edited.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
doit - indicates whether the action that invoked the callback is performed.
editPolicy - the edit policy to be used to edit the cell value.
value - the value of the cell which is about to be edited.

EwIconArea 339

Extended Selection Callback
These callbacks are triggered when items are selected using the extended selection mode.
It is only valid when Selection Policy is Extended Select.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Modify Verify Callback
These callbacks are triggered when the selection is about to be changed. The application
may ‘undo’ the selection change by setting the doit field of the callData to false.

Call data arguments:
doit - Indicates whether the action that invoked the callback is performed.

Setting doit to false negates the action.

Multiple Selection Callback
These callbacks are triggered when an item is selected in multiple selection mode. It is
only valid when Selection Policy is Multiple Select.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Single Selection Callback
These callbacks are triggered when an item is selected in single selection mode. It is only
valid when Selection Policy is Single Select.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

340 Chapter 12 Widget Encyclopedia

Visual Info Callback
These callbacks are triggered when an item’s icon, label and isInUse are needed. The
application MUST hook this callback and set the callData icon to the CgIcon (or other
renderable object) to be displayed as the icon for the item in callData item. It must also
set the callData label to the String (or other renderable object) to be displayed as the label
for the item.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
isInUse - the inUse status (Boolean) which is the default to be used for the item in

the callback.
icon - the icon which is the default icon to be used for the item in the callback.
label - the label which is the default label to be used for the item in the callback.

Editor

Application Drawn Background
Specifies whether the application wants the Draw Background Callback to fire when an
item’s background needs to be drawn. If this value is false, then the widget will draw the
normal default background for each selected and non-selected item.

EwIconArea 341

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Inner Margin
Specifies the margin width to be used between each item’s icon and its label.

Items
An array of objects that are to be displayed as the list items.

Label Orientation
Specifies the label position associated with the items.

Bottom - Position the label beneath the icon.
Right - Position the label to the right of the icon.

Scroll Horizontal
This resource specifies whether a horizontal scroll bar should be used for the list.

Selection Policy
Defines the interpretation of the selection action.

Browse Select - Allows only single selection. The selection changes when the mouse
is dragged. This is the default Selection Policy. Under Windows and OS/2, this is
the same as Single Select.

Extended Select - Allows multiple items to be selected, either by dragging the
selection or by clicking on items with a modifier key held down. Clicking on an
item without a modifier key held down deselects all previously selected items.

Multiple Select - Allows multiple items to be selected. The selection of an item is
toggled when it is clicked on. Clicking on an item does not deselect previously
selected items.

Read Only Select - Allows navigation, but no selection or callbacks.
Single Select - Allows only single selections. Under Windows and OS/2, this is the

same as Browse Select.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

342 Chapter 12 Widget Encyclopedia

EwIconList

This class provides a vertical, single-column list of items with an icon and a label for
each item. The items in the list are typically actual application objects, not strings or
arrays.

The widget then fires the visualInfo callback to obtain the label and icon for each item in
the list as well as its inUse state. It only fires this callback for items which are visible on
the screen. The application must hook the visualInfo callback and set the callData label
to be the string (or other renderable object) which is to be the label for the item in
callData item. The application must set the callData icon to be the CgIcon (or other
renderable object) which is to be the icon for the item in callData item.

If the application desires a view with only a single icon or label per item, this can be
achieved by setting the icon to nil for each item, setting the label to the desired visual for
each item, setting the labelOrientation to XmRIGHT.

The objects used for item labels are typically Strings, and those used for item icons are
typically CgIcons, but this is not a requirement. It is possible for an application to use any
object as the label and icon for an item. Any item which understands
#ewHeightUsing :, #ewWidthUsing : and #ewDrawUsing : (called a “renderable
object”) can be used for the label and icon. Since String and CgIcon already implement
the standard renderable object protocol, they can easily be used. Also, since Object
provides default renderable behavior, any object can be rendered, although the default
rendering is to render the object’s printString.

For example, if an application wishes to have different item’s labels be different colors, it
should implement a “ColoredString” class. This could then override the default
rendering protocol and always render the string in a particular color, overriding the color

EwIconList 343

in the gc of the EwRenderContext given. The same approach can be applied to handle
item labels with different fonts, fixed alignments, etc.

Label editing can take place under program control only. When a label is about to be
edited, the widget fires its beginEditCallback. The application must hook this callback or
else editing will never occur. At a minimum, the application must set the callData doit:

true to allow editing to begin.

The callData also includes a default editPolicy. The edit policy defines the type of widget
to be used for editing as well as some other edit semantics. The default edit policy is an
EwTextEditPolicy set up to use a single-line CwText as the edit widget. The application
can substitute a more appropriate edit policy for the item label about to be edited. For
example, if the item label contains a day of the week, the application may wish to use an
EwComboBoxEditPolicy. Applications can define their own custom edit policies by
overriding the behavior in EwEditPolicy as required. The supplied subclasses of
EwEditPolicy serve as good examples for this.

When editing is about to end, or when the value in the edit widget has been changed (the
exact details of when a change has occurred depend on the edit policy), the widget fires
its endEditCallback. The callData includes the old value and the new value. The
application should hook this callback and use the newValue to change some application
object. The label is then automatically refreshed after the callback fires, so the new value
is obtained and displayed.

Note: This widget does not provide scrollbars on is own. In order to have scrollbars, it
must be placed within a CwScrolledWindow instance. The widget may be either initially
created within the scrolled window, or it may be dragged into an existing scrolled
window. Once this has been done, the two widgets are coupled such that they may not be
separated.

Protocol

applicationDrawnBackground: aBoolean
Specifies whether the application wants the Draw Background Callback to fire when an
item’s background needs to be drawn. If this value is false, then the widget will draw the
normal default background for each selected and non-selected item.

emphasisPolicy: anInteger
Specifies whether to draw the icon and label emphasis as one single rectangle or as two
separate rectangles.

Default: XmSEPARATE (Separate)
Valid resource values:

XmTOGETHER (Together) - Draw the icon and label emphasis as one single
rectangle.

344 Chapter 12 Widget Encyclopedia

XmSEPARATE (Separate) - Draw the icon and label emphasis as two separate
rectangles.

innerMargin: anInteger
Specifies the margin width to be used between each item’s icon and its label.

itemHeight: anInteger
Specifies the height in pixels of items in the list. This includes the margin height on the
top and bottom of the item as well as two pixels for emphasis.

items: anOrderedCollection
An array of objects that are to be displayed as the list items.

itemWidth: anInteger
Specifies the width in pixels of items in the list. This includes the two pixels for
emphasis.

labelOrientation: anInteger
Specifies the label position associated with the items.

Default: XmRIGHT (Right)
Valid resource values:

XmRIGHT (Right) - Position the label to the right of the icon.
XmBOTTOM (Bottom) - Position the label beneath the icon.

scrollHorizontal: aBoolean
This resource specifies whether a horizontal scroll bar should be used for the list.

selectedItems: anOrderedCollection
An OrderedCollection of Objects that represents the list items that are currently selected,
either by the user or the application.

selectionPolicy: anInteger
Defines the interpretation of the selection action.

Default: XmBROWSESELECT (Browse Select)
Valid resource values:

XmSINGLESELECT (Single Select) - Allows only single selections. Under
Windows and OS/2, this is the same as Browse Select.

XmMULTIPLESELECT (Multiple Select) - Allows multiple items to be selected.
The selection of an item is toggled when it is clicked on. Clicking on an item
does not deselect previously selected items.

XmEXTENDEDSELECT (Extended Select) - Allows multiple items to be selected,
either by dragging the selection or by clicking on items with a modifier key held
down. Clicking on an item without a modifier key held down deselects all
previously selected items.

EwIconList 345

XmBROWSESELECT (Browse Select) - Allows only single selection. The selection
changes when the mouse is dragged. This is the default Selection Policy. Under
Windows and OS/2, this is the same as Single Select.

XmREADONLYSELECT (Read Only Select) - Allows navigation, but no selection
or callbacks.

topItemPosition: anInteger
Specifies the Integer position of the item that is the first visible item in the list.

Callbacks & Events

Begin Edit Callback
These callbacks are triggered when an item is about to be edited.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
doit - indicates whether the action that invoked the callback is performed.
editPolicy - the edit policy to be used to edit the cell value.
value - the value of the cell which is about to be edited.

Browse Selection Callback
These callbacks are triggered when an item is selected in the browse selection mode. It is
only valid when Selection Policy is Browse Select.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Default Action Callback
These callbacks are triggered when an item is double clicked.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Draw Background Callback
These callbacks are triggered when an item’s background needs to be drawn.

Call data arguments:
item - the item which is the selected item.
doit - indicates whether the action that invoked the callback is performed.

346 Chapter 12 Widget Encyclopedia

value - the value which is the renderable whose background needs drawing.
selected - indicates whether the item whose background needs to be drawn is

selected.
renderContext - the render context to be used in drawing the item’s background
region - the region of the item whose background needs to be drawn.

End Edit Callback
These callbacks are triggered when an item is done being edited.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
doit - indicates whether the action that invoked the callback is performed.
editPolicy - the edit policy to be used to edit the cell value.
value - the value of the cell which is about to be edited.

Extended Selection Callback
These callbacks are triggered when items are selected using the extended selection mode.
It is only valid when Selection Policy is Extended Select.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Modify Verify Callback
These callbacks are triggered when the selection is about to be changed. The application
may ‘undo’ the selection change by setting the doit field of the callData to false.

Call data arguments:
doit - Indicates whether the action that invoked the callback is performed.

Setting doit to false negates the action.

Multiple Selection Callback
These callbacks are triggered when an item is selected in multiple selection mode. It is
only valid when Selection Policy is Multiple Select.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

EwIconList 347

Single Selection Callback
These callbacks are triggered when an item is selected in single selection mode. It is only
valid when Selection Policy is Single Select.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - the integer positions of the selected items.
selectedItems - a Collection of items which are the selected items.

Visual Info Callback
These callbacks are triggered when an item’s icon, label and isInUse are needed. The
application MUST hook this callback and set the callData icon to the CgIcon (or other
renderable object) to be displayed as the icon for the item in callData item. It must also
set the callData label to the String (or other renderable object) to be displayed as the label
for the item.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
isInUse - the inUse status (Boolean) which is the default to be used for the item in

the callback.
icon - the icon which is the default icon to be used for the item in the callback.
label - the label which is the default label to be used for the item in the callback.

348 Chapter 12 Widget Encyclopedia

Editor

Application Drawn Background
Specifies whether the application wants the Draw Background Callback to fire when an
item’s background needs to be drawn. If this value is false, then the widget will draw the
normal default background for each selected and non-selected item.

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Emphasis Policy
Specifies whether to draw the icon and label emphasis as one single rectangle or as two
separate rectangles.

Separate - Draw the icon and label emphasis as two separate rectangles.
Together - Draw the icon and label emphasis as one single rectangle.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

EwIconList 349

Inner Margin
Specifies the margin width to be used between each item’s icon and its label.

Item Height
Specifies the height in pixels of items in the list. This includes the margin height on the
top and bottom of the item as well as two pixels for emphasis.

Item Width
Specifies the width in pixels of items in the list. This includes the two pixels for
emphasis.

Items
An array of objects that are to be displayed as the list items.

Label Orientation
Specifies the label position associated with the items.

Bottom - Position the label beneath the icon.
Right - Position the label to the right of the icon.

Scroll Horizontal
This resource specifies whether a horizontal scroll bar should be used for the list.

Selection Policy
Defines the interpretation of the selection action.

Browse Select - Allows only single selection. The selection changes when the mouse
is dragged. This is the default Selection Policy. Under Windows and OS/2, this is
the same as Single Select.

Extended Select - Allows multiple items to be selected, either by dragging the
selection or by clicking on items with a modifier key held down. Clicking on an
item without a modifier key held down deselects all previously selected items.

Multiple Select - Allows multiple items to be selected. The selection of an item is
toggled when it is clicked on. Clicking on an item does not deselect previously
selected items.

Read Only Select - Allows navigation, but no selection or callbacks.
Single Select - Allows only single selections. Under Windows and OS/2, this is the

same as Browse Select.

Top Item Position
Specifies the Integer position of the item that is the first visible item in the list.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

350 Chapter 12 Widget Encyclopedia

EwIconTree

This class provides a vertical, hierarchical, single-column list of items with an icon and a
label for each item. The items in the list are typically actual application objects, not
strings or arrays. The application should only set the root level items in the tree as the
items in the widget. The descendants of those root items can then be shown via
#expandPos:notify: et al.

The hierarchical aspect of the list is handled by the visualInfoCallback and the
childrenCallback. The application must hook the visualInfoCallback and set the callData
hasChildren to true or false to indicate whether the item in callData item has children.
The application must also hook the childrenCallback and set the callData value to be the
list of children for the item in callData item. The childrenCallback will only ever fire for
items for which hasChildren is true.

The hierarchyPolicy determines how the hierarchy is to be shown. This includes what the
indentation level should be as well as whether to draw lines connecting the items and
whether to show some kind of button beside items which have children. By default the
hierarchyPolicy is an instance of EwHierarchyPolicy with lines set to true. The other
hierarchy policy class provided is EwIconHierarchyPolicy. This class shows an icon
beside each item to act as an expand/collapse button. The application can specify which
icon to use in different situations so that the button can animate properly as it is pressed.

The widget then fires the visualInfo callback to obtain the label and icon for each item in
the list as well as its inUse state. It only fires this callback for items which are visible on

EwIconTree 351

the screen. The application must hook the visualInfo callback and set the callData label
to be the string (or other renderable object) which is to be the label for the item in
callData item. The application must set the callData icon to be the CgIcon (or other
renderable object) which is to be the icon for the item in callData item.

If the application desires a view with only a single icon or label per item, this can be
achieved by setting the icon to nil for each item, setting the label to the desired visual for
each item, setting the labelOrientation to XmRIGHT.

The objects used for item labels are typically Strings, and those used for item icons are
typically CgIcons, but this is not a requirement. It is possible for an application to use any
object as the label and icon for an item. Any item which understands
#ewHeightUsing :, #ewWidthUsing : and #ewDrawUsing : (called a “renderable
object”) can be used for the label and icon. Since String and CgIcon already implement
the standard renderable object protocol, they can easily be used. Also, since Object
provides default renderable behavior, any object can be rendered, although the default
rendering is to render the object’s printString.

For example, if an application wishes to have different item’s labels be different colors, it
should implement a “ColoredString” class. This could then override the default
rendering protocol and always render the string in a particular color, overriding the color
in the gc of the EwRenderContext given. The same approach can be applied to handle
item labels with different fonts, fixed alignments, etc.

Label editing can take place under program control only. When a label is about to be
edited, the widget fires its beginEditCallback. The application must hook this callback or
else editing will never occur. At a minimum, the application must set the callData doit:

true to allow editing to begin.

The callData also includes a default editPolicy. The edit policy defines the type of widget
to be used for editing as well as some other edit semantics. The default edit policy is an
EwTextEditPolicy set up to use a single-line CwText as the edit widget. The application
can substitute a more appropriate edit policy for the item label about to be edited. For
example, if the item label contains a day of the week, the application may wish to use an
EwComboBoxEditPolicy. Applications can define their own custom edit policies by
overriding the behavior in EwEditPolicy as required. The supplied subclasses of
EwEditPolicy serve as good examples for this.

When editing is about to end, or when the value in the edit widget has been changed (the
exact details of when a change has occurred depend on the edit policy), the widget fires
its endEditCallback. The callData includes the old value and the new value. The
application should hook this callback and use the newValue to change some application
object. The label is then automatically refreshed after the callback fires, so the new value
is obtained and displayed.

Note: This widget does not provide scrollbars on is own. In order to have scrollbars, it
must be placed within a CwScrolledWindow instance. The widget may be either initially
created within the scrolled window, or it may be dragged into an existing scrolled

352 Chapter 12 Widget Encyclopedia

window. Once this has been done, the two widgets are coupled such that they may not be
separated.

Protocol

applicationDrawnBackground: aBoolean
Specifies whether the application wants the Draw Background Callback to fire when an
item’s background needs to be drawn. If this value is false, then the widget will draw the
normal default background for each selected and non-selected item.

emphasisPolicy: anInteger
Specifies whether to draw the icon and label emphasis as one single rectangle or as two
separate rectangles.

Default: XmSEPARATE (Separate)
Valid resource values:

XmTOGETHER (Together) - Draw the icon and label emphasis as one single
rectangle.

XmSEPARATE (Separate) - Draw the icon and label emphasis as two separate
rectangles.

hierarchyPolicy: hierarchyPolicy
Determines how the hierarchy is to be shown. This includes what the indentation level
should be as well as whether to draw lines connecting the items and whether to show
some kind of button beside items which have children. By default the hierarchyPolicy is
an instance of EwHierarchyPolicy with lines set to true.

innerMargin: anInteger
Specifies the margin width to be used between each item’s icon and its label.

itemHeight: anInteger
Specifies the height in pixels of items in the list. This includes the margin height on the
top and bottom of the item as well as two pixels for emphasis.

items: anOrderedCollection
An array of objects that are to be displayed as the list items.

itemWidth: anInteger
Specifies the width in pixels of items in the list. This includes the two pixels for
emphasis.

EwIconTree 353

labelOrientation: anInteger
Specifies the label position associated with the items.

Default: XmRIGHT (Right)
Valid resource values:

XmRIGHT (Right) - Position the label to the right of the icon.
XmBOTTOM (Bottom) - Position the label beneath the icon.

scrollHorizontal: aBoolean
This resource specifies whether a horizontal scroll bar should be used for the list.

selectedItems: anOrderedCollection
An OrderedCollection of Objects that represents the list items that are currently selected,
either by the user or the application.

selectionPolicy: anInteger
Defines the interpretation of the selection action.

Default: XmBROWSESELECT (Browse Select)
Valid resource values:

XmSINGLESELECT (Single Select) - Allows only single selections. Under
Windows and OS/2, this is the same as Browse Select.

XmMULTIPLESELECT (Multiple Select) - Allows multiple items to be selected.
The selection of an item is toggled when it is clicked on. Clicking on an item
does not deselect previously selected items.

XmEXTENDEDSELECT (Extended Select) - Allows multiple items to be selected,
either by dragging the selection or by clicking on items with a modifier key held
down. Clicking on an item without a modifier key held down deselects all
previously selected items.

XmBROWSESELECT (Browse Select) - Allows only single selection. The selection
changes when the mouse is dragged. This is the default Selection Policy. Under
Windows and OS/2, this is the same as Single Select.

XmREADONLYSELECT (Read Only Select) - Allows navigation, but no selection
or callbacks.

topItemPosition: anInteger
Specifies the Integer position of the item that is the first visible item in the list.

Callbacks & Events

Begin Edit Callback
These callbacks are triggered when an item is about to be edited.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
doit - indicates whether the action that invoked the callback is performed.

354 Chapter 12 Widget Encyclopedia

editPolicy - the edit policy to be used to edit the cell value.
value - the value of the cell which is about to be edited.

Browse Selection Callback
These callbacks are triggered when an item is selected in the browse selection mode. It is
only valid when Selection Policy is Browse Select.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Children Callback
These callbacks are triggered when an item’s list of children is needed.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
children - the value of children for the item in the callback.

Default Action Callback
These callbacks are triggered when an item is double clicked.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Draw Background Callback
These callbacks are triggered when an item’s background needs to be drawn.

Call data arguments:
item - the item which is the selected item.
doit - indicates whether the action that invoked the callback is performed.
value - the value which is the renderable whose background needs drawing.
selected - indicates whether the item whose background needs to be drawn is

selected.
renderContext - the render context to be used in drawing the item’s background
region - the region of the item whose background needs to be drawn.

End Edit Callback
These callbacks are triggered when an item is done being edited.

EwIconTree 355

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
doit - indicates whether the action that invoked the callback is performed.
editPolicy - the edit policy to be used to edit the cell value.
value - the value of the cell which is about to be edited.

Expand Collapse Callback
These callbacks are triggered when an item is expanded or collapsed.
Call data arguments:

item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.

Extended Selection Callback
These callbacks are triggered when items are selected using the extended selection mode.
It is only valid when Selection Policy is Extended Select.
Call data arguments:

item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Modify Verify Callback
These callbacks are triggered when the selection is about to be changed. The application
may ‘undo’ the selection change by setting the doit field of the callData to false.
Call data arguments:

doit - Indicates whether the action that invoked the callback is performed.
Setting doit to false negates the action.

Multiple Selection Callback
These callbacks are triggered when an item is selected in multiple selection mode. It is
only valid when Selection Policy is Multiple Select.
Call data arguments:

item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Single Selection Callback
These callbacks are triggered when an item is selected in single selection mode. It is only
valid when Selection Policy is Single Select.
Call data arguments:

item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.

356 Chapter 12 Widget Encyclopedia

selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Visual Info Callback
These callbacks are triggered when an item’s icon, label and isInUse are needed. The
application MUST hook this callback and set the callData icon to the CgIcon (or other
renderable object) to be displayed as the icon for the item in callData item. It must also
set the callData label to the String (or other renderable object) to be displayed as the label
for the item.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
isInUse - the inUse status (Boolean) which is the default to be used for the item in

the callback.
icon - the icon which is the default icon to be used for the item in the callback.
label - the label which is the default label to be used for the item in the callback.

Editor

EwIconTree 357

Application Drawn Background
Specifies whether the application wants the Draw Background Callback to fire when an
item’s background needs to be drawn. If this value is false, then the widget will draw the
normal default background for each selected and non-selected item.

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Emphasis Policy
Specifies whether to draw the icon and label emphasis as one single rectangle or as two
separate rectangles.

Separate - Draw the icon and label emphasis as two separate rectangles.
Together - Draw the icon and label emphasis as one single rectangle.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Inner Margin
Specifies the margin width to be used between each item’s icon and its label.

Item Height
Specifies the height in pixels of items in the list. This includes the margin height on the
top and bottom of the item as well as two pixels for emphasis.

Item Width
Specifies the width in pixels of items in the list. This includes the two pixels for
emphasis.

Items
An array of objects that are to be displayed as the list items.

Label Orientation
Specifies the label position associated with the items.

Bottom - Position the label beneath the icon.
Right - Position the label to the right of the icon.

Scroll Horizontal
This resource specifies whether a horizontal scroll bar should be used for the list.

358 Chapter 12 Widget Encyclopedia

Selection Policy
Defines the interpretation of the selection action.

Browse Select - Allows only single selection. The selection changes when the mouse
is dragged. This is the default Selection Policy. Under Windows and OS/2, this is
the same as Single Select.

Extended Select - Allows multiple items to be selected, either by dragging the
selection or by clicking on items with a modifier key held down. Clicking on an
item without a modifier key held down deselects all previously selected items.

Multiple Select - Allows multiple items to be selected. The selection of an item is
toggled when it is clicked on. Clicking on an item does not deselect previously
selected items.

Read Only Select - Allows navigation, but no selection or callbacks.
Single Select - Allows only single selections. Under Windows and OS/2, this is the

same as Browse Select.

Top Item Position
Specifies the Integer position of the item that is the first visible item in the list.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

EwPage 359

EwPage

A page is special type of composite that can only be added to a notebook. For layout of
its children the page supports attachment protocol inherited from CwWidget. A page has
the added functionality of being able to specify a drawable object for its tab, style of tab
to use, and text for a status line. Although the last two options are only available when a
page is a child of an OS/2 flavor notebook.

Callbacks are provided for finding out when a page is brought to the front of a notebook
or when it is leaving the front of a notebook.

Protocol

fractionBase: anInteger
Specifies the denominator used in calculating the relative position a child widgets.

horizontalSpacing: anInteger
Specifies the offset for right and left attachments.

marginHeight: anInteger
Specifies the minimum spacing in pixels between the top or bottom edge of the widget
and any child widget.

marginWidth: anInteger
Specifies the minimum spacing in pixels between the left or right edge of the widget and
any child widget.

pageLabel: aString
Specifies the string to place in the status label.

360 Chapter 12 Widget Encyclopedia

resizePolicy: anInteger
Specifies the resize policy of the widget.

Default: XmRESIZEANY (Any)
Valid resource values:

XmRESIZENONE (None) - Resize none.
XmRESIZEGROW (Grow) - Resize grow.
XmRESIZEANY (Any) - Resize any.

rubberPositioning: aBoolean
Indicates the default attachment for a child of the Form. If this Boolean resource is set to
false, then the left and top of the child defaults to being attached to the left and top side
of the Form. If this resource is set to true, then the child defaults to being attached to its
initial position in the Form.

tabLabel: aString
Specifies the renderable object to draw in the page’s tab.

tabType: anInteger
Specifies the type of tab to use for the page.

Default: XmMAJOR (Major)
Valid resource values:

XmNONE (None) - These are major pages with no tabs.
XmMAJOR (Major) - These are the primary pages of a notebook.
XmMINOR (Minor) - These are essentially children of the major page they are

added after. They display only after their parent is displayed and they appear
perpendicular to the major tabs

verticalSpacing: anInteger
Specifies the offset for top and bottom attachments.

Callbacks & Events

Page Enter Callback
These callbacks are triggered just before a page is to be managed. This happens when the
receiver is being brought to the top in a parent notebook.

Page Leave Callback
These callbacks are triggered just before a page is to be unmanaged. This happens when
another page is being brought to the top in a parent notebook

EwPage 361

Editor

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Fraction Base
Specifies the denominator used in calculating the relative position a child widgets.

Horizontal Spacing
Specifies the offset for right and left attachments.

Margin Height
Specifies the minimum spacing in pixels between the top or bottom edge of the widget
and any child widget.

Margin Width
Specifies the minimum spacing in pixels between the left or right edge of the widget and
any child widget.

Page Label
Specifies the string to place in the status label.

362 Chapter 12 Widget Encyclopedia

Resize Policy
Specifies the resize policy of the widget.

Any - Resize any.
Grow - Resize grow.
None - Resize none.

Rubber Positioning
Indicates the default attachment for a child of the Form. If this Boolean resource is set to
false, then the left and top of the child defaults to being attached to the left and top side
of the Form. If this resource is set to true, then the child defaults to being attached to its
initial position in the Form.

Tab Label
Specifies the renderable object to draw in the page’s tab.

Tab Type
Specifies the type of tab to use for the page.

Major - These are the primary pages of a notebook.
Minor - These are essentially children of the major page they are added after. They

display only after their parent is displayed and they appear perpendicular to the
major tabs

None - These are major pages with no tabs.

Vertical Spacing
Specifies the offset for top and bottom attachments.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

EwPMNotebook 363

EwPMNotebook

This class implements an OS/2 flavor notebook. The page’s major/minor tabs can be
displayed in different combinations on all sides of the notebook. The tabs’ sizes are
determined by the major and minor tabHeight, tabWidth, and tabWidthPolicy resources.
The page on top which is displaying its widgets is represented by the currentPage
resource.

The OS/2 notebook adds page buttons and a text area for each page. Page buttons allow
the user to select the next or previous page. A text area, also called a status line, allows
each page to display a single line of text relating to that page.

Protocol

backPagePosition: anInteger
Specifies where the simulated back pages appear.

Default: XmBOTTOMRIGHT (Bottom Right)
Valid resource values:

XmBOTTOMRIGHT (Bottom Right) - Back pages are drawn bottom and right.
XmTOPRIGHT (Top Right) - Back pages are drawn top and right.

bindingType: anInteger
Specifies the style of the binding.

Default: XmNONE (None)
Valid resource values:

XmNONE (None) - No binding is drawn.
XmSOLID (Solid) - A solid binding is drawn.
XmSPIRAL (Spiral) - A spiral pixmap is drawn.

364 Chapter 12 Widget Encyclopedia

majorTabHeight: anInteger
Specifies the height of the notebook’s major tabs in pixels.

majorTabWidth: anInteger
Specifies the width of the notebook’s major tabs in pixels.

minorTabHeight: anInteger
Specifies the height of the notebook’s minor tabs in pixels.

minorTabWidth: anInteger
Specifies the width of the notebook’s minor tabs in pixels.

orientation: anInteger
Specifies on what plane the pages turn. This is indicated by the major tabs being opposite
the binding.

Default: XmHORIZONTAL (Horizontal)
Valid resource values:

XmVERTICAL (Vertical) - Major tabs are either on the top or bottom depending on
the back page position and minor tabs appear on the right.

XmHORIZONTAL (Horizontal) - Major tabs appear on the right and minor tabs are
either on the top or bottom depending on the back page position.

pageButtonHeight: anInteger
Specifies the height of the notebook’s page buttons in pixels. A value of zero means the
are no buttons or page label visible.

pageButtonWidth: anInteger
Specifies the width of the notebook’s page buttons in pixels. A value of zero means that
only the page buttons are not visible.

tabWidthPolicy: anInteger
Specifies the technique that will be used to set the width of the tabs in a notebook.

Default: XmMAXIMUM (Maximum)
Valid resource values:

XmCONSTANT (Constant) - The tabs will be sized according to the value of the
majorTabWidth and minorTabWidth resources.

XmVARIABLE (Variable) - The tabs will be individually sized to fit their labels.
XmMAXIMUM (Maximum) - The tabs will all be the size of the tab needed to

accomodate the widest tab label.

Callbacks & Events

Page Change Callback
These callbacks are triggered just before any switching of pages take place.

EwPMNotebook 365

Editor

Back Page Position
Specifies where the simulated back pages appear.

Bottom Right - Back pages are drawn bottom and right.
Top Right - Back pages are drawn top and right.

Binding Type
Specifies the style of the binding.

None - No binding is drawn.
Solid - A solid binding is drawn.
Spiral - A spiral pixmap is drawn.

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Major Tab Height
Specifies the height of the notebook’s major tabs in pixels.

Major Tab Width
Specifies the width of the notebook’s major tabs in pixels.

366 Chapter 12 Widget Encyclopedia

Minor Tab Height
Specifies the height of the notebook’s minor tabs in pixels.

Minor Tab Width
Specifies the width of the notebook’s minor tabs in pixels.

Orientation
Specifies on what plane the pages turn. This is indicated by the major tabs being opposite
the binding.

Horizontal - Major tabs appear on the right and minor tabs are either on the top or
bottom depending on the back page position.

Vertical - Major tabs are either on the top or bottom depending on the back page
position and minor tabs appear on the right.

Page Button Height
Specifies the height of the notebook’s page buttons in pixels. A value of zero means the
are no buttons or page label visible.

Page Button Width
Specifies the width of the notebook’s page buttons in pixels. A value of zero means that
only the page buttons are not visible.

Tab Width Policy
Specifies the technique that will be used to set the width of the tabs in a notebook.

Constant - The tabs will be sized according to the value of the majorTabWidth and
minorTabWidth resources.

Variable - The tabs will be individually sized to fit their labels.
Maximum - The tabs will all be the size of the tab needed to accommodate the

widest tab label.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

EwProgressBar 367

 EwProgressBar

EwProgressBar provides a visual representation of a tasks progress, as a rectangular area
whose size represents a fraction of a total task.

The progress bar can be displayed horizontally and vertically, and the direction of the
progress can be specified (left-right, right-left, bottom-top, top-bottom). The size of the
progress bar’s completion indication is controlled by the XmNfractionComplete resource.
This resource is specified as a number (typically a fraction) between 0 and 1. 0 represents
no progress, and 1 represents completion. The progress bar’s completion indication can
either be a color (XmNforegroundColor resource) or any renderable image (such as an
icon or bitmap -- XmNribbonImage resource). The uncompleted progress indication is a
color (XmNbackgroundColor resource). A label can be drawn centered in the progress
bar. This can either be a percentage complete, displayed automatically by the progress
bar (XmNshowPercentage resource), or any defined renderable image as the label
(XmNimage resource).

Protocol

direction: anInteger
Specifies the direction the progress bar moves in.

Default: XmFORWARD (Forward)
Valid resource values:

XmFORWARD (Forward) - The progress bar moves forward. For horizontal
progress bars, this is left-to-right. For vertical progress bars, this is top-to-
bottom.

XmREVERSE (Reverse) - The progress bar moves backwards. For horizontal
progress bars, this is right-to-left. For vertical progress bars, this is bottom-to-
top.

368 Chapter 12 Widget Encyclopedia

fractionComplete: anInteger
Specifies the current amount of progress to show in the progress bar. This resource is a
fraction, denoting a number between 0 and 1. For example, 1/10 specifies 10 %
complete. 1 represents 100 % complete.

image: aPixmap
Specifies the renderable object which draws as the label of the progress bar. The label is
displayed only if the showPercentage resource value is false. Note that the image label is
drawn twice, in the foreground and background colors, so that the label appears
‘reversed’ over the actual foreground and background colors of the progress bar. If a
ribbon image is being used, then the label is drawn once, using the foreground color.

imageColor: aCgRGBColor
Specifies the color of the label drawn according to the image resource, or the color of the
percentage complete label, according to the showPercentage resource. If the resource
value is nil, then the label is drawn in reverse color over the colors of the progress bar
(foreground color) and the background color.

orientation: anInteger
Specifies the orientation of the progress bar.
Default: XmHORIZONTAL (Horizontal)
Valid resource values:

XmVERTICAL (Vertical) - Display the progress bar vertically.
XmHORIZONTAL (Horizontal) - Display the progress bar horizontally.

ribbonImage: aPixmap
Specifies the renderable object which draws as the completed ribbon of the progress bar.
This object is drawn instead of a color strip. Note that when a ribbon image is used, a
label (the showPercentage or image resources) will be drawn using the imageColor
resource, or if that is nil, the foregroundColor resource.

shadowType: anInteger
Specifies the drawing style for the frame around the progress bar widget.
Default: XmSHADOWIN (Shadow In)
Valid resource values:

XmSHADOWNONE (Shadow None) - No frame is drawn.
XmSHADOWIN (Shadow In) - Draws a frame such that it appears inset. This means

that the bottom shadow visuals and top shadow visuals are reversed.
XmSHADOWOUT (Shadow Out) - Draws a frame such that it appears outset.

shadowWidth: anInteger
Specifies the width for the border

showPercentage: aBoolean
Specifies the whether a label showing the percentage completed is shown in the progress
bar. If true, then the string ‘X %’ is show in the progress bar, where X is the percentage of
progress completed. If false, then no percentage label is shown.

EwProgressBar 369

Callbacks & Events

None

Editor

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Direction
Specifies the direction the progress bar moves in.

Forward - The progress bar moves forward. For horizontal progress bars, this is left-
to-right. For vertical progress bars, this is top-to-bottom.

Reverse - The progress bar moves backwards. For horizontal progress bars, this is
right-to-left. For vertical progress bars, this is bottom-to-top.

Percent Complete
Specifies the current amount of progress to show in the progress bar. This should be a
number between 0 and 100.

Image
Specifies the renderable object which draws as the label of the progress bar. The label is
displayed only if the showPercentage resource value is false. Note that the image label is
drawn twice, in the foreground and background colors, so that the label appears
‘reversed’ over the actual foreground and background colors of the progress bar. If a
ribbon image is being used, then the label is drawn once, using the foreground color.

370 Chapter 12 Widget Encyclopedia

Orientation
Specifies the orientation of the progress bar.

Vertical - Display the progress bar vertically.
Horizontal - Display the progress bar horizontally.

Ribbon Image
Specifies the renderable object which draws as the completed ribbon of the progress bar.
This object is drawn instead of a color strip. Note that when a ribbon image is used, a
label (the showPercentage or image resources) will be drawn using the imageColor
resource, or if that is nil, the foregroundColor resource.

Shadow Type
Specifies the drawing style for the frame around the progress bar widget.

Shadow None - No frame is drawn.
Shadow In - Draws a frame such that it appears inset. This means that the bottom

shadow visuals and top shadow visuals are reversed.
Shadow Out - Draws a frame such that it appears outset.

Shadow Width
Specifies the width for the border

Show Percentage
Specifies the whether a label showing the percentage completed is shown in the progress
bar. If true, then the string ‘X %’ is show in the progress bar, where X is the percentage of
progress completed. If false, then no percentage label is shown.

Value
Specifies the slider current position along the scale, between minimum and maximum.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

EwSlider 371

EwSlider

EwSlider control provides an analog representation of a value within a specified range.
The range is represented by a horizontal or vertical shaft. The current value is indicated
by the position of a slider arm which can be moved along the length of the shaft.

EwSlider provides functionality for two scales, which may be displayed above and below
a horizontal slider, or to the left and right of a vertical slider. Both scales provide a
minimum value, maximum value and resolution. The resolution represents the size of the
increments between the minimum and maximum, (e.g. min = 0, max = 100, resolution =
10 would result in valid values of 0, 10, 20...100). Although it is not necessary to display
any tick marks, a primary scale must be specified. A secondary scale is optional.

EwSlider also provides the option of increment and decrement buttons. If requested,
these buttons can be positioned together at either end of the shaft, or separately, one at
each end of the shaft. The slider value is changed by moving the slider arm; either by
dragging it with the mouse, depressing the increment or decrement buttons, or by using
the arrow keys on the keyboard. The slider arm moves in units specified by the
resolution of the current scale, as specified by the xmNcurrentScale resource.

Protocol

activeScale: anInteger
Indicates which scale is the active scale. The active scale indicates the scale to be used
when positioning the slider arm.

Default: XmTOPORLEFT (Top or Left)
Valid resource values:

XmTOPORLEFT (Top or Left) - Use the top or left scale (depending on the value of
the orientation resource) when manipulating the slider value.

XmBOTTOMORRIGHT (Bottom or Right) - Use the bottom or right scale
(depending on the value of the orientation resource) when manipulating the
slider value.

372 Chapter 12 Widget Encyclopedia

bottomOrRightScaleMax: anInteger
Specifies the slider’s maximum value for the bottom or right scale.

bottomOrRightScaleMin: anInteger
Specifies the slider’s minimum value for the bottom or right scale.

bottomOrRightScaleResolution: anInteger
Represents the size of the increments between the min and max values for the bottom or
right scale, e.g., a resolution of 2 for a scale with min = 0 and max = 100 would result in
51 increments, namely 0, 2, 4, 6,...,100.

bottomOrRightScaleShaftIncrement: anInteger
Represents the amount to be added to or subtracted from the current value when the left
mouse button is pressed inside the shaft to the left or right of the slider arm, respectively.
The value of the shaftIncrement resource must be a multiple of the scaleResolution
resource.

bottomOrRightScaleValue: anInteger
Specifies the value associated with the slider’s current position along the bottom or right
scale, between minimum and maximum.

buttonStyle: anInteger
Indicates where buttons should be displayed relative to the shaft.

Default: XmBUTTONSNONE (No Buttons)
Valid resource values:

XmBUTTONSNONE (No Buttons) - No buttons.
XmBUTTONSSPLIT (Split) - One button on either end of the shaft.
XmBUTTONSBEGINNING (Beginning) - For vertical sliders, both buttons above

shaft; for horizontal sliders, both buttons to the left of the shaft.
XmBUTTONSEND (End) - For vertical sliders, both buttons below shaft; for

horizontal sliders, both buttons to the right of the shaft.

horizontalMargin: anInteger
Indicates the number of pixels to be used as a margin between the slider components
(scales, shaft, buttons) and the left and right edges of the widget’s area.

orientation: anInteger
Indicates whether slider should be displayed vertically or horizontally.

Default: XmHORIZONTAL (Horizontal)
Valid resource values:

XmVERTICAL (Vertical) - Display the slider vertically.
XmHORIZONTAL (Horizontal) - Display the slider horizontally.

EwSlider 373

readOnly: aBoolean
Indicates whether the slider is being used as a read-only status indicator. If so, the value
of the ribbonStrip resource is set to true and no slider arm or buttons are displayed.

ribbonStrip: aBoolean
Indicates whether the area between the minimum and the slider arm should be filled.

snapToResolution: aBoolean
Indicates the current snap policy, which regulates the positioning of the slider arm when
the mouse button is released after dragging. The slider’s current value will always be a
multiple of the resolution, regardless of the snap policy.

thickness: anInteger
Specifies the slider shaft vertical thickness (in pixels) for a horizontal slider or horizontal
thickness (in pixels) for a vertical slider.

topOrLeftScaleMax: anInteger
Specifies the slider’s maximum value for the top or left scale.

topOrLeftScaleMin: anInteger
Specifies the slider’s minimum value for the top or left scale.

topOrLeftScaleResolution: anInteger
Represents the size of the increments between the min and max values for the top or left
scale, e.g., a resolution of 2 for a scale with min = 0 and max = 100 would result in 51
increments, namely 0, 2, 4, 6,...,100.

topOrLeftScaleShaftIncrement: anInteger
Represents the amount to be added to or subtracted from the current value when the left
mouse button is pressed inside the shaft to the left or right of the slider arm, respectively.
The value of the shaftIncrement resource must be a multiple of the scaleResolution
resource.

topOrLeftScaleValue: anInteger
Specifies the value associated with the slider’s current position along the top or left scale,
between minimum and maximum.

verticalMargin: anInteger
Indicates the number of pixels to be used as a margin between the slider components
(scales, shaft, buttons) and the top and bottom edges of the widget’s area.

374 Chapter 12 Widget Encyclopedia

Callbacks & Events

Drag Callback
These callbacks are triggered when the slider position changes as the arm is being
dragged.

Call data arguments:
topOrLeftScaleValue - the value associated with the top or left scale.
bottomOrRightScaleValue - the value associated with the bottom or right scale.

Focus Callback
These callbacks are triggered before the widget has accepted input focus.

Losing Focus Callback
These callbacks are triggered before the widget loses input focus.

Value Changed Callback
These callbacks are triggered when the value of the slider has changed.

Call data arguments:
topOrLeftScaleValue - the value associated with the top or left scale.
bottomOrRightScaleValue - the value associated with the bottom or right scale.

Editor

EwSlider 375

Active Scale
Indicates which scale is the active scale. The active scale indicates the scale to be used
when positioning the slider arm.

Bottom or Right - Use the bottom or right scale (depending on the value of the
orientation resource) when manipulating the slider value.

Top or Left - Use the top or left scale (depending on the value of the orientation
resource) when manipulating the slider value.

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Bottom Or Right Scale Max
Specifies the slider’s maximum value for the bottom or right scale.

Bottom Or Right Scale Min
Specifies the slider’s minimum value for the bottom or right scale.

Bottom Or Right Scale Resolution
Represents the size of the increments between the min and max values for the bottom or
right scale, e.g., a resolution of 2 for a scale with min = 0 and max = 100 would result in
51 increments, namely 0, 2, 4, 6,...,100.

Bottom Or Right Scale Shaft Increment
Represents the amount to be added to or subtracted from the current value when the left
mouse button is pressed inside the shaft to the left or right of the slider arm, respectively.
The value of the shaftIncrement resource must be a multiple of the scaleResolution
resource.

Bottom Or Right Scale Value
Specifies the value associated with the slider’s current position along the bottom or right
scale, between minimum and maximum.

Button Style
Indicates where buttons should be displayed relative to the shaft.

Beginning - For vertical sliders, both buttons above shaft; for horizontal sliders, both
buttons to the left of the shaft.

End - For vertical sliders, both buttons below shaft; for horizontal sliders, both
buttons to the right of the shaft.

No Buttons - No buttons.
Split - One button on either end of the shaft.

376 Chapter 12 Widget Encyclopedia

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Horizontal Margin
Indicates the number of pixels to be used as a margin between the slider components
(scales, shaft, buttons) and the left and right edges of the widget’s area.

Orientation
Indicates whether slider should be displayed vertically or horizontally.

Horizontal - Display the slider horizontally.
Vertical - Display the slider vertically.

Read Only
Indicates whether the slider is being used as a read-only status indicator. If so, the value
of the ribbonStrip resource is set to true and no slider arm or buttons are displayed.

Ribbon Strip
Indicates whether the area between the minimum and the slider arm should be filled.

Snap To Resolution
Indicates the current snap policy, which regulates the positioning of the slider arm when
the mouse button is released after dragging. The slider’s current value will always be a
multiple of the resolution, regardless of the snap policy.

Thickness
Specifies the slider shaft vertical thickness (in pixels) for a horizontal slider or horizontal
thickness (in pixels) for a vertical slider.

Top Or Left Scale Max
Specifies the slider’s maximum value for the top or left scale.

Top Or Left Scale Min
Specifies the slider’s minimum value for the top or left scale.

Top Or Left Scale Resolution
Represents the size of the increments between the min and max values for the top or left
scale, e.g., a resolution of 2 for a scale with min = 0 and max = 100 would result in 51
increments, namely 0, 2, 4, 6,...,100.

Top Or Left Scale Shaft Increment
Represents the amount to be added to or subtracted from the current value when the left
mouse button is pressed inside the shaft to the left or right of the slider arm, respectively.
The value of the shaftIncrement resource must be a multiple of the scaleResolution
resource.

EwSlider 377

Top Or Left Scale Value
Specifies the value associated with the slider’s current position along the top or left scale,
between minimum and maximum.

Vertical Margin
Indicates the number of pixels to be used as a margin between the slider components
(scales, shaft, buttons) and the top and bottom edges of the widget’s area.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

378 Chapter 12 Widget Encyclopedia

EwSpinButton

A spin button has three parts. An entry field which displays one value from a range of
numeric values or a collection of string values. And up and down arrow buttons which
allow the user to scroll though the values. A user can increment or decrement the values
using up/down arrow keys or by selecting the up/down buttons. A user can change the
value in an editable spin button by typing in the entry field.

Protocol

editable: aBoolean
Specifies whether a user can edit text in the entry field part of the spin button.

increment: anInteger
Specifies the amount to increase or decrease a numeric spin button when the
corresponding arrow is selected.

items: anOrderedCollection
Specifies the list of Strings being spun over.

maximum: anInteger
Specifies a numeric spin button’s maximum value.

minimum: anInteger
Specifies a numeric spin button’s minimum value.

wrap: aBoolean
Specifies whether the spin button should cycle or stop upon reaching the end of the
collection, or max or min for a numeric spin button.

Callbacks & Events

Activate Callback
These callbacks are triggered when the user presses the default action key. This is
typically a carriage return.

EwSpinButton 379

Decrement Callback
These callbacks are triggered when the user decreases the spin button value by one step.
This can happen either when the down arrow key is pressed or when the down arrow
button is selected with the mouse.

Focus Callback
These callbacks are triggered before the entry field has accepted input focus.

Increment Callback
These callbacks are triggered when the user increases the spin button value by one step.
This can happen either when the up arrow key is pressed or the up arrow button is
selected with the mouse.

Losing Focus Callback
These callbacks are triggered before the entry field loses input focus.

Modify Verify Callback
These callbacks are triggered before text is deleted from or inserted into the widget. This
callback can be used to check a character value after it is entered by the user and before it
is accepted by the control.

Call data arguments:
doit - Indicates whether the action that invoked the callback is performed.

Setting doit to false negates the action.
text - a String which contains the text which is to be inserted.
currInsert - the current position of the insert cursor.
startPos - the starting position of the text to modify.
endPos - the ending position of the text to modify.

Value Changed Callback
These callbacks are triggered after text is deleted from or inserted into the widget. This
callback can be used to retrieve the current value of the widget.

380 Chapter 12 Widget Encyclopedia

Editor

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Editable
Specifies whether a user can edit text in the entry field part of the spin button.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Increment
Specifies the amount to increase or decrease a numeric spin button when the
corresponding arrow is selected.

Items
Specifies the list of Strings being spun over.

EwSpinButton 381

Item Type
Specifies whether the spin button spins through a set of numbers or stings

Numeric - Spin through a set of numbers.
String - Spin through a set of strings.

Maximum
Specifies a numeric spin button’s maximum value.

Minimum
Specifies a numeric spin button’s minimum value.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

Wrap
Specifies whether the spin button should cycle or stop upon reaching the end of the
collection, or max or min for a numeric spin button.

382 Chapter 12 Widget Encyclopedia

EwTableColumn
The EwTableColumn class defines a single column in an EwTableList or EwTableTree
widget. In addition to details about the look and feel of the column, it also provides a
callback which the application must hook to provide the cell value for an item in that
column. The column also provides callbacks to notify the application when a cell is
about to be edited and when the edit is about to end.

Note: EwTableColumn objects may only be created from within the EwTableList or
ExTableTree editors.

Protocol

editable: aBoolean
Specifies whether the cells in this column are editable.

etched: aBoolean
Specifies whether this column is to be etched.

heading: aString
Specifies the heading object to be displayed at the top of the column.

horizontalAlignment: anInteger
Specifies how the cells in this column should be aligned horizontally.

Default: XmALIGNMENTBEGINNING (Left)
Valid resource values:

XmALIGNMENTBEGINNING (Left) - Align the cells to the left.
XmALIGNMENTCENTER (Center) - Align the cells to the center.
XmALIGNMENTEND (Right) - Align the cells to the right.

horizontalHeadingAlignment: anInteger
Specifies how this column’s heading should be aligned horizontally.

Default: XmALIGNMENTBEGINNING (Left)
Valid resource values:

XmALIGNMENTBEGINNING (Left) - Align the heading to the left.
XmALIGNMENTCENTER (Center) - Align the heading to the center.
XmALIGNMENTEND (Right) - Align the heading to the right.

resizable: aBoolean
Specifies whether the column is resizable by the user. If so, the user can drag the right
side of the column heading to change the column width

EwTableColumn 383

showInUse: aBoolean
Specifies whether the column should show the inUse emphasis for each item.

verticalAlignment: anInteger
Specifies how the cells and heading in this column should be aligned vertically.

Default: XmALIGNMENTBEGINNING (Top)
Valid resource values:

XmALIGNMENTBEGINNING (Top) - Align the cells to the top.
XmALIGNMENTCENTER (Center) - Align the cells to the vertical center.
XmALIGNMENTEND (Bottom) - Align the cells to the bottom.

verticalSeparatorThickness: anInteger
Specifies the thickness of the line shown to the right of each cell in the column.

width: anInteger
Specifies the width of the column in pixels. This does not includes the width of any
emphasis or vertical separator.

Callbacks & Events

Begin Edit Callback
These callbacks are triggered when an item is about to be edited.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
doit - indicates whether the action that invoked the callback is performed.
editPolicy - the edit policy to be used to edit the cell value.
value - the value of the cell which is about to be edited.

Cell Value Callback
These callbacks are triggered when an item’s cell value is needed for this column.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
column - the EwTableColumn for which a cell value is needed.
value - the value of the cell which is about to be edited.

384 Chapter 12 Widget Encyclopedia

End Edit Callback
These callbacks are triggered when an item is done being edited.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
doit - indicates whether the action that invoked the callback is performed.
editPolicy - the edit policy to be used to edit the cell value.
value - the value of the cell which is about to be edited.

Editor

Callbacks
Launches the Callback Editor on the edited column.

Editable
Specifies whether the cells in this column are editable.

Etched
Specifies whether this column is to be etched.

Heading
Specifies the heading object to be displayed at the top of the column.

Horizontal Alignment
Specifies how the cells in this column should be aligned horizontally.

Center - Align the cells to the center.
Left - Align the cells to the left.
Right - Align the cells to the right.

EwTableColumn 385

Horizontal Heading Alignment
Specifies how this column’s heading should be aligned horizontally.

Center - Align the heading to the center.
Left - Align the heading to the left.
Right - Align the heading to the right.

Resizable
Specifies whether the column is resizable by the user. If so, the user can drag the right
side of the column heading to change the column width

Show In Use
Specifies whether the column should show the inUse emphasis for each item.

Vertical Alignment
Specifies how the cells and heading in this column should be aligned vertically.

Bottom - Align the cells to the bottom.
Center - Align the cells to the vertical center.
Top - Align the cells to the top.

Vertical Separator Thickness
Specifies the thickness of the line shown to the right of each cell in the column.

Width
Specifies the width of the column in pixels. This does not includes the width of any
emphasis or vertical separator.

386 Chapter 12 Widget Encyclopedia

EwTableList

EwTableList provides a vertical, multi-column list of items which shows a row of cells
for each item in the list. The items in the list are typically actual application objects, not
strings or arrays. For example, the items (rows) might be employee objects, and the
columns might show the name, salary, and hire date for each employee.

The application must define the columns in the table by providing an array of
EwTableColumn instances. These each define a single column in the table. In addition
to defining the heading, width and other visual parameters, the column also provides a
cellValueCallback. The application must hook this callback on each column. This
callback fires whenever the widget needs to know what value to put in a cell for a given
item. The application must then set the callData value to be the renderable object (see
below) which is to reside in the cell. For example, when the widget needs to place an
employee’s salary in the salary column, it fires the callValueCallback. The callData tells
for which employee the salary is needed (callData item). The application might hook the
cellValueCallback from the Salary column to a method like:

salary: aWidget clientData: clientData callData: callData
“The widget needs an employee’s salary.”
| employee |
employee := callData item.
callData value: employee salary.

The application may or may not hook the headingCellValueCallback. Column headings
can be set via the EwTableColumn>>heading: method or via the
headingCellValueCallback.

Both the headingCellValueCallback and cellValueCallback can be used to set color for a
particular cell. Colors can be specified for the foreground, background,
selectedForeground, and selectedBackground of a cell.

EwTableList 387

The objects used for cell values and headings are typically Strings, Numbers, and
CgIcons, but this is not a requirement. It is possible for an application to use any object
as the cell value or heading. Any item which understands #ewHeightUsing :,
#ewWidthUsing : and #ewDrawUsing : (called a “renderable object”) can be used for a
cell value. Since String, Number, and CgIcon already implement the standard renderable
object protocol, they can easily be used. Also, since Object provides default renderable
behavior, any object can be rendered, although the default rendering is to render the
object’s printString.

Cell editing can take place automatically or under program control. For cell editing to be
automatic, the widget must have editable true, and the columns in which cells may be
edited must also have editable true. Under program control, this is not required.

When a cell is about to be edited, either because the user clicked in it or because the
program called #editCellAt : or #editSelectedCell , the column fires its
beginEditCallback. The application must hook this callback or else editing will never
occur. At a minimum, the application must set the callData doit: true to allow editing to
begin.

The callData also includes a default editPolicy. The edit policy defines the type of widget
to be used for editing as well as some other edit semantics. The default edit policy is an
EwTextEditPolicy set up to use a single-line CwText as the edit widget. The application
can substitute a more appropriate edit policy for the cell about to be edited. For example,
if the cell contains a day of the week, the application may wish to use an
EwComboBoxEditPolicy. Applications can define their own custom edit policies by
overriding the behavior in EwEditPolicy as required. The supplied subclasses of
EwEditPolicy serve as good examples for this.

When editing is about to end, or when the value in the edit widget has been changed (the
exact details of when a change has occurred depend on the edit policy), the column fires
its endEditCallback. The callData includes the old value and the new value. The
application should hook this callback and use the newValue to change some application
object. The cell is then automatically refreshed after the callback fires, so the new value is
obtained and displayed.

Note: This widget does not provide scrollbars on is own. In order to have scrollbars, it
must be placed within a CwScrolledWindow instance. The widget may be either initially
created within the scrolled window, or it may be dragged into an existing scrolled
window. Once this has been done, the two widgets are coupled such that they may not be
separated.

Protocol

applicationDrawnBackground: aBoolean
Specifies whether the application wants the Draw Background Callback to fire when an

388 Chapter 12 Widget Encyclopedia

item’s background needs to be drawn. If this value is false, then the widget will draw the
normal default background for each selected and non-selected item.

cellTabbingPolicy: anInteger
Specifies how tabbing should occur amongst cells.
Default: XmACROSSROWS (Across Rows)
Valid resource values:

XmACROSSROWS (Across Rows) - When the last cell in a row is reached when
tabbing forward, go to the first cell in the next row. When the first cell in a row
is reached when tabbing backwards, go to the last cell in the previous row.

XmAPPLICATIONDEFINED (Application Defined) - Tabbing behavior is defined
by the application. To use this option, the application must hook the Cell Tab
Callback.

XmWITHINROW (Within Row) - When the last cell in a row is reached when
tabbing forward, go to the first cell in the same row. When the first cell in a row
is reached when tabbing backwards, go to the last cell in the same row.

editable: aBoolean
Specifies whether the cells in the table are editable. For a cell to be editable, the table
widget must be editable, the column must be editable, and the application must hook the
Begin Edit Callback and set the callData doit to true

headingFont: aString
Specifies the font associated with the headings.

headingSeparatorThickness: anInteger
Specifies the thickness of the horizontal line separating the column headings from the
rest of the table.

headingVisualStyle: anInteger
Defines the how the cells are displayed.
Default: XmETCHCELLS (Etch Cells)
Valid resource values:

XmFLAT (Flat) - Looks like a list box.
XmETCHROWS (Etch Rows) - Each row is etched.
XmETCHCELLS (Etch Cells) - Each cell in an etched column is individually

etched.

itemHeight: anInteger
Specifies the height in pixels of items in the list. This includes the margin height on the
top and bottom of the item as well as two pixels for emphasis.

items: anOrderedCollection
An array of objects that are to be displayed as the list items.

lockedColumns: anInteger
Specifies the number of columns to be locked down on the left side of the table. A
column can be locked only if its preceding column is also locked. When scrolling, the

EwTableList 389

locked columns remain fixed on the left side and all other columns scroll under the
locked columns. This value must be no greater than the number of columns.

rowSeparators: aBoolean
Specifies whether the rows are separated by a horizontal line.

scrollHorizontal: aBoolean
This resource specifies whether a horizontal scroll bar should be used for the list.

selectableColumns: aBoolean
Defines whether the user may select columns by clicking on their headings.

selectedItems: anOrderedCollection
An OrderedCollection of Objects that represents the list items that are currently selected,
either by the user or the application.

selectionPolicy: anInteger
Defines the interpretation of the selection action.

Default: XmBROWSESELECT (Browse Select)
Valid resource values:

XmSINGLESELECT (Single Select) - Allows only single selections. Under
Windows and OS/2, this is the same as Browse Select

XmMULTIPLESELECT (Multiple Select) - Allows multiple items to be selected.
The selection of an item is toggled when it is clicked on. Clicking on an item
does not deselect previously selected items.

XmEXTENDEDSELECT (Extended Select) - Allows multiple items to be selected,
either by dragging the selection or by clicking on items with a modifier key held
down. Clicking on an item without a modifier key held down deselects all
previously selected items.

XmBROWSESELECT (Browse Select) - Allows only single selection. The selection
changes when the mouse is dragged. This is the default Selection Policy. Under
Windows and OS/2, this is the same as Single Select

XmREADONLYSELECT (Read Only Select) - Allows navigation, but no selection
or callbacks.

XmCELLSINGLESELECT (Cell Single Select) - Allows single selection of cells.
XmCELLBLOCKSELECT (Cell Block Select) - Allows selection of a rectangular

block of cells.

separatorsToExtremes: aBoolean
Defines whether row and column separators are to be extended to the extreme right and
bottom edges of the table.

topItemPosition: anInteger
Specifies the Integer position of the item that is the first visible item in the list.

390 Chapter 12 Widget Encyclopedia

visualStyle: anInteger
Defines the how the cells are displayed.

Default: XmFLAT (Flat)
Valid resource values:

XmFLAT (Flat) - Looks like a list box.
XmETCHROWS (Etch Rows) - Each row is etched.
XmETCHCELLS (Etch Cells) - Each cell in an etched column is individually

etched.
Callbacks & Events
Browse Selection Callback
These callbacks are triggered when an item is selected in the browse selection mode. It is
only valid when Selection Policy is Browse Select.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Cell Block Selection Callback
These callbacks are triggered when a block of cells is selected in cell block selection
mode.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.
columnPosition - the Integer position of the selected column.
columnPositions - a Collection of Integers representing the selected columns.
selectedCells - a Set of Points representing the selected cells.

Cell Single Selection Callback
These callbacks are triggered when an item is selected in cell single selection mode.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

EwTableList 391

columnPosition - the Integer position of the selected column.
columnPositions - a Collection of Integers representing the selected columns.
selectedCells - a Set of Points representing the selected cells.

Column Heading Selection Callback
These callbacks are triggered when a column heading is selected

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.
columnPosition - the Integer position of the selected column.
columnPositions - a Collection of Integers representing the selected columns.
selectedCells - a Set of Points representing the selected cells.

Default Action Callback
These callbacks are triggered when an item is double clicked.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Draw Background Callback
These callbacks are triggered when an item’s background needs to be drawn.

Call data arguments:
item - the item which is the selected item.
doit - indicates whether the action that invoked the callback is performed.
value - the value which is the renderable whose background needs drawing.
selected - indicates whether the item whose background needs to be drawn is

selected.
renderContext - the render context to be used in drawing the item’s background
columnPosition - the Integer position of the column of the cell whose background

needs to be drawn.
heading - indicates whether the cell whose background needs to be drawn is a

heading cell.

392 Chapter 12 Widget Encyclopedia

Extended Selection Callback
These callbacks are triggered when items are selected using the extended selection mode.
It is only valid when Selection Policy is Extended Select.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Modify Verify Callback
These callbacks are triggered when the selection is about to be changed. The application
may ‘undo’ the selection change by setting the doit field of the callData to false.

Call data arguments:
doit - Indicates whether the action that invoked the callback is performed.

Setting doit to false negates the action.

Multiple Selection Callback
These callbacks are triggered when an item is selected in multiple selection mode. It is
only valid when Selection Policy is Multiple Select.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Single Selection Callback
These callbacks are triggered when an item is selected in single selection mode. It is only
valid when Selection Policy is Single Select.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

EwTableList 393

Visual Info Callback
These callbacks are triggered when an item’s icon, label and isInUse are needed. The
application MUST hook this callback and set the callData icon to the CgIcon (or other
renderable object) to be displayed as the icon for the item in callData item. It must also
set the callData label to the String (or other renderable object) to be displayed as the label
for the item.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
isInUse - the inUse status (Boolean) which is the default to be used for the item in

the callback.

Editor

Application Drawn Background
Specifies whether the application wants the Draw Background Callback to fire when an
item’s background needs to be drawn. If this value is false, then the widget will draw the
normal default background for each selected and non-selected item.

394 Chapter 12 Widget Encyclopedia

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Cell Tabbing Policy
Specifies how tabbing should occur amongst cells.

Across Rows - When the last cell in a row is reached when tabbing forward, go to the
first cell in the next row. When the first cell in a row is reached when tabbing
backwards, go to the last cell in the previous row.

Application Defined - Tabbing behavior is defined by the application. To use this
option, the application must hook the Cell Tab Callback.

Within Row - When the last cell in a row is reached when tabbing forward, go to the
first cell in the same row. When the first cell in a row is reached when tabbing
backwards, go to the last cell in the same row.

Editable
Specifies whether the cells in the table are editable. For a cell to be editable, the table
widget must be editable, the column must be editable, and the application must hook the
Begin Edit Callback and set the callData doit to true

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Heading Font
Specifies the font list associated with the headings.

Heading Separator Thickness
Specifies the thickness of the horizontal line separating the column headings from the
rest of the table.

Heading Visual Style
Defines the how the cells are displayed.

Etch Cells - Each cell in an etched column is individually etched.
Etch Rows - Each row is etched.
Flat - Looks like a list box.

Item Height
Specifies the height in pixels of items in the list. This includes the margin height on the
top and bottom of the item as well as two pixels for emphasis.

EwTableList 395

Items
An array of objects that are to be displayed as the list items.

Locked Columns
Specifies the number of columns to be locked down on the left side of the table. A
column can be locked only if its preceding column is also locked. When scrolling, the
locked columns remain fixed on the left side and all other columns scroll under the
locked columns. This value must be no greater than the number of columns.

Row Separators
Specifies whether the rows are separated by a horizontal line.

Scroll Horizontal
This resource specifies whether a horizontal scroll bar should be used for the list.

Selectable Columns
Defines whether the user may select columns by clicking on their headings.

Selected Items
An OrderedCollection of Objects that represents the list items that are currently selected,
either by the user or the application.

Selection Policy
Defines the interpretation of the selection action.

Browse Select - Allows only single selection. The selection changes when the mouse
is dragged. This is the default Selection Policy. Under Windows and OS/2, this is
the same as Single Select

Cell Block Select - Allows selection of a rectangular block of cells.
Cell Single Select - Allows single selection of cells.
Extended Select - Allows multiple items to be selected, either by dragging the

selection or by clicking on items with a modifier key held down. Clicking on an
item without a modifier key held down deselects all previously selected items.

Multiple Select - Allows multiple items to be selected. The selection of an item is
toggled when it is clicked on. Clicking on an item does not deselect previously
selected items.

Read Only Select - Allows navigation, but no selection or callbacks.
Single Select - Allows only single selections. Under Windows and OS/2, this is the

same as Browse Select

Separators To Extremes
Defines whether row and column separators are to be extended to the extreme right and
bottom edges of the table.

Top Item Position
Specifies the Integer position of the item that is the first visible item in the list.

396 Chapter 12 Widget Encyclopedia

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

Visual Style
Defines the how the cells are displayed.

Etch Cells - Each cell in an etched column is individually etched.
Etch Rows - Each row is etched.
Flat - Looks like a list box.

EwTableTree 397

EwTableTree

EwTableTree provides a vertical, multi-column tree of items which shows a row of cells
for each item in the list. The items in the list are typically actual application objects, not
strings or arrays. For example, the items (rows) might be employee objects, and the
columns might show the name, salary, and hire date for each employee. The application
should only set the root level items in the tree as the items in the widget. The
descendants of those root items can then be shown via #expandPos:notify: et al.

The hierarchical aspect of the list is handled by the visualInfoCallback and the
childrenCallback. The application must hook the visualInfoCallback and set the callData
hasChildren to true or false to indicate whether the item in callData item has children.
The application must also hook the childrenCallback and set the callData value to be the
list of children for the item in callData item. The childrenCallback only fires for items
for which hasChildren is true.

The hierarchyPolicy determines how the hierarchy is to be shown. This includes what the
indentation level should be as well as whether to draw lines connecting the items and
whether to show some kind of button beside items which have children. By default the
hierarchyPolicy is an instance of EwHierarchyPolicy with lines set to true. The other
hierarchy policy class provided is EwIconHierarchyPolicy. This class shows an icon
beside each item to act as an expand/collapse button. The application can specify which
icon to use in different situations so that the button can animate properly as it is pressed.
The indentation, lines, and buttons are only shown in the first column.

The application must define the columns in the table by providing an array of
EwTableColumn instances. These each define a single column in the table. In addition
to defining the heading, width and other visual parameters, the column also provides a
cellValueCallback. The application must hook this callback on each column. This
callback fires whenever the widget needs to know what value to put in a cell for a given

398 Chapter 12 Widget Encyclopedia

item. The application must then set the callData value to be the renderable object (see
below) which is to reside in the cell. For example, when the widget needs to place an
employee’s salary in the salary column, it fires the callValueCallback. The callData tells
for which employee the salary is needed (callData item). The application might hook the
cellValueCallback from the Salary column to a method like:

salary: aWidget clientData: clientData callData: callData
“The widget needs an employee’s salary.”
| employee |
employee := callData item.
callData value: employee salary.

The application may or may not hook the headingCellValueCallback. Column headings
can be set via the EwTableColumn>>heading: method or via the
headingCellValueCallback.

Both the headingCellValueCallback and cellValueCallback can be used to set color for a
particular cell. Colors can be specified for the foreground, background,
selectedForeground, and selectedBackground of a cell

The objects used for cell values and headings are typically Strings, Numbers, and
CgIcons, but this is not a requirement. It is possible for an application to use any object
as the cell value or heading. Any item which understands #ewHeightUsing :,
#ewWidthUsing : and #ewDrawUsing : (called a “renderable object”) can be used for a
cell value. Since String, Number, and CgIcon already implement the standard renderable
object protocol, they can easily be used. Also, since Object provides default renderable
behavior, any object can be rendered, although the default rendering is to render the
object’s printString.

Cell editing can take place automatically or under program control. For cell editing to be
automatic, the widget must have editable true, and the columns in which cells may be
edited must also have editable true. Under program control, this is not required.

When a cell is about to be edited, either because the user clicked in it or because the
program called #editCellAt : or #editSelectedCell , the column fires its
beginEditCallback. The application must hook this callback or else editing will never
occur. At a minimum, the application must set the callData doit: true to allow editing to
begin.

The callData also includes a default editPolicy. The edit policy defines the type of widget
to be used for editing as well as some other edit semantics. The default edit policy is an
EwTextEditPolicy set up to use a single-line CwText as the edit widget. The application
can substitute a more appropriate edit policy for the cell about to be edited. For example,
if the cell contains a day of the week, the application may wish to use an
EwComboBoxEditPolicy. Applications can define their own custom edit policies by
overriding the behavior in EwEditPolicy as required. The supplied subclasses of
EwEditPolicy serve as good examples for this.

EwTableTree 399

When editing is about to end, or when the value in the edit widget has been changed (the
exact details of when a change has occurred depend on the edit policy), the column fires
its endEditCallback. The callData includes the old value and the new value. The
application should hook this callback and use the newValue to change some application
object. The cell is then automatically refreshed after the callback fires, so the new value is
obtained and displayed.

Note: This widget does not provide scrollbars on is own. In order to have scrollbars, it
must be placed within a CwScrolledWindow instance. The widget may be either initially
created within the scrolled window, or it may be dragged into an existing scrolled
window. Once this has been done, the two widgets are coupled such that they may not be
separated.

Protocol

applicationDrawnBackground: aBoolean
Specifies whether the application wants the Draw Background Callback to fire when an
item’s background needs to be drawn. If this value is false, then the widget will draw the
normal default background for each selected and non-selected item.

cellTabbingPolicy: anInteger
Specifies how tabbing should occur amongst cells.

Default: XmACROSSROWS (Across Rows)
Valid resource values:

XmACROSSROWS (Across Rows) - When the last cell in a row is reached when
tabbing forward, go to the first cell in the next row. When the first cell in a row
is reached when tabbing backwards, go to the last cell in the previous row.

XmAPPLICATIONDEFINED (Application Defined) - Tabbing behavior is defined
by the application. To use this option, the application must hook the Cell Tab
Callback.

XmWITHINROW (Within Row) - When the last cell in a row is reached when
tabbing forward, go to the first cell in the same row. When the first cell in a row
is reached when tabbing backwards, go to the last cell in the same row.

editable: aBoolean
Specifies whether the cells in the table are editable. For a cell to be editable, the table
widget must be editable, the column must be editable, and the application must hook the
Begin Edit Callback and set the callData doit to true

headingFont: aString
Specifies the font list associated with the headings.

headingSeparatorThickness: anInteger
Specifies the thickness of the horizontal line separating the column headings from the
rest of the table.

400 Chapter 12 Widget Encyclopedia

headingVisualStyle: anInteger
Defines the how the cells are displayed.

Default: XmETCHCELLS (Etch Cells)
Valid resource values:

XmFLAT (Flat) - Looks like a list box.
XmETCHROWS (Etch Rows) - Each row is etched.
XmETCHCELLS (Etch Cells) - Each cell in an etched column is individually

etched.

itemHeight: anInteger
Specifies the height in pixels of items in the list. This includes the margin height on the
top and bottom of the item as well as two pixels for emphasis.

items: anOrderedCollection
An array of objects that are to be displayed as the list items.

lockedColumns: anInteger
Specifies the number of columns to be locked down on the left side of the table. A
column can be locked only if its preceding column is also locked. When scrolling, the
locked columns remain fixed on the left side and all other columns scroll under the
locked columns. This value must be no greater than the number of columns.

rowSeparators: aBoolean
Specifies whether the rows are separated by a horizontal line.

scrollHorizontal: aBoolean
This resource specifies whether a horizontal scroll bar should be used for the list.

selectableColumns: aBoolean
Defines whether the user may select columns by clicking on their headings.

selectedItems: anOrderedCollection
An OrderedCollection of Objects that represents the list items that are currently selected,
either by the user or the application.

selectionPolicy: anInteger
Defines the interpretation of the selection action.

Default: XmBROWSESELECT (Browse Select)
Valid resource values:

XmSINGLESELECT (Single Select) - Allows only single selections. Under
Windows and OS/2, this is the same as Browse Select

XmMULTIPLESELECT (Multiple Select) - Allows multiple items to be selected.
The selection of an item is toggled when it is clicked on. Clicking on an item
does not deselect previously selected items.

EwTableTree 401

XmEXTENDEDSELECT (Extended Select) - Allows multiple items to be selected,
either by dragging the selection or by clicking on items with a modifier key held
down. Clicking on an item without a modifier key held down deselects all
previously selected items.

XmBROWSESELECT (Browse Select) - Allows only single selection. The selection
changes when the mouse is dragged. This is the default Selection Policy. Under
Windows and OS/2, this is the same as Single Select

XmREADONLYSELECT (Read Only Select) - Allows navigation, but no selection
or callbacks.

XmCELLSINGLESELECT (Cell Single Select) - Allows single selection of cells.
XmCELLBLOCKSELECT (Cell Block Select) - Allows selection of a rectangular

block of cells.

separatorsToExtremes: aBoolean
Defines whether row and column separators are to be extended to the extreme right and
bottom edges of the table.

topItemPosition: anInteger
Specifies the Integer position of the item that is the first visible item in the list.

visualStyle: anInteger
Defines the how the cells are displayed.

Default: XmFLAT (Flat)
Valid resource values:

XmFLAT (Flat) - Looks like a list box.
XmETCHROWS (Etch Rows) - Each row is etched.
XmETCHCELLS (Etch Cells) - Each cell in an etched column is individually

etched.

Callbacks & Events

Browse Selection Callback
These callbacks are triggered when an item is selected in the browse selection mode. It is
only valid when Selection Policy is Browse Select.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Cell Block Selection Callback
These callbacks are triggered when a block of cells is selected in cell block selection
mode.

402 Chapter 12 Widget Encyclopedia

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.
columnPosition - the Integer position of the selected column.
columnPositions - a Collection of Integers representing the selected columns.
selectedCells - a Set of Points representing the selected cells.

Cell Single Selection Callback
These callbacks are triggered when an item is selected in cell single selection mode.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.
columnPosition - the Integer position of the selected column.
columnPositions - a Collection of Integers representing the selected columns.
selectedCells - a Set of Points representing the selected cells.

Children Callback
These callbacks are triggered when an item’s list of children is needed.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
children - the value of children for the item in the callback.

Column Heading Selection Callback
These callbacks are triggered when a column heading is selected

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.
columnPosition - the Integer position of the selected column.
columnPositions - a Collection of Integers representing the selected columns.
selectedCells - a Set of Points representing the selected cells.

EwTableTree 403

Default Action Callback
These callbacks are triggered when an item is double clicked.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Draw Background Callback
These callbacks are triggered when an item’s background needs to be drawn.

Call data arguments:
item - the item which is the selected item.
doit - indicates whether the action that invoked the callback is performed.
value - the value which is the renderable whose background needs drawing.
selected - indicates whether the item whose background needs to be drawn is

selected.
renderContext - the render context to be used in drawing the item’s background
columnPosition - the Integer position of the column of the cell whose background

needs to be drawn.
heading - indicates whether the cell whose background needs to be drawn is a

heading cell.

Expand Collapse Callback
These callbacks are triggered when an item is expanded or collapsed.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.

Extended Selection Callback
These callbacks are triggered when items are selected using the extended selection mode.
It is only valid when Selection Policy is Extended Select.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

404 Chapter 12 Widget Encyclopedia

Modify Verify Callback
These callbacks are triggered when the selection is about to be changed. The application
may ‘undo’ the selection change by setting the doit field of the callData to false.

Call data arguments:
doit - Indicates whether the action that invoked the callback is performed.

Setting doit to false negates the action.

Multiple Selection Callback
These callbacks are triggered when an item is selected in multiple selection mode. It is
only valid when Selection Policy is Multiple Select.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Single Selection Callback
These callbacks are triggered when an item is selected in single selection mode. It is only
valid when Selection Policy is Single Select.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of items which are the selected items.

Visual Info Callback
These callbacks are triggered when an item’s icon, label and isInUse are needed. The
application MUST hook this callback and set the callData icon to the CgIcon (or other
renderable object) to be displayed as the icon for the item in callData item. It must also
set the callData label to the String (or other renderable object) to be displayed as the label
for the item.

Call data arguments:
item - the item which is the selected item.
itemPosition - the integer position of the selected item in the list.
isInUse - the inUse status (Boolean) which is the default to be used for the item in

the callback.
icon - the icon which is the default icon to be used for the item in the callback.
label - the label which is the default label to be used for the item in the callback.
hasChildren - indicates whether the item has children or not.

EwTableTree 405

Editor

Application Drawn Background
Specifies whether the application wants the Draw Background Callback to fire when an
item’s background needs to be drawn. If this value is false, then the widget will draw the
normal default background for each selected and non-selected item.

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Cell Tabbing Policy
Specifies how tabbing should occur amongst cells.

Across Rows - When the last cell in a row is reached when tabbing forward, go to the
first cell in the next row. When the first cell in a row is reached when tabbing
backwards, go to the last cell in the previous row.

Application Defined - Tabbing behavior is defined by the application. To use this
option, the application must hook the Cell Tab Callback.

406 Chapter 12 Widget Encyclopedia

Within Row - When the last cell in a row is reached when tabbing forward, go to the
first cell in the same row. When the first cell in a row is reached when tabbing
backwards, go to the last cell in the same row.

Editable
Specifies whether the cells in the table are editable. For a cell to be editable, the table
widget must be editable, the column must be editable, and the application must hook the
Begin Edit Callback and set the callData doit to true

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Heading Font
Specifies the font list associated with the headings.

Heading Separator Thickness
Specifies the thickness of the horizontal line separating the column headings from the
rest of the table.

Heading Visual Style
Defines the how the cells are displayed.

Etch Cells - Each cell in an etched column is individually etched.
Etch Rows - Each row is etched.
Flat - Looks like a list box.

Item Height
Specifies the height in pixels of items in the list. This includes the margin height on the
top and bottom of the item as well as two pixels for emphasis.

Items
An array of objects that are to be displayed as the list items.

Locked Columns
Specifies the number of columns to be locked down on the left side of the table. A
column can be locked only if its preceding column is also locked. When scrolling, the
locked columns remain fixed on the left side and all other columns scroll under the
locked columns. This value must be no greater than the number of columns.

Row Separators
Specifies whether the rows are separated by a horizontal line.

Scroll Horizontal
This resource specifies whether a horizontal scroll bar should be used for the list.

EwTableTree 407

Selectable Columns
Defines whether the user may select columns by clicking on their headings.

Selected Items
An OrderedCollection of Objects that represents the list items that are currently selected,
either by the user or the application.

Selection Policy
Defines the interpretation of the selection action.

Browse Select - Allows only single selection. The selection changes when the mouse
is dragged. This is the default Selection Policy. Under Windows and OS/2, this is
the same as Single Select

Cell Block Select - Allows selection of a rectangular block of cells.
Cell Single Select - Allows single selection of cells.
Extended Select - Allows multiple items to be selected, either by dragging the

selection or by clicking on items with a modifier key held down. Clicking on an
item without a modifier key held down deselects all previously selected items.

Multiple Select - Allows multiple items to be selected. The selection of an item is
toggled when it is clicked on. Clicking on an item does not deselect previously
selected items.

Read Only Select - Allows navigation, but no selection or callbacks.
Single Select - Allows only single selections. Under Windows and OS/2, this is the

same as Browse Select

Separators To Extremes
Defines whether row and column separators are to be extended to the extreme right and
bottom edges of the table.

Top Item Position
Specifies the Integer position of the item that is the first visible item in the list.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

Visual Style
Defines the how the cells are displayed.

Etch Cells - Each cell in an etched column is individually etched.
Etch Rows - Each row is etched.
Flat - Looks like a list box.

408 Chapter 12 Widget Encyclopedia

EwToolBar

A tool bar (EwToolbar) provides an interface for building a horizontal or vertical bar
containing user interface tools such as push buttons and labels. You can use tool bar
widgets to implement the tool bars commonly found under the menu bar in GUI
applications. You can use them to provide rows or columns of tools anywhere else in a
window. Further, you can use them to implement status bars that allow applications to
display various kinds of messages.

Several resources can control the way that a tool bar displays its tools. The numColumns
resource can specify whether the tools should be arranged in columns. If the
numColumns is 0, the tool bar lays out the tools in a row. Setting numColumns to 1
produces a vertical tool bar. The spacing resource determines how much space to leave
between each tool.

You can specify the colors of the tool bar using the standard foregroundColor and
backgroundColor resources. In addition, you can specify the default colors of tools using
the toolForegroundColor and toolBackgroundColor resources.

The tool bar usually does not have widgets as children. Instead, it has specialized
children called tools (EwTool). Tools are user interface elements that look like widgets
but do not actually use all of the platform resources required by a widget. Tools
collaborate with the parent tool bar to display themselves and handle user events. Tools
are lighter weight than widgets and minimize platform resources. However, they do not
always look like a platform widget.

Tools on a tool bar can be used much like widgets. Resources such as width, height,
borderWidth, foregroundColor, and backgroundColor can control the appearance of the
tool. The variableWidth resource controls whether a tool shrinks or grows as the tool bar
resizes.

The enterNotifyCallback and leaveNotifyCallback can determine when the mouse enters
or leaves the location on the tool bar occupied by a tool. These callbacks are useful for
implementing features such as bubble help or tool tips or for updating a status area.

The most commonly used tools on a tool bar are primitive tools. These are tools that
behave much like simple widgets such as buttons and labels. Primitive tools have an

EwToolBar 409

image which determines the text or graphics that they display. The image can be any
renderable object.

Label tools (EwLabelTool) display an image and provide a shadowed inset as specified in
the shadowType resource. They provide resources for setting margins similar to the
CwLabel widget. Progress bar tools (EwProgressBarTool) look and behave much like
EwProgressBar. The button tools (EwPushButtonTool and EwToggleButtonTool) also
behave much like their CwWidget counterparts. A separator tool (EwSeparatorTool) can
separate tools or clusters of tools. The separatorType resource determines the exact
appearance of a separator tool.

Groups (EwGroupTool) are useful for grouping multiple tools in order to assign
common properties or provide specialized behavior for the group. The shadowType
resource determines what kind of border is drawn around the tools within a group when
the borderWidth is not 0.The spacing resource determines what spacing the group uses
for its tools. If the group contains toggle button tools, the radioBehavior resource can
enforce radio button style behavior within a group.

Protocol

createGroup: name argBlock: argBlock
Creates a group tool inside the tool bar. The first argument is the name for the new tool;
the second is its argument block. A group is a tool that contains other tools.

createLabelTool: name argBlock: argBlock
Creates a label tool inside the tool bar.

createProgressBarTool: name argBlock: argBlock
Creates a progress bar tool inside the tool bar.

createPushButtonTool: name argBlock: argBlock
Creates a push button tool inside the tool bar.

createRadioButtonTool: name argBlock: argBlock
Creates a radio button tool inside the tool bar.

createSeparatorTool: name argBlock: argBlock
Creates a separator tool inside the tool bar.

createToggleButtonTool: name argBlock: argBlock
Creates a toggle button tool inside the tool bar.

410 Chapter 12 Widget Encyclopedia

drawPolicy: anInteger
Specifies the drawing policy used in rendering buttons on the toolbar. The drawing policy
determines two things for a button:
• how the button draws itself so it looks like a button
• how the button animates when pressed

Default: XmSHADOWEDTHREESTATEDRAWPOLICY (Shadowed Three State)
Valid resource values:

XmSHADOWEDTWOSTATEDRAWPOLICY (Shadowed Two State) - Buttons are
drawn with a 3D shadowed outline and exhibit a simple 2-state (OFF and ON)
state rendering.

XmSHADOWEDTHREESTATEDRAWPOLICY (Shadowed Three State) - Buttons
are drawn with a 3D shadowed outline and exhibit a 3-state (OFF, ON, and
PRESSED) state rendering.

XmOUTLINEDRAWPOLICY (Outlined) - Buttons are drawn with a simple etched
(non-shadowed) outline and exhibit a 2-state (OFF and ON) state rendering.

imageHeight: anInteger
Specifies the preferred face height of button tools added to the toolbar or to groups. The
button face is the area inside the button’s beveled edging

imageWidth: anInteger
Specifies the preferred face width of button tools added to the toolbar or to groups. The
button face is the area inside the button’s beveled edging.

marginHeight: anInteger
Specifies the amount of blank space between the bottom edge of the top shadow and the
label, and the top edge of the bottom shadow and the label.

marginWidth: anInteger
Specifies the amount of blank space between the right edge of the left shadow and the
label, and the left edge of the right shadow and the label.

notifyAlways: aBoolean
Specifies whether enter and leave notification callbacks will be generated from notifiable
tools on the toolbar anytime the mouse is moved over a notifiable tool, regardless of the
state of the mouse buttons. If resourceValue is true, then notification callbacks will be
generated as the mouse is moved over the toolbar, even if a button select sequence is
pending. If resourceValue is false, then notification callbacks will only be generated if no
mouse button is pressed. Once the active mouse button is pressed on a notifiable tool,
such as to start a button select sequence, no further notification callbacks will occur until
the mouse button is released.

EwToolBar 411

numColumns: anInteger
Specifies the number of columns that are made to accommodate the receiver’s children
tools. This attribute always sets the x-axis dimension. A value of nil or 0 indicates that
tools on the toolbar will be layed out horizontally in one row. A value greater than 0
indicates that tools on the toolbar will be layed out in the specified number of columns
and using as many rows as are required. Layout is performed by filling all columns in a
row first before creating additional rows. NOTE: This resource applies to the receiver’s
children (not the receiver’s descendents). For example, children of the receiver that are
group tools will be treated as one tool during layout.

selectiveBorder: anInteger
Specifies which edges of the widget are outlined. Edges may be selectively outlined to
allow for fine tuning of the visual appearance when the toolbar is placed on a main
window.

Default: XmBORDERNONE (None)
Valid resource values:

XmBORDERNONE (None) - No border is drawn on any edge.
XmBORDERLEFTMASK (Left) - A border is drawn on the left edge.
XmBORDERRIGHTMASK (Right) - A border is drawn on the right edge.
XmBORDERTOPMASK (Top) - A border is drawn on the top edge.
XmBORDERBOTTOMMASK (Bottom) - A border is drawn on the bottom edge.
XmBORDERALL (All) - A border is drawn on all edges.

spacing: anInteger
Specifies the horizontal and vertical spacing between items contained within the toolbar.
The default value is one pixel.

Callbacks & Events

None

EwGroupTool

EwGroupTool is a class whose instances represent groups of tools on a toolbar. Any class
of EwTool may be added as a child of the group.

Protocol

drawPolicy: anInteger
Specifies the drawing policy used in rendering buttons in this group. If the policy is not
set on the group, then inherit the policy from the group’s parent. The drawing policy
determines two things for a button:
• how the button draws itself so it looks like a button;
• how the button animates when pressed.

412 Chapter 12 Widget Encyclopedia

marginHeight: anInteger
Specifies the amount of blank space between the bottom edge of the top shadow and the
top of the tool’s image, and between the top edge of the bottom shadow and the bottom
of the tool’s image.

marginWidth: anInteger
Specifies the amount of blank space between the right edge of the left shadow and the left
edge of the tool’s image, and between the left edge of the right shadow and the right edge
of the tool’s image.

minimumWidth: anInteger
Specifies the minimum width of the tool in pixels, not including the border area. This
resource is only used when the #variableWidth resource is set to true.

numColumns: anInteger
Specifies the number of columns that are made to accommodate entries for tools in the
group. This attribute always sets the x-axis dimension. A value of nil or 0 indicates that
tools in the group will be layed out horizontally in one row. A value greater than 0
indicates that tools in the group will be layed out in the specified number columns, using
as many rows as are required. Layout is performed by filling all columns in a row first
before creating additional rows. NOTE: This resource applies to the receiver’s children
(not the receiver’s descendents’). For example, children of the receiver that are group
tools will be treated as one tool during layout.

radioBehavior: aBoolean
Specifies a Boolean value that when true, indicates that the group should enforce a
RadioBox-type behavior on all button children of the group which are configured as
toggle buttons. RadioBox behavior dictates that when one toggle is selected then another
toggle is selected, the first toggle is unselected automatically. The default value is false.

sensitive: aBoolean
Determines whether a tool will react to input events. Disabled (insensitive) tools do not
react to input events.

shadowType: anInteger
Specifies the drawing style for the frame around the group.

Default: XmSHADOWNONE (None)
Valid resource values:

XmSHADOWNONE (None) - No frame is drawn around the group
XmSHADOWOUTLINE (Outline) - A frame is drawn that appears as an etched line.

The borderWidth must be 2 for this to appear etched; if borderWidth is 1,
appearance will be as “In”.

XmSHADOWIN (In) - A frame is drawn that it appears inset. This means that the
bottom shadow visuals and top shadow visuals are reversed

XmSHADOWOUT (Out) - A frame is drawn that appears outset

EwToolBar 413

spacing: anInteger
Specifies the horizontal and vertical spacing between items contained within the toolbar.
The default value is one pixel.

variableWidth: aBoolean
Specifies whether the tool is variable-width. The width of a variable-width tool changes
as the width of the parent of the tool changes. If the parent of the tool grows larger, the
parent will divide up the available variable width (that not consumed by fixed-width
tools) proportionally amongst the variable-width tools. Likewise, if the parent of the tool
shrinks smaller, the available variable width is divided up, however the width of a tool
will never be resized to less than its defined minimumWidth (0 by default). The relative
size ratios used to divide up the available variable width is determined based on the
create-time sizes of the tool and its siblings in the tool hierarchy. If the toolbar is sized
large enough that no tool is set to its minimum width, then the widths of the variable-
width tools will be maintained proportional to these ratios.

Callbacks & Events

Enter Notify Callback
These callbacks are triggered when the mouse enters the region occupied by the receiver.

Leave Notify Callback
These callbacks are triggered when the tool is destroyed.

Resize Callback
These callbacks are triggered when the widget is resized.

EwLabelTool
EwLabelTool is a class whose instances represent label tools on a toolbar. LabelTools are
similar to CwLabel widgets.

Protocol

horizontalAlignment: anInteger
Specifies the horizontal alignment for the tool’s image.

Default: XmALIGNMENTCENTER (Center)
Valid resource values:

XmALIGNMENTBEGINNING (Left) - Causes the center of the image to be
horizontally aligned with the left edge of the tool’s window.

XmALIGNMENTCENTER (Center) - Causes the center of the image to be
horizontally aligned in the center of the tool’s window.

XmALIGNMENTEND (Right) - Causes the center of the image to be horizontally
aligned with the right edge of the tool’s window.

414 Chapter 12 Widget Encyclopedia

image: aRenderableObject
Specifies the renderable object which draws on the face of the tool.

marginBottom: anInteger
Specifies additional spacing, in pixels, that should exist at the below the tool’s label. This
resource is used in conjunction with marginHeight.

marginHeight: anInteger
Specifies the amount of blank space between the bottom edge of the top shadow and the
top of the tool’s image, and between the top edge of the bottom shadow and the bottom
of the tool’s image.

marginWidth: anInteger
Specifies the amount of blank space between the right edge of the left shadow and the left
edge of the tool’s image, and between the left edge of the right shadow and the right edge
of the tool’s image.

marginLeft: anInteger
Specifies additional spacing, in pixels, that should exist at the to the left of the tool’s
label. This resource is used in conjunction with marginWidth.

marginRight: anInteger
Specifies additional spacing, in pixels, that should exist at the to the right of the tool’s
label. This resource is used in conjunction with marginWidth.

marginTop: anInteger
Specifies additional spacing, in pixels, that should exist at the above the tool’s label. This
resource is used in conjunction with marginHeight.

minimumWidth: anInteger
Specifies the minimum width of the tool in pixels, not including the border area. This
resource is only used when the #variableWidth resource is set to true.

sensitive: aBoolean
Determines whether a tool will react to input events. Disabled (insensitive) tools do not
react to input events.

shadowType: anInteger
Specifies the drawing style for the frame around the label.

variableWidth: aBoolean
Specifies whether the tool is variable-width. The width of a variable-width tool changes
as the width of the parent of the tool changes. If the parent of the tool grows larger, the
parent will divide up the available variable width (that not consumed by fixed-width
tools) proportionally amongst the variable-width tools. Likewise, if the parent of the tool
shrinks smaller, the available variable width is divided up, however the width of a tool

EwToolBar 415

will never be resized to less than its defined minimumWidth (0 by default). The relative
size ratios used to divide up the available variable width is determined based on the
create-time sizes of the tool and its siblings in the tool hierarchy. If the toolbar is sized
large enough that no tool is set to its minimum width, then the widths of the variable-
width tools will be maintained proportional to these ratios.

verticalAlignment: anInteger
Specifies the vertical alignment for the tool’s image.

Default: XmALIGNMENTCENTER (Center)
Valid resource values:

XmALIGNMENTCENTER (Center) - Causes the center of the image to be
vertically aligned in the center of the tool’s window.

XmALIGNMENTTOP (Top) - Causes the top edge of the image to be vertically
aligned with the top edge of the tool’s window.

XmALIGNMENTBOTTOM (Bottom) - Causes the center of the image to be
vertically aligned in the center of the tool’s window.

Callbacks & Events
Enter Notify Callback
These callbacks are triggered when the mouse enters the region occupied by the receiver.

Leave Notify Callback
These callbacks are triggered when the tool is destroyed.

Resize Callback
These callbacks are triggered when the widget is resized.

EwProgressBarTool
EwProgressBarTool is class whose instances represent progress indicators on a toolbar.
The progress is a colored ribbon which represents a fraction of work completed.

Protocol

direction: anInteger
Specifies the direction the progress bar moves in.
Default: XmFORWARD (Forward)
Valid resource values:

XmFORWARD (Forward) - The progress bar moves forward. For horizontal
progress bars, this is left-to-right. For vertical progress bars, this is top-to-
bottom.

XmREVERSE (Reverse) - The progress bar moves backwards. For horizontal
progress bars, this is right-to-left. For vertical progress bars, this is bottom-to-
top.

fractionComplete: anInteger
Specifies the current amount of progress to show in the progress bar. This resource is a

416 Chapter 12 Widget Encyclopedia

fraction, denoting a number between 0 and 1. For example, 1/10 specifies 10 %
complete. 1 represents 100 % complete.

horizontalAlignment: anInteger
Specifies the horizontal alignment for the tool’s image.

Default: XmALIGNMENTCENTER (Center)
Valid resource values:

XmALIGNMENTBEGINNING (Left) - Causes the center of the image to be
horizontally aligned with the left edge of the tool’s window.

XmALIGNMENTCENTER (Center) - Causes the center of the image to be
horizontally aligned in the center of the tool’s window.

XmALIGNMENTEND (Right) - Causes the center of the image to be horizontally
aligned with the right edge of the tool’s window.

image: aRenderableObject
Specifies the renderable object which draws on the face of the tool.

marginBottom: anInteger
Specifies additional spacing, in pixels, that should exist at the below the tool’s label. This
resource is used in conjunction with marginHeight.

marginHeight: anInteger
Specifies the amount of blank space between the bottom edge of the top shadow and the
top of the tool’s image, and between the top edge of the bottom shadow and the bottom
of the tool’s image.

marginWidth: anInteger
Specifies the amount of blank space between the right edge of the left shadow and the left
edge of the tool’s image, and between the left edge of the right shadow and the right edge
of the tool’s image.

marginLeft: anInteger
Specifies additional spacing, in pixels, that should exist at the to the left of the tool’s
label. This resource is used in conjunction with marginWidth.

marginRight: anInteger
Specifies additional spacing, in pixels, that should exist at the to the right of the tool’s
label. This resource is used in conjunction with marginWidth.

marginTop: anInteger
Specifies additional spacing, in pixels, that should exist at the above the tool’s label. This
resource is used in conjunction with marginHeight.

EwToolBar 417

minimumWidth: anInteger
Specifies the minimum width of the tool in pixels, not including the border area. This
resource is only used when the #variableWidth resource is set to true.

orientation: anInteger
Specifies the orientation of the progress bar.

Default: XmHORIZONTAL (Horizontal)
Valid resource values:

XmVERTICAL (Vertical) - Display the progress bar vertically.
XmHORIZONTAL (Horizontal) - Display the progress bar horizontally.

ribbonImage: aRenderableObject
Specifies the renderable object which draws as the completed ribbon of the progress bar.
This object is drawn instead of a color strip. Note that when a ribbon image is used, a
label (the showPercentage or image resources) will be drawn using the imageColor
resource, or if that is nil, the foregroundColor resource.

sensitive: aBoolean
Determines whether a tool will react to input events. Disabled (insensitive) tools do not
react to input events.

shadowType: anInteger
Specifies the drawing style for the frame around the label.

showPercentage: aBoolean
Specifies the whether a label showing the percentage completed is shown in the progress
bar. If true, then the string ‘X %’ is show in the progress bar, where X is the percentage of
progress completed. If false, then no percentage label is shown.

variableWidth: aBoolean
Specifies whether the tool is variable-width. The width of a variable-width tool changes
as the width of the parent of the tool changes. If the parent of the tool grows larger, the
parent will divide up the available variable width (that not consumed by fixed-width
tools) proportionally amongst the variable-width tools. Likewise, if the parent of the tool
shrinks smaller, the available variable width is divided up, however the width of a tool
will never be resized to less than its defined minimumWidth (0 by default). The relative
size ratios used to divide up the available variable width is determined based on the
create-time sizes of the tool and its siblings in the tool hierarchy. If the toolbar is sized
large enough that no tool is set to its minimum width, then the widths of the variable-
width tools will be maintained proportional to these ratios.

418 Chapter 12 Widget Encyclopedia

verticalAlignment: anInteger
Specifies the vertical alignment for the tool’s image.

Default: XmALIGNMENTCENTER (Center)
Valid resource values:

XmALIGNMENTCENTER (Center) - Causes the center of the image to be
vertically aligned in the center of the tool’s window.

XmALIGNMENTTOP (Top) - Causes the top edge of the image to be vertically
aligned with the top edge of the tool’s window.

XmALIGNMENTBOTTOM (Bottom) - Causes the center of the image to be
vertically aligned in the center of the tool’s window.

Callbacks & Events

Enter Notify Callback
These callbacks are triggered when the mouse enters the region occupied by the receiver.

Leave Notify Callback
These callbacks are triggered when the tool is destroyed.

Resize Callback
These callbacks are triggered when the widget is resized.

EwPushButtonTool

EwPushButtonTool is a class whose instances represent push buttons on a toolbar.
EwPushButtonTools are similar to CwPushButton widgets.

Protocol

horizontalAlignment: anInteger
Specifies the horizontal alignment for the tool’s image.

Default: XmALIGNMENTCENTER (Center)
Valid resource values:

XmALIGNMENTBEGINNING (Left) - Causes the center of the image to be
horizontally aligned with the left edge of the tool’s window.

XmALIGNMENTCENTER (Center) - Causes the center of the image to be
horizontally aligned in the center of the tool’s window.

XmALIGNMENTEND (Right) - Causes the center of the image to be horizontally
aligned with the right edge of the tool’s window.

image: aRenderableObject
Specifies the renderable object which draws on the face of the tool.

EwToolBar 419

imageHeight: anInteger
Specifies the height of the tool’s face in pixels, not including the border or bevel pixels. If
the imageHeight resource is not set, the imageHeight defaults to the image height
established by the parent. The imageWidth and imageHeight resources are alternatives to
the width and height resources for specifying a button’s dimensions. Setting a button’s
imageWidth and imageHeight allows the button to be sized to accomodate an explicitly
sized icon, and removes the need to factor in the pixels added by the bevelling (which
could change if the button’s draw policy is changed).

imageWidth: anInteger
Specifies the width of the tool’s face in pixels,not including the border or bevel pixels. If
the imageWidth resource is not set, the imageWidth defaults to the image width
established by the parent. The imageWidth and imageHeight resources are alternatives to
the width and height resources for specifying a button’s dimensions. Setting a button’s
imageWidth and imageHeight allows the button to be sized to accomodate an explicitly
sized icon, and removes the need to factor in the pixels added by the bevelling (which
could change if the button’s draw policy is changed).

marginHeight: anInteger
Specifies the amount of blank space between the bottom edge of the top shadow and the
top of the tool’s image, and between the top edge of the bottom shadow and the bottom
of the tool’s image.

marginWidth: anInteger
Specifies the amount of blank space between the right edge of the left shadow and the left
edge of the tool’s image, and between the left edge of the right shadow and the right edge
of the tool’s image.

minimumWidth: anInteger
Specifies the minimum width of the tool in pixels, not including the border area. This
resource is only used when the #variableWidth resource is set to true.

sensitive: aBoolean
Determines whether a tool will react to input events. Disabled (insensitive) tools do not
react to input events.

variableWidth: aBoolean
Specifies whether the tool is variable-width. The width of a variable-width tool changes
as the width of the parent of the tool changes. If the parent of the tool grows larger, the
parent will divide up the available variable width (that not consumed by fixed-width
tools) proportionally amongst the variable-width tools. Likewise, if the parent of the tool
shrinks smaller, the available variable width is divided up, however the width of a tool
will never be resized to less than its defined minimumWidth (0 by default). The relative
size ratios used to divide up the available variable width is determined based on the
create-time sizes of the tool and its siblings in the tool hierarchy. If the toolbar is sized

420 Chapter 12 Widget Encyclopedia

large enough that no tool is set to its minimum width, then the widths of the variable-
width tools will be maintained proportional to these ratios.

verticalAlignment: anInteger
Specifies the vertical alignment for the tool’s image.

Default: XmALIGNMENTCENTER (Center)
Valid resource values:

XmALIGNMENTCENTER (Center) - Causes the center of the image to be
vertically aligned in the center of the tool’s window.

XmALIGNMENTTOP (Top) - Causes the top edge of the image to be vertically
aligned with the top edge of the tool’s window.

XmALIGNMENTBOTTOM (Bottom) - Causes the center of the image to be
vertically aligned in the center of the tool’s window.

Callbacks & Events

Activate Callback
These callbacks are triggered when the tool is activated. A tool is activated when the user
presses and releases the active mouse button while the pointer is inside that tool.
Activating the button also disarms it.

Arm Callback
These callbacks are triggered when the receiver is armed. The button is armed when the
active mouse button is pressed inside the button.

Disarm Callback
These callbacks are triggered when the receiver is disarmed. The button is disarmed when
the active mouse button is released, regardless of whether it is released inside the button
or not.

Enter Notify Callback
These callbacks are triggered when the mouse enters the region occupied by the receiver.

Leave Notify Callback
These callbacks are triggered when the tool is destroyed.

Resize Callback
These callbacks are triggered when the widget is resized.

EwSeparatorTool

EwSeparatorTool is a class whose instances represent separator tools on a toolbar.
SeparatorTools are similar to CwSeparator widgets.

EwToolBar 421

Protocol

autoSize: aBoolean
Specifies whether the size of the separator automatically sizes to match the size of the
enclosing tool. For a vertically oriented separator, setting autoSize to true will result in
the height of the separator being set equal to the height of the enclosing group (or
toolbar), if the height resource has not been explicitly set. For a horizontally oriented
separator, setting autoSize to true will result in the width of the separator being set equal
to the width of the enclosing group (or toolbar), if the width resource has not been
explicitly set.

horizontalAlignment: anInteger
Specifies the horizontal alignment for the tool’s image.

Default: XmALIGNMENTCENTER (Center)
Valid resource values:

XmALIGNMENTBEGINNING (Left) - Causes the center of the image to be
horizontally aligned with the left edge of the tool’s window.

XmALIGNMENTCENTER (Center) - Causes the center of the image to be
horizontally aligned in the center of the tool’s window.

XmALIGNMENTEND (Right) - Causes the center of the image to be horizontally
aligned with the right edge of the tool’s window.

image: aRenderableObject
Specifies the renderable object which draws on the face of the tool.

margin: anInteger
For horizontal orientation, specifies the space on the left and right sides between the
border of the tool and the drawn line(s). For vertical orientation, specifies the space on
the top and bottom between the border of the tool and the drawn line(s)..

marginHeight: anInteger
Specifies the amount of blank space between the bottom edge of the top shadow and the
top of the tool’s image, and between the top edge of the bottom shadow and the bottom
of the tool’s image.

marginWidth: anInteger
Specifies the amount of blank space between the right edge of the left shadow and the left
edge of the tool’s image, and between the left edge of the right shadow and the right edge
of the tool’s image.

minimumWidth: anInteger
Specifies the minimum width of the tool in pixels, not including the border area. This
resource is only used when the #variableWidth resource is set to true.

422 Chapter 12 Widget Encyclopedia

orientation: anInteger
Specifies the orientation of the separator.

Default: XmVERTICAL (Vertical)
Valid resource values:

XmVERTICAL (Vertical) - Displays Separator vertically.
XmHORIZONTAL (Horizontal) - Displays Separator horizontally.

sensitive: aBoolean
Determines whether a tool will react to input events. Disabled (insensitive) tools do not
react to input events.

separatorType: anInteger
Specifies the type of line drawing to be done in the Separator tool.

Default: XmNOLINE (No Line)
Valid resource values:

XmNOLINE (No Line) - No line.
XmSINGLELINE (Single Line) - Draws Separator using a single line.
XmDOUBLELINE (Double Line) - Draws Separator using a double line.
XmSINGLEDASHEDLINE (Single Dashed Line) - Draws Separator using a single

dashed line.
XmDOUBLEDASHEDLINE (Double Dashed Line) - Draws Separator using a

double dashed line.
XmSHADOWETCHEDIN (Etched In) - Draws Separator using a double line giving

the effect of a line etched into the window.

variableWidth: aBoolean
Specifies whether the tool is variable-width. The width of a variable-width tool changes
as the width of the parent of the tool changes. If the parent of the tool grows larger, the
parent will divide up the available variable width (that not consumed by fixed-width
tools) proportionally amongst the variable-width tools. Likewise, if the parent of the tool
shrinks smaller, the available variable width is divided up, however the width of a tool
will never be resized to less than its defined minimumWidth (0 by default). The relative
size ratios used to divide up the available variable width is determined based on the
create-time sizes of the tool and its siblings in the tool hierarchy. If the toolbar is sized
large enough that no tool is set to its minimum width, then the widths of the variable-
width tools will be maintained proportional to these ratios.

verticalAlignment: anInteger
Specifies the vertical alignment for the tool’s image.

Default: XmALIGNMENTCENTER (Center)
Valid resource values:

XmALIGNMENTCENTER (Center) - Causes the center of the image to be
vertically aligned in the center of the tool’s window.

EwToolBar 423

XmALIGNMENTTOP (Top) - Causes the top edge of the image to be vertically
aligned with the top edge of the tool’s window.

XmALIGNMENTBOTTOM (Bottom) - Causes the center of the image to be
vertically aligned in the center of the tool’s window.

Callbacks & Events

Enter Notify Callback
These callbacks are triggered when the mouse enters the region occupied by the receiver.

Leave Notify Callback
These callbacks are triggered when the tool is destroyed.

Resize Callback
These callbacks are triggered when the widget is resized.

EwToggleButtonTool

EwToggleButtonTool is a class whose instances represent toggle button tools on a
toolbar. EwToggleButtonTools are similar to CwToggleButton widgets.

Protocol

horizontalAlignment: anInteger
Specifies the horizontal alignment for the tool’s image.

Default: XmALIGNMENTCENTER (Center)
Valid resource values:

XmALIGNMENTBEGINNING (Left) - Causes the center of the image to be
horizontally aligned with the left edge of the tool’s window.

XmALIGNMENTCENTER (Center) - Causes the center of the image to be
horizontally aligned in the center of the tool’s window.

XmALIGNMENTEND (Right) - Causes the center of the image to be horizontally
aligned with the right edge of the tool’s window.

image: aRenderableObject
Specifies the renderable object which draws on the face of the tool.

imageHeight: anInteger
Specifies the height of the tool’s face in pixels, not including the border or bevel pixels. If
the imageHeight resource is not set, the imageHeight defaults to the image height
established by the parent. The imageWidth and imageHeight resources are alternatives to
the width and height resources for specifying a button’s dimensions. Setting a button’s
imageWidth and imageHeight allows the button to be sized to accomodate an explicitly

424 Chapter 12 Widget Encyclopedia

sized icon, and removes the need to factor in the pixels added by the bevelling (which
could change if the button’s draw policy is changed).

imageWidth: anInteger
Specifies the width of the tool’s face in pixels,not including the border or bevel pixels. If
the imageWidth resource is not set, the imageWidth defaults to the image width
established by the parent. The imageWidth and imageHeight resources are alternatives to
the width and height resources for specifying a button’s dimensions. Setting a button’s
imageWidth and imageHeight allows the button to be sized to accomodate an explicitly
sized icon, and removes the need to factor in the pixels added by the bevelling (which
could change if the button’s draw policy is changed).

marginHeight: anInteger
Specifies the amount of blank space between the bottom edge of the top shadow and the
top of the tool’s image, and between the top edge of the bottom shadow and the bottom
of the tool’s image.

marginWidth: anInteger
Specifies the amount of blank space between the right edge of the left shadow and the left
edge of the tool’s image, and between the left edge of the right shadow and the right edge
of the tool’s image.

minimumWidth: anInteger
Specifies the minimum width of the tool in pixels, not including the border area. This
resource is only used when the #variableWidth resource is set to true.

radioBehavior: aBoolean
Specifies a Boolean value that indicates whether the tool should collaborate with its
enclosing group (or toolbar) and enforce a RadioBox-type behavior between it and all
like buttons in the group. RadioBox behavior dictates that when one toggle is selected
and another toggle is selected, the first toggle is unselected automatically. The default
value is false.

sensitive: aBoolean
Determines whether a tool will react to input events. Disabled (insensitive) tools do not
react to input events.

set: aBoolean
Displays the button in its selected state if set to true.

variableWidth: aBoolean
Specifies whether the tool is variable-width. The width of a variable-width tool changes
as the width of the parent of the tool changes. If the parent of the tool grows larger, the
parent will divide up the available variable width (that not consumed by fixed-width
tools) proportionally amongst the variable-width tools. Likewise, if the parent of the tool
shrinks smaller, the available variable width is divided up, however the width of a tool

EwToolBar 425

will never be resized to less than its defined minimumWidth (0 by default). The relative
size ratios used to divide up the available variable width is determined based on the
create-time sizes of the tool and its siblings in the tool hierarchy. If the toolbar is sized
large enough that no tool is set to its minimum width, then the widths of the variable-
width tools will be maintained proportional to these ratios.

verticalAlignment: anInteger
Specifies the vertical alignment for the tool’s image.

Default: XmALIGNMENTCENTER (Center)
Valid resource values:

XmALIGNMENTCENTER (Center) - Causes the center of the image to be
vertically aligned in the center of the tool’s window.

XmALIGNMENTTOP (Top) - Causes the top edge of the image to be vertically
aligned with the top edge of the tool’s window.

XmALIGNMENTBOTTOM (Bottom) - Causes the center of the image to be
vertically aligned in the center of the tool’s window.

Callbacks & Events

Activate Callback
These callbacks are triggered when the tool is activated. A tool is activated when the user
presses and releases the active mouse button while the pointer is inside that tool.
Activating the button also disarms it.

Arm Callback
These callbacks are triggered when the receiver is armed. The button is armed when the
active mouse button is pressed inside the button.

Disarm Callback
These callbacks are triggered when the receiver is disarmed. The button is disarmed when
the active mouse button is released, regardless of whether it is released inside the button
or not.

Enter Notify Callback
These callbacks are triggered when the mouse enters the region occupied by the receiver.

Leave Notify Callback
These callbacks are triggered when the tool is destroyed.

Resize Callback
These callbacks are triggered when the widget is resized.

Value Changed Callback
These callbacks are triggered when the ToggleButton value is changed.

426 Chapter 12 Widget Encyclopedia

Call data arguments:
set - a Boolean value indicating if the EwToggleButtonTool is toggle on (true) or off

(false).

Editor

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

EwToolBar 427

Draw Policy
Specifies the drawing policy used in rendering buttons on the toolbar. The drawing policy
determines two things for a button:
• how the button draws itself so it looks like a button
• how the button animates when pressed

Shadowed Two State - Buttons are drawn with a 3D shadowed outline and exhibit a
simple 2-state (OFF and ON) state rendering.

Shadowed Three State - Buttons are drawn with a 3D shadowed outline and exhibit a
3-state (OFF, ON, and PRESSED) state rendering.

Outlined - Buttons are drawn with a simple etched (non-shadowed) outline and
exhibit a 2-state (OFF and ON) state rendering.

Image Height
Specifies the preferred face height of button tools added to the toolbar or to groups. The
button face is the area inside the button’s beveled edging

Image Width
Specifies the preferred face width of button tools added to the toolbar or to groups. The
button face is the area inside the button’s beveled edging.

Margin Height
Specifies the amount of blank space between the bottom edge of the top shadow and the
label, and the top edge of the bottom shadow and the label.

Margin Width
Specifies the amount of blank space between the right edge of the left shadow and the
label, and the left edge of the right shadow and the label.

Notify Always
Specifies whether enter and leave notification callbacks will be generated from notifiable
tools on the toolbar anytime the mouse is moved over a notifiable tool, regardless of the
state of the mouse buttons. If resourceValue is true, then notification callbacks will be
generated as the mouse is moved over the toolbar, even if a button select sequence is
pending. If resourceValue is false, then notification callbacks will only be generated if no
mouse button is pressed. Once the active mouse button is pressed on a notifiable tool,
such as to start a button select sequence, no further notification callbacks will occur until
the mouse button is released.

Num Columns
Specifies the number of columns that are made to accommodate the receiver’s children
tools. This attribute always sets the x-axis dimension. A value of nil or 0 indicates that
tools on the toolbar will be layed out horizontally in one row. A value greater than 0
indicates that tools on the toolbar will be layed out in the specified number of columns
and using as many rows as are required. Layout is performed by filling all columns in a

428 Chapter 12 Widget Encyclopedia

row first before creating additional rows. NOTE: This resource applies to the receiver’s
children (not the receiver’s descendents). For example, children of the receiver that are
group tools will be treated as one tool during layout.

Selective Border
Specifies which edges of the widget are outlined. Edges may be selectively outlined to
allow for fine tuning of the visual appearance when the toolbar is placed on a main
window.

None - No border is drawn on any edge.
Left - A border is drawn on the left edge.
Right - A border is drawn on the right edge.
Top - A border is drawn on the top edge.
Bottom - A border is drawn on the bottom edge.
All - A border is drawn on all edges.

Spacing
Specifies the horizontal and vertical spacing between items contained within the toolbar.
The default value is one pixel.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

Tools
An array of EwTools that are to be displayed within the toolbar.

 EwPushButtonTool
EwPushButtonTool is a class whose instances represent push buttons on a toolbar.
EwPushButtonTools are similar to CwPushButton widgets.

 EwToggleButtonTool
EwToggleButtonTool is a class whose instances represent toggle button tools on a
toolbar. EwToggleButtonTools are similar to CwToggleButton widgets.

 EwLabelTool
EwLabelTool is a class whose instances represent label tools on a toolbar.
LabelTools are similar to CwLabel widgets.

 EwProgressBarTool
EwProgressBarTool is class whose instances represent progress indicators on a

EwToolBar 429

toolbar. The progress is a colored ribbon which represents a fraction of work
completed.

 EwSeparatorTool
EwSeparatorTool is a class whose instances represent separator tools on a toolbar.
SeparatorTools are similar to CwSeparator widgets.

 EwGroupTool
EwGroupTool is a class whose instances represent groups of tools on a toolbar. Any
class of EwTool may be added as a child of the group.

 Delete
Delete the selected tools from the toolbar.

 Font
Set the font for the selected tools.

 Color
Set the color for the selected tools.

 Callbacks
Set up callbacks for the selected tools.

 Up & Down
Move the selected tools up or down in the list.

 Top & Bottom
Move the selected tools to the top or bottom of the list.

 Select All
Select all of the tools in the toolbar.

430 Chapter 12 Widget Encyclopedia

EwWINNotebook

EwWINNotebook implements a Windows flavor notebook. All of the page’s (children)
tabs are displayed at the top of the notebook. A tab’s height is determined by the
tabHeight resource. A tab’s width is the page width divided by the number of tabs per
row. The top page which is displaying its widgets is represented by the currentPage
resource.

Protocol

tabHeight: anInteger
Specifies the height of the notebook’s tabs in pixels.

tabsPerRow: anInteger
Specifies how many page’s tabs are displayed in a row before another row is created.

tabWidthPolicy: anInteger
Specifies the technique that will be used to set the width of the tabs in a notebook.

Default: XmMAXIMUM (Maximum)
Valid resource values:

XmCONSTANT (Constant) - The tabs will be sized according to the value of the
majorTabWidth and minorTabWidth resources.

XmVARIABLE (Variable) - The tabs will be individually sized to fit their labels.
XmMAXIMUM (Maximum) - The tabs will all be the size of the tab needed to

accomodate the widest tab label.

Callbacks & Events

Page Change Callback
These callbacks are triggered just before any switching of pages take place.

EwWINNotebook 431

Editor

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Tab Height
Specifies the height of the notebook’s tabs in pixels.

Tab Per Row
Specifies the number of tabs in each row. When that number us exceeded, a new row is
added.

Tab Width
Specifies the width of the notebook’s tabs in pixels.

Tab Width Policy
Specifies the technique that will be used to set the width of the tabs in a notebook.

Constant - The tabs will be sized according to the value of the majorTabWidth and
minorTabWidth resources.

Variable - The tabs will be individually sized to fit their labels.
Maximum - The tabs will all be the size of the tab needed to accomodate the widest

tab label.

Tabs Per Row
Specifies how many page’s tabs are displayed in a row before another row is created.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

432 Chapter 12 Widget Encyclopedia

OleClient

OleClient is designed to access services from an OLE server application. It can be used to
embed or link OLE objects such as spreadsheets, word processor docs, charts, etc. This
widget is only available in the Windows version of VisualAge.

OleClient 433

Protocol

activateVerb: anInteger
Specifies the operation to be performed on the contained OLE object when it is activated.
Activation is controlled by the activationPolicy resource. The activation verb is supplied
from the verbs list for the OLE object contained in the receiver.

Default: XmVERBPRIMARY (Primary)
Valid resource values:

XmVERBPROPERTIES (Properties) - Request the OLE object properties dialog
XmVERBDISCARDUNDOSTATE (Discard Undo State) - Close the OLE object

and discard the undo state
XmVERBINPLACEACTIVATE (In Place Activate) - Open the OLE for editing in-

place
XmVERBUIACTIVATE (UI Activate) - Activate the UI for the OLE object
XmVERBHIDE (Show) - Show the OLE object
XmVERBOPEN (Open) - Open the OLE object for editing in a separate window
XmVERBSHOW (Show) - Show the OLE object
XmVERBPRIMARY (Primary) - Opens the OLE object for editing

activationPolicy: anInteger
Specifies the policy used for activation of the OLE object contained by the receiver.

Default: XmACTIVATEDOUBLECLICK (Double Click)
Valid resource values:

XmACTIVATEDOUBLECLICK (Double Click) - The OLE object is activated
whenever a double-click is detected on the receiver

XmACTIVATEMANUAL (Manual) - The OLE object can only be activated
programatically via the #doVerb: method

clientClipping: aBoolean
The client clipping resource is used to control the drawing of embedded OLE objects.
When this value is true, the OLE object cannot draw outside of the receiver.

clientName: aString
The client name resource is used when the receiver is created to select the OLE class for
the OLE object contained in the receiver. The OLE class name is of the form
application.objecttype.version or objecttype.version where:

• application - The name of the application that supplies the object.
• objecttype - The object’s name as defined in the registration database.
• version - The version number of the application that supplies the object.

clientType: anInteger
The client type resource is used when the receiver is created to select the type of OLE
client object that will be contained in the receiver is.

434 Chapter 12 Widget Encyclopedia

Default: XmEMBEDDED (Embedded)
Valid resource values:

XmUNDEFINED (Undefined) - There is no OLE object contained in the receiver
XmLINKED (Linked) - The OLE object in the receiver is linked
XmEMBEDDED (Embedded) - The OLE object in the receiver is embedded

deactivationPolicy: anInteger
Specifies the policy used for deactivation of the OLE object contained by the receiver.

Default: XmDEACTIVATEONLOSEFOCUS (On Lose Focus)
Valid resource values:

XmDEACTIVATEONLOSEFOCUS (On Lose Focus) - The OLE object is
deactivated whenever focus is given to another widget in the receiver’s shell

XmDEACTIVATEMANUAL (Manual) - The OLE object can only be deactivated
programatically via the #doVerb: method

decorationPolicy: anInteger
Specifies the decoration policy used for the receiver.

Default: XmBORDER (Border)
Valid resource values:

XmNONE (None) - No special trimmings are displayed around the receiver
XmBORDER (Border) - A border is displayed around the receiver
XmNIBS (Nibs) - Resize nibs are displayed around the receiver
XmBORDERANDNIBS (Border and Nibs) - Border and resize nibs are displayed

displayAsIcon: aBoolean
If this value is true, the OLE object is displayed as an icon in the receiver when created.
Otherwise, the OLE object is displayed in the default manner.

focusDecorationPolicy: anInteger
Specifies the decoration policy used when the receiver does has focus.

Default: XmBORDERANDNIBS (Border and Nibs)
Valid resource values:

XmNONE (None) - No special trimmings are displayed around the receiver
XmBORDER (Border) - A border is displayed around the receiver
XmNIBS (Nibs) - Resize nibs are displayed around the receiver
XmBORDERANDNIBS (Border and Nibs) - Border and resize nibs are displayed

lcid: anInteger
Advanced feature: this resource should only be set if the receiver needs its automation
objects to use an LCIDother than LocaleSystemDefault.

sizePolicy: anInteger
Specifies the policy used for controlling the display bounds of the OLE object contained
by the receiver

OleClient 435

Default: XmSIZEACTUAL (Actual)
Valid resource values:

XmSIZEACTUAL (Actual) - The OLE object’s image is displayed in actual size
within the widget. No changes are made to the receiver’s or the OLE object’s
extents

XmSIZESTRETCH (Stretch) - The display of the OLE object’s image is stretched to
cover the widget’s extents. No changes are made to the receiver’s or the OLE
object’s extents

sourcePath: aString
When the receiver is created with client type XmEMBEDDED or XmLINKED, this
resource is used to specify the source file name for the embedded or linked object.

Callbacks & Events

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

Editor

Activate Verb
Specifies the operation to be performed on the contained OLE object when it is activated.
Activation is controlled by the activationPolicy resource. The activation verb is supplied
from the verbs list for the OLE object contained in the receiver.

436 Chapter 12 Widget Encyclopedia

Properties - Request the OLE object properties dialog
Discard Undo State - Close the OLE object and discard the undo state
In Place Activate - Open the OLE for editing in-place
UI Activate - Activate the UI for the OLE object
Show - Show the OLE object
Open - Open the OLE object for editing in a separate window
Show - Show the OLE object
Primary - Opens the OLE object for editing

Activation Policy
Specifies the policy used for activation of the OLE object contained by the receiver.

Double Click - The OLE object is activated whenever a double-click is detected
Manual - The OLE object can only be activated programatically via #doVerb:

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Client Clipping
The client clipping resource is used to control the drawing of embedded OLE objects.
When this value is true, the OLE object cannot draw outside of the receiver.

Client Name
The client name resource is used when the receiver is created to select the OLE class for
the OLE object contained in the receiver. The OLE class name is of the form
application.objecttype.version or objecttype.version where:

• application - The name of the application that supplies the object.
• objecttype - The object’s name as defined in the registration database.
• version - The version number of the application that supplies the object.

Client Type
The client type resource is used when the receiver is created to select the type of OLE
client object that will be contained in the receiver is.

Undefined - There is no OLE object contained in the receiver
Linked - The OLE object in the receiver is linked
Embedded - The OLE object in the receiver is embedded

Deactivation Policy
Specifies the policy used for deactivation of the OLE object contained by the receiver.

On Lose Focus - The OLE object is deactivated whenever focus is given to another
widget in the receiver’s shell

Manual - The OLE object can only be deactivated programatically via #doVerb:

OleClient 437

Decoration Policy
Specifies the decoration policy used for the receiver.

None - No special trimmings are displayed around the receiver
Border - A border is displayed around the receiver
Nibs - Resize nibs are displayed around the receiver
Border and Nibs - Border and resize nibs are displayed

Display As Icon
If this value is true, the OLE object is displayed as an icon in the receiver when created.
Otherwise, the OLE object is displayed in the default manner.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Focus Decoration Policy
Specifies the decoration policy used when the receiver does has focus.

None - No special trimmings are displayed around the receiver
Border - A border is displayed around the receiver
Nibs - Resize nibs are displayed around the receiver
Border and Nibs - Border and resize nibs are displayed

LCID
Advanced feature: this resource should only be set if the receiver needs its automation
objects to use an LCID other than LocaleSystemDefault.

Size Policy
Specifies the policy used for controlling the display bounds of the OLE object contained
by the receiver

Actual - The OLE object’s image is displayed in actual size within the widget. No
changes are made to the receiver’s or the OLE object’s extents

Stretch - The display of the OLE object’s image is stretched to cover the widget’s
extents. No changes are made to the receiver’s or the OLE object’s extents

Source Path
When the receiver is created with client type XmEMBEDDED or XmLINKED, this
resource is used to specify the source file name for the embedded or linked object.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

438 Chapter 12 Widget Encyclopedia

OleControl

OleControl is used to host OLE/ActiveX controls. This widget is only available in the
Windows version of VisualAge.

WindowBuilder Pro provides two code generation mechanisms for generating OleControl
properties. Which mechanism is used is controlled via the Generate OLE Properties code
generation property (settable via the Property Editor). If this property is on (the default),
each property setting will be generated as “propertyAt: <Name> put: <value>”. Settable
properties are limited to String, Integer, Float and Boolean. The code in #addWidgets

will look like this:

aOleControl
propertyAt: ‘BorderStyle’ put: 1;
propertyAt: ‘Enabled’ put: true;
propertyAt: ‘FontBold’ put: false;
propertyAt: ‘FontItalic’ put: false;
propertyAt: ‘FontName’ put: ‘MS Sans Serif’;

If this property is turned off, the property settings will be generated to an OLE file named
<widgetName>.CON. All properties are settable, but the .CON file must be present in the
working directory. The generated code looks like this:

aOleControl
ifNotNil: [:oleWidget |

(OleFile open: ‘aOleControl.con’) ifNotNil: [:oleFile |
oleWidget

doVerb: -3; “XmVERBHIDE”
readFromFile: oleFile named: ‘aOleControl’;
doVerb: -1. “XmVERBSHOW”

oleFile close]];

In the above example, the aOleControl.con file must be present in the working directory
for the widget to pick up its properties when run.

OleControl 439

Thus there is a trade off between convenience and expressiveness. Having the properties
generated within the #addWidgets method is more convenient than having to drag
around multiple .CON files. However, this is at the expense of not being able to record all
of the property changes. If it is critical that all of the properties settable via the controls
property dialog be recorded, then you must use the file-based approach.

When defining behavior for an OLE/ActiveX control, the Callback Editor will list the
OLE events generated by the control. These events are somewhat different than normal
VisualAge-style events. With OLE events you are strictly limited in the number of
arguments allowed in an callback handler. Each event will dictate whether its handlers
should have zero or one argument. Zero argument events will not have a colon in their
name. One argument events will have a colon. The description of the event will explicitly
describe its expectations.

When specifying the callback selector, make sure that the number of arguments matches
that of the event. Failing to do so will result in an argument number mismatch error when
the code is executed.

Wrappered OLE/ActiveX Controls

In addition to instances of OleControl, WindowBuilder Pro can also use instances of
wrappered OLE/ActiveX controls (subclasses of AbtOleExtendedWidget). These can be
created using the procedure described in the section on Wrapping OLE Controls in the
VisualAge for Smalltalk User’s Guide. Note that under Code Generation Options, you
should select Widget rather than View (View creates a part suitable for use with the
VisualAge Composition Editor. Widget creates a CwWidget/AbtOleExtendedWidget
subclass). The OLE Class Generator dialog is shown on the next page with settings
appropriate to creating AbtOleExtendedWidget subclasses.

A wrappered OLE/ActiveX widget can be added to the design surface via the
OLE/ActiveX option on the Add menu. The attribute editor for the widget is the OLE
property dialog specific to that control. Note that some properties settable via the
property dialog are not code generatable. Code generatable attributes are limited to
String, Integer, Float and Boolean. If you need access to all available attributes, use an
instance of a generic OleControl and the file-based code generation option.

440 Chapter 12 Widget Encyclopedia

Protocol

addOleEventHandler: eventName receiver: object selector: selector
Register a OLE event handler for the receiver that will cause the selector to be sent to the
object when the event is triggered. Answer true if the event handler was successfully
registered.
• eventName - a String or DISPID. A DISPID is a well known Integer value. Each

OLE event is identified by name or by DISPID.

ambientPropertyReceiver: anObject
Specifies the object to be queried (by sending the message specified by the
ambientPropertySelector resource) to answer ambient property values for the receiver. If
the XmNambientPropertyReceiver resource is nil, there is no ambient property support.
This resource cannot be changed after the receiver is created..

ambientPropertySelector: aSymbol
Specifies the message to be sent (to the value of the ambientPropertyReceiver resource)
to answer ambient property values for the receiver.

OleControl 441

clientName: aString
The client name resource is used when the receiver is created to select the OLE class for
the OLE object contained in the receiver. The OLE class name is of the form
application.objecttype.version or objecttype.version where:
• application - The name of the application that supplies the object.
• objecttype - The object’s name as defined in the registration database.
• version - The version number of the application that supplies the object.

invoke: methodName withArguments: argumentsArray
Invoke the named OLE method with arguments for the OLE automation server. If the
method name is not found, answer nil. Otherwise, the return value is the result of
executing the named OLE method.
• methodName - a String or DISPID. A DISPID is a well known Integer value. Each

OLE method is identified by name or by DISPID.
• argumentsArray - an Array of Smalltalk objects. Simple Smalltalk objects are

automatically converted into their OLE equivalents based on their class. The
following conversions are supported: Integer, Float, String, true, false,
OleAutomationObject. A value of nil is used to specify an OLE optional argument.

invoke: methodName withArguments: argumentsArray returnType: returnType
Invoke the named OLE method with arguments for the OLE automation server. If the
method name is not found, answer nil. Otherwise, the return value is derived from the
returnType as follows:

• returnType = false : ignore return value
• returnType = true : answer return value as returned by the OLE method
• returnType = valid VARTYPE : answer return value coerced to returnType

• methodName - a String or DISPID. A DISPID is a well known Integer value. Each
OLE method is identified by name or by DISPID.

• argumentsArray - an Array of Smalltalk objects. Simple Smalltalk objects are
automatically converted into their OLE equivalents based on their class. The
following conversions are supported: Integer, Float, String, true, false,
OleAutomationObject. A value of nil is used to specify an OLE optional argument.

lcid: anInteger
Advanced feature: this resource should only be set if the receiver needs its automation
objects to use an LCID other than LocaleSystemDefault.

licenseKey: aString
Specifies the licensing key to use when creating an OLE control. If the license key is nil,
then OLE control will be created without attempting to license it. This will result in
failure if licensing is required.

442 Chapter 12 Widget Encyclopedia

propertyAt: aString
Return the value of the named property of the OLE object. If the property is not found,
this action returns nil. Otherwise, the result is the value returned by the OLE automation
server. The property name must be specified as a string or a DISPID. A DISPID is a well
known integer value; each OLE property is identified by name or by DISPID.

propertyAt: aString put: value
Set the value of the named property of the OLE object. If the property is not found, this
action returns nil. Otherwise, the result is the value returned by the OLE automation
server. The property name must be specified as a string or a DISPID. A DISPID is a well
known integer value; each OLE property is identified by name or by DISPID. The value
must be specified as an array of Smalltalk objects. Simple Smalltalk objects are
automatically converted into their OLE equivalents, based on their classes. The following
conversions are supported:

• Integer
• Float
• String
• Boolean
• OleAutomationObject

propertyAt: aString withArguments: argumentArray
Return the value of the named property of the OLE object. If the property is not found,
this action returns nil. Otherwise, the result is the value returned by the OLE automation
server. The property name must be specified as a string or a DISPID. A DISPID is a well
known integer value; each OLE property is identified by name or by DISPID.

propertyAt: aString withArguments: argumentArray put: value
Set the value of the named property of the OLE object. If the property is not found, this
action returns nil. Otherwise, the result is the value returned by the OLE automation
server. The property name must be specified as a string or a DISPID. A DISPID is a well
known integer value; each OLE property is identified by name or by DISPID. The value
must be specified as an array of Smalltalk objects. Simple Smalltalk objects are
automatically converted into their OLE equivalents, based on their classes. The following
conversions are supported:

• Integer
• Float
• String
• Boolean
• OleAutomationObject

removeOleEventHandler: eventName receiver: object selector: selector
Remove the specified OLE event handler from the receiver. If this handler does not exist,
silently do nothing.

OleControl 443

• eventName - a String or DISPID. A DISPID is a well known Integer value. Each
OLE event is identified by name or by DISPID.

Callbacks & Events

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

Editor

About
Displays the About dialog for the selected OLE/ActiveX control.

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Client Name
The client name resource is used when the receiver is created to select the OLE class for
the OLE object contained in the receiver. The OLE class name is of the form
application.objecttype.version or objecttype.version where:

• application - The name of the application that supplies the object.
• objecttype - The object’s name as defined in the registration database.

444 Chapter 12 Widget Encyclopedia

• version - The version number of the application that supplies the object.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

LCID
Advanced feature: this resource should only be set if the receiver needs its automation
objects to use an LCID other than LocaleSystemDefault.

License Key
Specifies the licensing key to use when creating an OLE control. If the license key is nil,
then OLE control will be created without attempting to license it. This will result in
failure if licensing is required.

OLE Control Properties
This button will open up the property dialog for the selected OLE/ActiveX control. An
example is shown below. Note that some properties settable via the property dialog are
not code generatable. Code generatable attributes are limited to String, Integer, Float and
Boolean. If you need access to all available attributes, use the file-based code generation
option. Set the Generate OLE Properties code generation property to false.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

WbComboBox 445

WbComboBox

Combo box widgets enable the user to select from a list of available items. A combo box
also displays the last selected item in a text box above the list. Combo box widgets can
only have one item selected at a time.

Protocol

addItem: item position: position
Add an item to the list. This message adds an item to the list at the given position. A
position value of 1 makes the first new item the first item in the list; a value of 2 makes it
the second item; and so on. A value of 0 makes the first new item follow the last item in
the list.

addItems: items position: position
Add items to the list. This message adds the specified items to the list at the given
position. A position value of 1 makes the first new item the first item in the list; a value of
2 makes it the second item; and so on. A value of 0 makes the first new item follow the
last item in the list.

comboBoxType: anInteger
Specifies the style of combo box.

Default: XmDROPDOWN (Drop Down)
Valid resource values:

XmSIMPLE (Simple) - The combo box always displays its list box.
XmDROPDOWN (Drop Down) - the combo box displays its list box only if the user

presses the drop down button. When the button is pressed, the list box drops
down, allowing the user to make a selection from the list. After the selection is
made, the list disappears.

deleteAllItems
This message deletes all items from the list.

446 Chapter 12 Widget Encyclopedia

deleteItem: item
Delete an item from the list.

deleteItemsPos: itemCount position: position
Delete items from the list by position. This message deletes the specified number of items
from the list starting at the specified position.

deletePos: position
Delete an item from the list by position. This message deletes an item at a specified
position. A warning message appears if the position does not exist.

editable: aBoolean
Indicates that the user can edit the text string when set to true. A false value will prohibit
the user from editing the text.

getString
This message accesses the String value of the text part of the combo box.

itemCount
Specifies the total number of items in the list. It is automatically updated by the list
whenever an element is added to or deleted from the list.

itemExists: item
Check if a specified item is in the list. This message is a Boolean function that checks if a
specified item is present in the list.

items: anOrderedCollection
An array of Strings that are to be displayed as the list items.

maxLength: anInteger
Specifies the maximum length of the text string that can be entered into text from the
keyboard.

printSelector: aSymbol
Specifies the selector that is used to obtain printable string representations for the items
by evaluating it with each item.

replaceItemsPos: newItems position: position
Replace items in the list by position. This message replaces the specified number of items
of the List with new items, starting at the specified position in the List. Beginning with
the item specified in position, the items in the list are replaced with the corresponding
elements from newItems. That is, the item at position is replaced with the first element of
newItems; the item after position is replaced with the second element of newItems; and
so on, until itemCount is reached.

WbComboBox 447

selectedIndex
Answer the index of the selected item.

selectedItem
Answer the item selected in the combobox.

selectedItems
Answer an array of Strings that represents list items that are currently selected, either by
the user or the application.

NOTE: For combo boxes, the collection will contain either 0 or 1 elements.

selectIndex:itemIndex
Select the item at itemIndex. Index starts at 1.

selectItem: anObject
Select the item anObject. anObject can be an index or a string.

setString: value
This message sets the string value of the text part of the combo box.

verifyBell: aBoolean
Specifies whether the bell should sound when the verification returns without continuing
the action.

visibleItemCount: anInteger
Specifies the number of items that can fit in the visible space of the List work area. The
list will use this value to determine its height.

Callbacks & Events

Activate Callback
These callbacks are triggered when the user presses the default action key. This is
typically a carriage return.

Focus Callback
These callbacks are triggered before the widget has accepted input focus.

Losing Focus Callback
These callbacks are triggered before the widget loses input focus. This callback can be
used to perform input validation of the user entered data.

Modify Verify Callback
These callbacks are triggered before text is deleted from or inserted into the widget. This
callback can be used to check a character value after it is entered by the user and before it
is accepted by the control.

448 Chapter 12 Widget Encyclopedia

Call data arguments:
text - a String which contains the text which is to be inserted.
currInsert - the current position of the insert cursor.
startPos - the starting position of the text to modify.
endPos - the ending position of the text to modify.

Popdown Callback
These callbacks are triggered when the item list disappears

Popup Callback
These callbacks are triggered when the item list appears

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

Single Selection Callback
These callbacks are triggered when the user selects an item in the list, or presses an arrow
key to move through the list.

Call data arguments:
item - the String which is the selected item.
itemPosition - the integer position of the selected item in the list.

Value Changed Callback
These callbacks are triggered after text is deleted from or inserted into the widget. This
callback can be used to retrieve the current value of the widget.

WbComboBox 449

Editor

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Combo Box Type
Specifies the style of combo box.

Drop Down - the combo box displays its list box only if the user presses the drop
down button. When the button is pressed, the list box drops down, allowing the
user to make a selection from the list. After the selection is made, the list
disappears.

Simple - The combo box always displays its list box.

Editable
Indicates that the user can edit the text string when set to true. A false value will prohibit
the user from editing the text.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

450 Chapter 12 Widget Encyclopedia

Items
An array of Strings that are to be displayed as the list items.

Print Selector
Specifies the selector that is used to obtain printable string representations for the items
by evaluating it.

Max Length
Specifies the maximum length of the text string that can be entered into text from the
keyboard.

Verify Bell
Specifies whether the bell should sound when the verification returns without continuing
the action.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

Visible Item Count
Specifies the number of items that can fit in the visible space of the List work area. The
list will use this value to determine its height.

WbEnhancedText 451

WbEnhancedText

WbEnhancedText widgets are advanced single line entry fields that provide character and
field level validation. Character level validations include: Alpha, AlphaNumeric,
Boolean, Integer, and PositiveInteger. Field level validations include: Date,
PhoneNumberUS, SSN, ZipCodeUS, etc.

In addition to validation functions, special behaviors may be specified for gaining and
losing focus. Additional styles such as password are available. Alignment (right, left,
centered) may be specified.

Additional validation functions may be added easily. All of the validation functions are
public methods of the WbEnhancedText class and begin with the characters ‘ok’.
Character level validations take one argument - the character itself. The routine should
respond with true or false depending on whether the character is valid. For example, to
create a validation function that would only allow the asterisk character to be entered, the
following code would be required:

okAsteriskOnly: aChar
^aChar == $*

Field level validations take no arguments and work on the entire contents of the field.
They should Answer true or false depending on whether the field in valid. They may also
optionally reformat the field as required. A simple field level validation that would test
whether the contents is a palindrome could be coded as follows:

okPalindrome
^self contents = self contents reversed

The attribute editor automatically displays all validation functions that it identifies within
the WbEnhancedText class.

452 Chapter 12 Widget Encyclopedia

Protocol

alignment: anInteger
Specifies the text alignment used by the widget.

Default: XmALIGNMENTBEGINNING (Left)
Valid resource values:

XmALIGNMENTBEGINNING (Left) - Causes the left side of the line of text to be
vertically aligned with the left edge of the widget window.

XmALIGNMENTCENTER (Center) - Causes the center of the line of text to be
vertically aligned in the center of the widget window.

XmALIGNMENTEND (Right) - Causes the right side of the line of text to be
vertically aligned with the right edge of the widget window.

case: aSymbol
Specifies the case of the text in the widget.

Default: #Unchanged (Unchanged)
Valid resource values:

#lower (lower) - Lower case.
#Proper (Proper) - Proper case (first letters of each word uppercase).
#Unchanged (Unchanged) - Unchanged case.
#UPPER (UPPER) - Upper case.

character: aSymbol
Specifies the function used to validate each character as it is entered.

Default: #okAny: (Any)
Valid resource values:

#ok20Comma10: (20Comma10) - Validates whether each character is a valid for a
20,10 field.

#ok7Comma2: (7Comma2) - Validates whether each character is a valid for a 7,2
field.

#ok7Comma4: (7Comma4) - Validates whether each character is a valid for a 7,4
field.

#okAlpha: (Alpha) - Validates whether each character is a valid alpha character ($A -
$Z, $a - $z or space).

#okAlphaNoSpace: (AlphaNoSpace) - Validates whether each character is a valid
alpha character ($A - $Z, $a - $z).

#okAlphaNumeric: (AlphaNumeric) - Validates whether each character is a valid
alpha-numeric character ($A - $Z, $a - $z, $0 - $9, or space).

#okAlphaNumericNoSpace: (AlphaNumericNoSpace) - Validates whether each
character is a valid alpha character ($A - $Z, $a - $z, $0 - $9).

#okAny: (Any) - Any character is valid.
#okBoolean: (Boolean) - Validates whether each character is a valid Boolean value

(e.g., T, t, F, f, Y, y, N, or n).
#okInteger: (Integer) - Validates whether each character is a valid Integer value.
#okNumeric: (Numeric) - Validates whether each character is a valid numeric value.

WbEnhancedText 453

#okPositive10Comma10: (Positive10Comma10) - Validates whether each character
is a valid for a positive 10,10 field.

#okPositiveInteger: (PositiveInteger) - Validates whether each character is a valid
positive Integer.

#okPositiveNumeric: (PositiveNumeric) - Validates whether each character is a valid
positive numeric value.

clearSelection
Clear the selection.

columns: anInteger
Specifies the initial width of the text window measured in character spaces.

copySelection
Copy the selection to the clipboard. Answer true if the operation is successful, or false if
the text could not be placed in the clipboard.

cursorPosition: anInteger
Indicates the position in the text where the current insert cursor is to be located. Position
is determined by the number of characters from the beginning of the text.

cutSelection
Cut the selection to the clipboard. Answer true if the operation is successful, or false if
the text could not be placed in the clipboard.

editable: aBoolean
Indicates that the user can edit the text string when set to true. A false value will prohibit
the user from editing the text.

editMode: anInteger
Specifies whether the widget supports single line or multi line editing of text.

Default: XmSINGLELINEEDIT (Single Line)
Valid resource values:

XmMULTILINEEDIT (Multi Line) - Multi line text edit.
XmSINGLELINEEDIT (Single Line) - Single line text edit.

field: aSymbol
Specifies the function used to validate/format the contents of the widget when it looses
focus.

Default: #okAny (Any)
Valid resource values:

#okAny (Any) - Any characters are valid.
#okCurrency (Currency) - Formats the contents of the field to be a currency value.
#okCurrencyNoDecimal (CurrencyNoDecimal) - Formats the contents of the field to

be a currency value without decimal places.

454 Chapter 12 Widget Encyclopedia

#okDate (Date) - Validates whether the contents of the field are a valid Date value
and then formats the Date using the system Date format.

#okInteger (Integer) - Formats the contents of the field to be an Integer value.
#okNumber (Number) - Formats the contents of the field to be a numeric (e.g.,

Float) value.
#okPhoneNumberExtUS (PhoneNumberExtUS) - Validates and formats the contents

of the field to be a US phone number with optional extension. Valid formats are:
(999) 999-9999, 999-9999, x999, (999) 999-9999 x999.

#okPhoneNumberUS (PhoneNumberUS) - Validates and formats the contents of the
field to be a US phone number. Valid formats are: (999) 999-9999, 999-9999.

#okRound2 (Round2) - Formats the contents of the field to be rounded to 2 decimal
places.

#okRound3 (Round3) - Formats the contents of the field to be rounded to 3 decimal
places.

#okSSN (SSN) - Validates and formats the contents of the field to be a US Social
Security Number. Format is: 999-99-9999.

#okZipCodeUS (ZipCodeUS) - Validates and formats the contents of the field to be a
US Zip Code. Valid format are: 99999 or 99999-9999.

getEditable
This message accesses the edit permission state of the Text widget.

getFocus: aSymbol
Specifies the cursor location when the widget gains focus.

Default: #selectAll (Select All)
Valid resource values:

#selectAll (Select All) - Select all text on gaining focus.
#selectFirst (Select First) - Place cursor at beginning of text when gaining focus.
#selectLast (Select Last) - Place cursor at end of text when gaining focus.

getInsertionPosition
Return the position of the insert cursor. The return value is an integer number of
characters from the beginning of the text buffer. The first character position is 0.

NOTE: Some platforms use a 1-character line delimiter and some use a 2-character line
delimiter. The position value is consistent with the standard platform line delimiter
sequence.

getLastPosition
This message returns an Integer value that indicates the position of the last character in
the text buffer. This is an integer number of characters from the beginning of the buffer.
The first character position is 0.

WbEnhancedText 455

NOTE: Some platforms use a 1-character line delimiter and some use a 2-character line
delimiter. The position value is consistent with the standard platform line delimiter
sequence.

getSelection
Return a String containing the selection, or nil if there is no selection.

getSelectionPosition
Return a Point describing the selection position, where the x value is the start of the
selection, and the y value is the end of the selection. The positions are an integer number
of characters from the beginning of the buffer. The first character position is 0.

NOTE: Some platforms use a 1-character line delimiter and some use a 2-character line
delimiter. The position value is consistent with the standard platform line delimiter
sequence.

getString
This message accesses the String value of the Text widget.

getTopCharacter
This message returns an Integer value that indicates the number of characters from the
beginning of the text buffer. The first character position is 0.

insert: position value: value
Insert a String into the text. This message inserts a character string into the text string in
the Text widget. The character positions begin at zero and are numbered sequentially
from the beginning of the text. For example, to insert a string after the fourth character,
the parameter position must be 4. This routine also calls the widget’s
XmNmodifyVerifyCallback and XmNvalueChangedCallback callbacks.

NOTE: Some platforms use a 1-character line delimiter and some use a 2-character line
delimiter. The position value is consistent with the standard platform line delimiter
sequence.

insertAndShow: position value: value
Insert a String into the text and ensure that the text widget is scrolled such that the line
containing the last new character inserted is visible. Vertical and/or horizontal scrolling
may occur to accomplish this. This specification does not require that the text widget
scroll horizontally but allows it. The character positions begin at zero and are numbered
sequentially from the beginning of the text. For example, to insert a string after the fourth
character, the parameter position must be 4. This message also calls the widget’s
XmNmodifyVerifyCallback and XmNvalueChangedCallback callbacks.

456 Chapter 12 Widget Encyclopedia

NOTE: Some platforms use a 1-character line delimiter and some use a 2-character line
delimiter. The position value is consistent with the standard platform line delimiter
sequence.

largeText: aBoolean
This is a hint that indicates that the receiver will be processing a large amount of text. If
this flag is false, text operations may fail due to space limitations. If this hint is true, text
operations will not fail.

lineDelimiter
Answer a String containing the line delimiting sequence used by the receiver. This value
and number of characters may vary from platform to platform. The sequence is usually
the standard end of line sequence for the platform. For example, on X/MOTIF this value
is a String containing an ASCII LF character. On Windows, this value is a String
containing ASCII CR and LF characters. All computations involving text positions operate
consistently with the number of characters in the lineDelimiter String. Thus an end of
line takes up 1 character position on X and 2 character positions on Windows.

maxLength: anInteger
Specifies the maximum length of the text string that can be entered into text from the
keyboard.

paste
Insert the clipboard selection into the text. Answer true if the operation is successful, or
false if the text could not be retrieved from the clipboard.

password: aBoolean
Specifies whether the widget use the password style.

remove
Delete the selection.

replace: fromPos toPos: toPos value: value
Replace part of the receiver’s text String. This message replaces part of the text string in
the Text widget. The character positions begin at zero and are numbered sequentially
from the beginning of the text. An example text replacement would be to replace the
second and third characters in the text string. To accomplish this, the parameter fromPos
must be 1 and toPos must be 3. To insert a string after the fourth character, both
parameters, fromPos and toPos, must be 4. This message also calls the widget’s
XmNmodifyVerifyCallback and XmNvalueChangedCallback callbacks.

rows: anInteger
Specifies the initial height of the text window measured in character heights.

WbEnhancedText 457

scroll: lines
Scroll the text. This message scrolls text in a Text widget. lines specifies the number of
lines of text to scroll. A positive value causes text to scroll upward; a negative value
causes text to scroll downward.

scrollHorizontal: aBoolean
Adds a ScrollBar that allows the user to scroll horizontally through text.

scrollVertical: aBoolean
Adds a ScrollBar that allows the user to scroll vertically through text.

setEditable: aBoolean
This message sets the edit permission state of the Text widget. When set to True, the text
string can be edited.

setHighlight: positions mode: mode
Set the text highlight. This message sets highlights text between the two specified
character positions. The mode parameter determines the type of highlighting.
Highlighting text merely changes the visual appearance of the text; it does not set the
selection.

setInsertionPosition: position
Set the position of the insert cursor. This message sets the insertion cursor position of the
Text widget.

setSelection: positions
Set the selection. This message sets the primary selection of the text in the widget. It also
sets the insertion cursor position to the last position of the selection.

setString: value
This message sets the string value of the Text widget.

setTopCharacter: topCharacter
This message sets the position of the text at the top of the Text widget. If the editMode is
XmMULTILINEEDIT, the line of text that contains topCharacter is displayed at the top
of the widget without shifting the text left or right.

showPosition: position
Force text at the specified position to be displayed. This message forces text at the
specified position to be displayed.

tabSpacing: anInteger
Indicates the tab stop spacing.

458 Chapter 12 Widget Encyclopedia

topCharacter: anInteger
Displays the position of text at the top of the window. Position is determined by the
number of characters from the beginning of the text.

twoDigitYear: anInteger
Specifies the interpretation of a two digit year.

value: aString
Specifies the displayed text String.

verifyBell: aBoolean
Specifies whether the bell should sound when the verification returns without continuing
the action.

wordWrap: aBoolean
Indicates that lines are to be broken at word breaks (i.e., the text does not go off the right
edge of the window).

Callbacks & Events

Activate Callback
These callbacks are triggered when the user presses the default action key. This is
typically a carriage return.

Focus Callback
These callbacks are triggered before the widget has accepted input focus.

Losing Focus Callback
These callbacks are triggered before the widget loses input focus. This callback can be
used to perform input validation of the user entered data.

Modify Verify Callback
These callbacks are triggered before text is deleted from or inserted into the widget. This
callback can be used to check a character value after it is entered by the user and before it
is accepted by the control.

Call data arguments:
text - a String which contains the text which is to be inserted.
currInsert - the current position of the insert cursor.
startPos - the starting position of the text to modify.
endPos - the ending position of the text to modify.

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

WbEnhancedText 459

Value Changed Callback
These callbacks are triggered after text is deleted from or inserted into the widget. This
callback can be used to retrieve the current value of the widget.

Editor

Alignment
Specifies the text alignment used by the widget.

Left - Causes the left side of the line of text to be vertically aligned with the left edge
of the widget window.

Center - Causes the center of the line of text to be vertically aligned in the center of
the widget window.

Right - Causes the right side of the line of text to be vertically aligned with the right
edge of the widget window.

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

460 Chapter 12 Widget Encyclopedia

Case
Specifies the case of the text in the widget.

lower - Lower case.
Proper - Proper case (first letters of each word uppercase).
Unchanged - Unchanged case.
UPPER - Upper case.

Character
Specifies the function used to validate each character as it is entered.

Alpha
Only the characters $A-$Z, $a-$z, and space are allowed.

AlphaNoSpace
Only the characters $A-$Z and $a-$z are allowed.

AlphaNumeric
Only alpha characters, the digits $0-$9, and space are allowed.

AlphaNumericNoSpace
Only alpha characters and the digits $0-$9 are allowed.

Any
Any character is allowed

Boolean
Only the characters $T, $t, $F, $f, $Y, $y, $N, and $n are allowed.

Integer
Only acceptable integers (positive or negative) are allowed.

Numeric
Only acceptable numbers (positive or negative) are allowed.

PositiveInteger
Only the digits $0-$9 are allowed.

PositiveNumeric
Only positive numbers are allowed .

Positive10Comma10
Only positive numbers with up to 10 digits before the decimal and 10 after the
decimal are allowed .

20Comma10
Only acceptable numbers with up to 20 digits before the decimal and 10 after the
decimal are allowed .

WbEnhancedText 461

7Comma2
Only acceptable numbers with up to 7 digits before the decimal and 2 after the
decimal are allowed .

7Comma4
Only acceptable numbers with up to 7 digits before the decimal and 4 after the
decimal are allowed .

Editable
Indicates that the user can edit the text string when set to true. A false value will prohibit
the user from editing the text.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Field
Specifies the function used to validate/format the contents of the widget when it looses
focus.

Any
Any characters are valid.

Currency
The contents of the entry field are reformatted as a standard currency value using the
National Language currency format and the default number of digits.

CurrencyNoDecimal
The contents of the entry field are reformatted as a standard currency value using the
National Language currency format and no decimal places.

Date
The contents of the field must be a valid date. A variety of formats are supported.
The field is automatically reformatted to reflect the system date format.

Integer
Formats the contents of the field to be an Integer value.

Number
Formats the contents of the field to be a numeric (e.g., Float) value.

PhoneNumberExtUS
The contents of the entry field are reformatted as a standard US phone number
complete with extension. Any Alpha characters will be converted to there phone
number equivalents.

462 Chapter 12 Widget Encyclopedia

PhoneNumberUS
The contents of the entry field are reformatted as a standard US phone number. An
error is generated if the field contains other than seven or ten characters. Any Alpha
characters will be converted to there phone number equivalents.

Round2
Round the contents of the field to two decimal places.

Round3
Round the contents of the field to three decimal places.

SSN
The contents must be a valid Social Security Number. The contents will be
automatically reformatted.

ZipCodeUS
The contents must be a valid five or nine character US zip code. The contents will be
reformatted if required.

Get Focus
Specifies the cursor location when the widget gains focus.

Select All - Select all text on gaining focus.
Select First - Place cursor at beginning of text when gaining focus.
Select Last - Place cursor at end of text when gaining focus.

Max Length
Specifies the maximum length of the text string that can be entered into text from the
keyboard.

Password
Specifies whether the widget use the password style.

Value
Specifies the displayed text String.

Verify Bell
Specifies whether the bell should sound when the verification returns without continuing
the action.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

WbFrame 463

WbFrame

Frame widgets are used to visually indicate and label groups of related controls. They are
composed of a box with an optional label in the upper left corner. WbFrames allow you
to specify the frame thickness for the in and out styles.

Note: Frame widgets in VisualAge Smalltalk are allowed to have one and only one child.
In order for a frame to group multiple widgets, a form widget should be inserted into the
frame as its sole child. The form then acts as the parent of any other widgets placed
within the bounds of the frame. The Always Add Forms To Frames command will cause a
form to be automatically inserted into any new frame.

Protocol
frameThickness: anInteger
Specifies the frame thickness when the widget is in in or out mode.

labelString: aString
Specifies the label string.

marginHeight: anInteger
Specifies the padding space on the top and bottom sides between the child of Frame and
Frame’s shadow drawing.

marginWidth: anInteger
Specifies the padding space on the left and right sides between the child of Frame and
Frame’s shadow drawing.

shadowType: anInteger
Describes the drawing style for Frame.

Default: XmSHADOWDEFAULT (Default)
Valid resource values:

XmSHADOWDEFAULT (Default) - Draws Frame in a platform specific manner.
XmSHADOWETCHEDIN (Etched In) - Draws Frame using a double line giving the

effect of a line etched into the window.

464 Chapter 12 Widget Encyclopedia

XmSHADOWETCHEDOUT (Etched Out) - Draws Frame using a double line giving
the effect of a line coming out of the window.

XmSHADOWIN (In) - Draws Frame such that it appears inset. This means that the
bottom shadow visuals and top shadow visuals are reversed.

XmSHADOWOUT (Out) - Draws Frame such that it appears outset.

Callbacks & Events

Expose Callback
These callbacks are triggered when the widget receives an exposure event requiring it to
repaint itself.

Focus Callback
These callbacks are triggered before the widget has accepted input focus.

Intercept Expose Callback
These callbacks are triggered when any area of the widget or its children is exposed.

Losing Focus Callback
These callbacks are triggered before the widget loses input focus. This callback can be
used to perform input validation of the user entered data.

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

Editor

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

WbFrame 465

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Frame Thickness
Specifies the frame thickness when the widget is in in or out mode.

Label String
Specifies the label string.

Shadow Type
Describes the drawing style for Frame.

Default - Draws Frame in a platform specific manner.
Etched In - Draws Frame using a double line giving the effect of a line etched into

the window.
Etched Out - Draws Frame using a double line giving the effect of a line coming out

of the window.
In - Draws Frame such that it appears inset. This means that the bottom shadow

visuals and top shadow visuals are reversed.
Out - Draws Frame such that it appears outset.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

466 Chapter 12 Widget Encyclopedia

WbRadioBox

RadioBoxes provide a mechanism for the user to select one mutually exclusive option
from a set of options.

Protocol

adjustLast: aBoolean
Extends the last row of children to the bottom edge of RowColumn (when orientation is
horizontal) or extends the last column to the right edge of RowColumn (when orientation
is vertical). This feature is disabled by setting XmNadjustLast to false.

buttonSet: anInteger
Specifies which button of a RadioBox or OptionMenu Pulldown submenu is initially set.
The value is an integer n indicating the nth ToggleButton specified for a RadioBox or the
nth PushButton specified for an OptionMenu Pulldown submenu. The first button
specified is number 0.

isAligned: aBoolean
Specifies text alignment for each item within the RowColumn widget; this only applies to
items which are a subclass of CwLabel, and on some platforms, applies only to instances
of CwLabel.

isHomogeneous: aBoolean
Indicates if the RowColumn widget should enforce exact homogeneity among the items it
contains.

items: anOrderedCollection
Specifies a collection of strings to use as labels for the buttons created.

marginHeight: anInteger
Specifies the amount of blank space between the top edge of the RowColumn widget and
the first item in each column, and the bottom edge of the RowColumn widget and the last
item in each column.

WbRadioBox 467

marginWidth: anInteger
Specifies the amount of blank space between the left edge of the RowColumn widget and
the first item in each row, and the right edge of the RowColumn widget and the last item
in each row.

numColumns: anInteger
For vertically-oriented RowColumn widgets, this attribute indicates how many columns
are built; the number of entries per column are adjusted to maintain this number of
columns, if possible. For horizontally-oriented RowColumn widgets, this attribute
indicates how many rows are built.

orientation: anInteger
Determines whether RowColumn layouts are row major or column major.

Default: XmVERTICAL (Column)
Valid resource values:

XmVERTICAL (Column) - In a column major layout, the children of the
RowColumn are laid out in columns top to bottom within the widget.

XmHORIZONTAL (Row) - In a row major layout the children of the RowColumn
are laid out in rows left to right within the widget.

packing: anInteger
Specifies how to pack the items contained within a RowColumn widget.

Default: XmPACKTIGHT (Pack Tight)
Valid resource values:

XmPACKTIGHT (Pack Tight) - Indicates that given the current major dimension,
entries are placed one after the other until the RowColumn widget must wrap.

XmPACKCOLUMN (Pack Column) - Indicates that all entries are placed in
identically sized boxes.

XmPACKNONE (Pack None) - Indicates that no packing is performed.

radioAlwaysOne: aBoolean
Forces the active ToggleButton to be automatically selected after having been unselected
(if no other toggle was activated), if true. If false, the active toggle may be unselected.
The default value is true.

radioBehavior: aBoolean
Specifies that the RowColumn widget should enforce a RadioBox-type behavior on all of
its children which are ToggleButtons.

resizeHeight: aBoolean
Requests a new height if necessary, when set to true. When set to false, the widget does
not request a new height regardless of any changes to the widget or its children.

468 Chapter 12 Widget Encyclopedia

resizeWidth: aBoolean
Requests a new width if necessary, when set to true. When set to false, the widget does
not request a new width regardless of any changes to the widget or its children.

spacing: anInteger
Specifies the horizontal and vertical spacing between items contained within the
RowColumn widget.

Callbacks & Events

Entry Callback
Supply a single callback routine for handling all items contained in a RowColumn
widget. This disables the activation callbacks for all ToggleButton and PushButton
widgets contained within the RowColumn widget.

Call data arguments:
widget - the value of widget. This is the widget that triggered the Entry Callback.
callbackData - the callData from the widget that triggered the Entry Callback.
data - the value of data.

Expose Callback
These callbacks are triggered when the widget receives an exposure event requiring it to
repaint itself.

Focus Callback
These callbacks are triggered before the widget has accepted input focus.

Intercept Expose Callback
These callbacks are triggered when any area of the widget or its children is exposed.

Losing Focus Callback
These callbacks are triggered before the widget loses input focus. This callback can be
used to perform input validation of the user entered data.

Map Callback
These callbacks are triggered when the window associated with the RowColumn widget
is about to be mapped.

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

Simple Callback
These callbacks are triggered when a button is activated or when its value changes.

WbRadioBox 469

Unmap Callback
These callbacks are triggered after the window associated with the RowColumn widget
has been unmapped.

Editor

Adjust Last
Extends the last row of children to the bottom edge of RadioBox (when orientation is
horizontal) or extends the last column to the right edge of RadioBox (when orientation is
vertical).

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Is Aligned
Specifies text alignment for each item within the RadioBox widget; this only applies to
items which are a subclass of CwLabel, and on some platforms, applies only to instances
of CwLabel.

470 Chapter 12 Widget Encyclopedia

Items
Specifies a collection of strings to use as labels for the buttons created.

Margin Height
Specifies the amount of blank space between the top edge of the RadioBox widget and
the first item in each column, and the bottom edge of the RadioBox widget and the last
item in each column.

Margin Width
Specifies the amount of blank space between the left edge of the RadioBox widget and
the first item in each row, and the right edge of the RadioBox widget and the last item in
each row.

Num Columns
For vertically-oriented RadioBox widgets, this attribute indicates how many columns are
built; the number of entries per column are adjusted to maintain this number of columns,
if possible. For horizontally-oriented RadioBox widgets, this attribute indicates how
many rows are built.

Orientation
Determines whether RadioBox layouts are row major or column major.

Column - In a column major layout, the children of the RadioBox are laid out in
columns top to bottom within the widget.

Row - In a row major layout the children of the RadioBox are laid out in rows left to
right within the widget.

Packing
Specifies how to pack the items contained within a RadioBox widget.

Pack Column - Indicates that all entries are placed in identically sized boxes.
Pack None - Indicates that no packing is performed.
Pack Tight - Indicates that given the current major dimension, entries are placed one

after the other until the RadioBox widget must wrap.

Radio Always One
Forces the active ToggleButton to be automatically selected after having been unselected
(if no other toggle was activated), if true. If false, the active toggle may be unselected.
The default value is true.

Radio Behavior
Specifies that the RadioBox widget should enforce a RadioBox-type behavior on all of its
children which are ToggleButtons.

Resize Height
Requests a new height if necessary, when set to true. When set to false, the widget does
not request a new height regardless of any changes to the widget or its children.

WbRadioBox 471

Resize Width
Requests a new width if necessary, when set to true. When set to false, the widget does
not request a new width regardless of any changes to the widget or its children.

Spacing
Specifies the horizontal and vertical spacing between items contained within the
RowColumn widget.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

472 Chapter 12 Widget Encyclopedia

 WbScrolledList

List widgets present a list of items and allow the user to select one or more items from
the list. List widgets provide several methods for adding, deleting and replacing items
and selected items in the list. The selectionPolicy resource specifies the policy for
selecting items. Four selection modes are supported: browse select, single select, multiple
select and extended select.

Protocol

addItem: item position: position
Add an item to the list. This message adds an item to the list at the given position. When
the item is inserted into the list, it is compared with the current selectedItems list. If the
new item matches an item on the selected list, it appears selected.

addItems: items position: position
Add items to the list. This message adds the specified items to the list at the given
position. When the items are inserted into the list, they are compared with the current
selectedItems list. If the any of the new items matches an item on the selected list, it
appears selected.

addItemUnselected: item position: position
Add an item to the list, forcing it to be unselected. This message adds an item to the list at
the given position. The item does not appear selected, even if it matches an item in the
current selectedItems list.

deleteAllItems
This message deletes all items from the list.

deleteItem: item
Delete an item from the list.

WbScrolledList 473

deleteItems: items
This message deletes the specified items from the list. A warning message appears if any
of the items do not exist.

deleteItemsPos: itemCount position: position
Delete items from the list by position. This message deletes the specified number of items
from the list starting at the specified position.

deletePos: position
Delete an item from the list by position. This message deletes an item at a specified
position. A warning message appears if the position does not exist.

deselectAllItems
Unhighlight and remove all elements from the selectedItems list.

deselectItem: item
Unhighlight and remove the specified item from the selected list.

deselectPos: position
Unhighlight and remove an item from the selected list by position.

getMatchPos: item
This message returns an Array of Integer positions where a specified item is found in a
List. If the item does not occur in the list the resulting Array is empty. The #= operator is
used for the search.

getSelectedPos
Return an Array containing the positions of every selected item in the list.

itemCount
Answer the total number of items. It is automatically updated by the list whenever an
element is added to or deleted from the list.

itemExists: item
Check if a specified item is in the list. This message is a Boolean function that checks if a
specified item is present in the list. The #= operator is used for the search.

items: anOrderedCollection
An array of Strings that are to be displayed as the list items.

replaceItems: oldItems newItems: newItems
This message replaces each specified item of the list with a corresponding new item.
Every occurrence of each element of oldItems is replaced with the corresponding element
from newItems. That is, the first element of oldItems is replaced with the first element of

474 Chapter 12 Widget Encyclopedia

newItems. The second element of oldItems is replaced with the second element of
newItems, and so on. The #= operator is used for the search.

replaceItemsPos: newItems position: position
Replace items in the list by position. This message replaces the specified number of items
of the List with new items, starting at the specified position in the List. Beginning with
the item specified in position, the items in the list are replaced with the corresponding
elements from newItems. That is, the item at position is replaced with the first element of
newItems; the item after position is replaced with the second element of newItems; and so
on, until itemCount is reached.

scrollHorizontal: aBoolean
This resource is a hint that a horizontal scroll bar is desired for this list. The hint is
ignored on platforms where the feature is not configurable.

selectedItemCount
Answer the number of strings in the selected items list.

selectedIndex
Answer the index of the selected item.

selectedItem
Answer the item selected in the list.

selectedItems: anOrderedCollection
An array of Strings that represents the list items that are currently selected, either by the
user or the application.

selectIndex:itemIndex
Select the item at itemIndex. Index starts at 1.

selectItem: anObject
Select the item anObject. anObject can be an index or a string.

selectionPolicy: anInteger
Defines the interpretation of the selection action.

Default: XmBROWSESELECT (Browse Select)
Valid resource values:

XmSINGLESELECT (Single Select) - Allows only single selections. Under
Windows and OS/2, this is the same as Browse Select.

XmMULTIPLESELECT (Multiple Select) - Allows multiple items to be selected.
The selection of an item is toggled when it is clicked on. Clicking on an item
does not deselect previously selected items.

WbScrolledList 475

XmEXTENDEDSELECT (Extended Select) - Allows multiple items to be selected,
either by dragging the selection or by clicking on items with a modifier key held
down. Clicking on an item without a modifier key held down deselects all
previously selected items.

XmBROWSESELECT (Browse Select) - Allows only single selection. The selection
changes when the mouse is dragged. This is the default Selection Policy. Under
Windows and OS/2, this is the same as Single Select.

selectItem: item notify: notify
Select an item in the list. This message highlights and adds the specified item to the
current selected list. notify specifies a Boolean value that when true invokes the selection
callback for the current mode. From an application interface view, calling this function
with notify true is indistinguishable from a user initiated selection action.

selectPos: position notify: notify
Select an item in the list by position. This message highlights a List item at the specified
position and adds it to the list of selected items. notify specifies a Boolean value that
when true invokes the selection callback for the current mode. From an application
interface view, calling this function with notify true is indistinguishable from a user
initiated selection action.

setBottomItem: item
Make an existing item the last visible item in the list. This message makes an existing
item the last visible item in the list. The item can be any valid item in the list.

setBottomPos: position
Make an item the last visible item in the list by position. This message makes the item at
the specified position the last visible item in the List.

setItem: item
Make an existing item the first visible item in the list. This message makes an existing
item the first visible item in the list. The item can be any valid item in the list.

setPos: position
Make an item the first visible item in the list by position. This message makes the item at
the given position the first visible position in the List.

topItemPosition: anInteger
Specifies the position of the item that is the first visible item in the list.

visibleItemCount: anInteger
Specifies the number of items that can fit in the visible space of the List work area. The
list will use this value to determine its height.

476 Chapter 12 Widget Encyclopedia

Callbacks & Events

Browse Selection Callback
These callbacks are triggered when an item is selected in the browse selection mode. It is
only valid when Selection Policy is Browse Select.

Call data arguments:
item - the String which is the selected item.
itemPosition - the integer position of the selected item in the list.

Default Action Callback
These callbacks are triggered when an item is double clicked.

Call data arguments:
item - the String which is the selected item.
itemPosition - the integer position of the selected item in the list.

Extended Selection Callback
These callbacks are triggered when items are selected using the extended selection mode.
It is only valid when Selection Policy is Extended Select.

Call data arguments:
item - the String which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of Strings which are the selected items.

Multiple Selection Callback
These callbacks are triggered when an item is selected in multiple selection mode. It is
only valid when Selection Policy is Multiple Select.

Call data arguments:
item - the String which is the selected item.
itemPosition - the integer position of the selected item in the list.
selectedItemCount - the integer number of selected items.
selectedItemPositions - a Collection containing the integer positions of the selected

items.
selectedItems - a Collection of Strings which are the selected items.

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

Single Selection Callback
These callbacks are triggered when an item is selected in single selection mode. It is only
valid when Selection Policy is Single Select.

WbScrolledList 477

Call data arguments:
item - the String which is the selected item.
itemPosition - the integer position of the selected item in the list.

Editor

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Items
An array of Strings that are to be displayed as the list items.

Scroll Horizontal
This resource is a hint that a horizontal scroll bar is desired for this list. The hint is
ignored on platforms where the feature is not configurable.

Selected Items
An array of Strings that represents the list items that are currently selected, either by the
user or the application.

478 Chapter 12 Widget Encyclopedia

Selection Policy
Defines the interpretation of the selection action.

Browse Select - Allows only single selection. The selection changes when the mouse
is dragged. This is the default Selection Policy. Under Windows and OS/2, this is
the same as Single Select.

Extended Select - Allows multiple items to be selected, either by dragging the
selection or by clicking on items with a modifier key held down. Clicking on an
item without a modifier key held down deselects all previously selected items.

Multiple Select - Allows multiple items to be selected. The selection of an item is
toggled when it is clicked on. Clicking on an item does not deselect previously
selected items.

Single Select - Allows only single selections. Under Windows and OS/2, this is the
same as Browse Select.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

WbScrolledText 479

WbScrolledText

Scrolled text widgets provide multi-line text viewing and editing capabilities to the
application. If the user types more text than can be accommodated within the field, it will
automatically scroll.

Protocol

clear
Clear the contents of the receiver.

clearSelection
Clear the selection.

columns: anInteger
Specifies the initial width of the text window measured in character spaces.

copySelection
Copy the selection to the clipboard. Answer true if the operation is successful, or false if
the text could not be placed in the clipboard.

cursorPosition: anInteger
Indicates the position in the text where the current insert cursor is to be located. Position
is determined by the number of characters from the beginning of the text.

cutSelection
Cut the selection to the clipboard. Answer true if the operation is successful, or false if
the text could not be placed in the clipboard.

editable: aBoolean
Indicates that the user can edit the text string when set to true. A false value will prohibit
the user from editing the text.

480 Chapter 12 Widget Encyclopedia

editMode: anInteger
Specifies whether the widget supports single-line or multi-line editing of text.

Default: XmMULTILINEEDIT (Multi Line)
Valid resource values:

XmMULTILINEEDIT (Multi Line) - Multi-line text edit.
XmSINGLELINEEDIT (Single Line) - Single-line text edit.

getEditable
This message accesses the edit permission state of the Text widget.

getInsertionPosition
Return the position of the insert cursor. The return value is an integer number of
characters from the beginning of the text buffer. The first character position is 0.

NOTE: Some platforms use a 1-character line delimiter and some use a 2-character line
delimiter. The position value is consistent with the standard platform line delimiter
sequence.

getLastPosition
This message returns an Integer value that indicates the position of the last character in
the text buffer. This is an integer number of characters from the beginning of the buffer.
The first character position is 0.

NOTE: Some platforms use a 1-character line delimiter and some use a 2-character line
delimiter. The position value is consistent with the standard platform line delimiter
sequence.

getSelection
Return a String containing the selection, or nil if there is no selection.

getSelectionPosition
Return a Point describing the selection position, where the x value is the start of the
selection, and the y value is the end of the selection. The positions are an integer number
of characters from the beginning of the buffer. The first character position is 0.

NOTE: Some platforms use a 1-character line delimiter and some use a 2-character line
delimiter. The position value is consistent with the standard platform line delimiter
sequence.

getString
This message accesses the String value of the Text widget.

getTopCharacter
This message returns an Integer value that indicates the number of characters from the
beginning of the text buffer. The first character position is 0.

WbScrolledText 481

insert: position value: value
Insert a String into the text. This message inserts a character string into the text string in
the Text widget. The character positions begin at zero and are numbered sequentially
from the beginning of the text. For example, to insert a string after the fourth character,
the parameter position must be 4. This routine also calls the widget’s
XmNmodifyVerifyCallback and XmNvalueChangedCallback callbacks.

NOTE: Some platforms use a 1-character line delimiter and some use a 2-character line
delimiter. The position value is consistent with the standard platform line delimiter
sequence.

insertAndShow: position value: value
Insert a String into the text and ensure that the text widget is scrolled such that the line
containing the last new character inserted is visible. Vertical and/or horizontal scrolling
may occur to accomplish this. This specification does not require that the text widget
scroll horizontally but allows it. The character positions begin at zero and are numbered
sequentially from the beginning of the text. For example, to insert a string after the fourth
character, the parameter position must be 4. This message also calls the widget’s
XmNmodifyVerifyCallback and XmNvalueChangedCallback callbacks.

NOTE: Some platforms use a 1-character line delimiter and some use a 2-character line
delimiter. The position value is consistent with the standard platform line delimiter
sequence.

largeText: aBoolean
This is a hint that indicates that the receiver will be processing a large amount of text. If
this flag is false, text operations may fail due to space limitations. If this hint is true, text
operations will not fail.

lineDelimiter
Answer a String containing the line delimiting sequence used by the receiver. This value
and number of characters may vary from platform to platform. The sequence is usually
the standard end of line sequence for the platform. For example, on X/MOTIF this value
is a String containing an ascii LF character. On Windows, this value is a String containing
ascii CR and LF characters. All computations involving text positions operate
consistently with the number of characters in the lineDelimiter String. Thus an end of
line takes up 1 character position on X and 2 character positions on Windows.

maxLength: anInteger
Specifies the maximum length of the text string that can be entered into text from the
keyboard.

paste
Insert the clipboard selection into the text. Answer true if the operation is successful, or
false if the text could not be retrieved from the clipboard.

482 Chapter 12 Widget Encyclopedia

readOnly
Set the readonly property of the receiver.

readWrite
Clear the readonly property of the receiver.

remove
Delete the selection.

replace: fromPos toPos: toPos value: value
Replace part of the receiver’s text String. This message replaces part of the text string in
the Text widget. The character positions begin at zero and are numbered sequentially
from the beginning of the text. An example text replacement would be to replace the
second and third characters in the text string. To accomplish this, the parameter fromPos
must be 1 and toPos must be 3. To insert a string after the fourth character, both
parameters, fromPos and toPos, must be 4. This message also calls the widget’s
XmNmodifyVerifyCallback and XmNvalueChangedCallback callbacks.

rows: anInteger
Specifies the initial height of the text window measured in character heights.

scroll: lines
Scroll the text. This message scrolls text in a Text widget. lines specifies the number of
lines of text to scroll. A positive value causes text to scroll upward; a negative value
causes text to scroll downward.

scrollHorizontal: aBoolean
Adds a ScrollBar that allows the user to scroll horizontally through text.

scrollVertical: aBoolean
Adds a ScrollBar that allows the user to scroll vertically through text.

selectAll
Select the entire text of the receiver.

selectAtEnd
Place the gap selection at the end of the text.

selectedItem
Answer a String containing the text selected in clipboard format.

setEditable: aBoolean
This message sets the edit permission state of the Text widget. When set to True, the text
string can be edited.

WbScrolledText 483

setHighlight: positions mode: mode
Set the text highlight. This message highlights text between the two specified character
positions. The mode parameter determines the type of highlighting. Highlighting text
merely changes the visual appearance of the text; it does not set the selection.

setInsertionPosition: position
Set the position of the insert cursor. This message sets the insertion cursor position of the
Text widget.

setSelection: positions
Set the selection. This message sets the primary selection of the text in the widget. It also
sets the insertion cursor position to the last position of the selection.

setString: value
This message sets the string value of the Text widget.

setTopCharacter: topCharacter
This message sets the position of the text at the top of the Text widget. If the editMode is
XmMULTILINEEDIT, the line of text that contains topCharacter is displayed at the top
of the widget without shifting the text left or right.

showPosition: position
Force text at the specified position to be displayed. This message forces text at the
specified position to be displayed.

tabSpacing: anInteger
Indicates the tab stop spacing.

topCharacter: anInteger
Displays the position of text at the top of the window. Position is determined by the
number of characters from the beginning of the text.

value: aString
Specifies the displayed text String.

verifyBell: aBoolean
Specifies whether the bell should sound when the verification returns without continuing
the action.

wordWrap: aBoolean
Indicates that lines are to be broken at word breaks (i.e., the text does not go off the right
edge of the window).

484 Chapter 12 Widget Encyclopedia

Callbacks & Events

Activate Callback
These callbacks are triggered when the user presses the default action key. This is
typically a carriage return.

Focus Callback
These callbacks are triggered before the widget has accepted input focus.

Losing Focus Callback
These callbacks are triggered before the widget loses input focus. This callback can be
used to perform input validation of the user entered data.

Modify Verify Callback
These callbacks are triggered before text is deleted from or inserted into the widget. This
callback can be used to check a character value after it is entered by the user and before it
is accepted by the control.

Call data arguments:
text - a String which contains the text which is to be inserted.
currInsert - the current position of the insert cursor.
startPos - the starting position of the text to modify.
endPos - the ending position of the text to modify.

Resize Callback
These callbacks are triggered when the widget receives a resize event. This allows the
widget to perform any calculation to adjust the size of the image that it displays.

Value Changed Callback
These callbacks are triggered after text is deleted from or inserted into the widget. This
callback can be used to retrieve the current value of the widget.

Editor

WbScrolledText 485

Border Width
Specifies the width of the border that surrounds the widget’s window on all four sides.
The width is specified in pixels. A width of zero means that no border will show.

Border - Causes the widget to have a border.
No Border - Causes the widget to have no border.

Columns
Specifies the initial width of the text window measured in character spaces.

Editable
Indicates that the user can edit the text string when set to true. A false value will prohibit
the user from editing the text.

Enabled
Determines whether a widget will react to input events. Disabled (insensitive) widgets do
not react to input events.

Large Text
This is a hint that indicates that the receiver will be processing a large amount of text. If
this flag is false, text operations may fail due to space limitations. If this hint is true, text
operations will not fail.

Max Length
Specifies the maximum length of the text string that can be entered into text from the
keyboard.

Rows
Specifies the initial height of the text window measured in character heights.

Scroll Horizontal
Adds a ScrollBar that allows the user to scroll horizontally through text.

Scroll Vertical
Adds a ScrollBar that allows the user to scroll vertically through text.

Tab Spacing
Indicates the tab stop spacing.

Value
Specifies the displayed text String.

Verify Bell
Specifies whether the bell should sound when the verification returns without continuing
the action.

Visible
Maps the widget (makes visible) as soon as it is both realized and managed, if set to True.
If set to False, the client is responsible for mapping and unmapping the widget.

Word Wrap
Indicates that lines are to be broken at word breaks (i.e., the text does not go off the right
edge of the window).

486 Chapter 12 Widget Encyclopedia

487

Chapter 13 WbApplication Protocol

WindowBuilder Pro generates all window definitions as subclasses of WbApplication.
WbApplication is a powerful and flexible abstract superclass providing a generalized
windowing framework (which is not found in the base image). This chapter presents the
public protocol supported by the WbApplication class. The following major protocol
categories are covered:

• Opening and Closing

• Accessing

• Subclass Overrides

• Prompting

• Utility

• Mini Help Support

• Creating

Opening and Closing
close
Close the receiver’s window.

closeAndExit
Close the window and shut down Smalltalk.

closeAndExitIfLast
Close the window and shut down Smalltalk if there are no other windows.

createWidget: theName parent: parent argBlock: argBlock [class method]
Create an instance of the receiver to be embedded in another application.

exitSystem
Shuts down Smalltalk

488 Chapter 13 WbApplication Protocol

open
Create and realize the receiver.

open [class method]
Open an instance of the receiver.

openDialog
Create the receiver with a dialog shell as child of the current window. The dialog appears
when the shell is managed.

openDialog: aWidget
Create the receiver with a dialog shell as child of aWidget. The dialog is application
modal. The dialog appears when the shell is managed.

openDialog: aWidget inputMode: inputMode
Create the receiver with a dialog shell as child of aWidget. The input mode is specified
via inputMode. The dialog appears when the shell is managed.

openDialog: aWidget on: anObject
Create the receiver with a dialog shell as child of aWidget. The dialog is application
modal. The dialog appears when the shell is managed.

openDialog: aWidget on: anObject inputMode: inputMode
Create the receiver with a dialog shell as child of aWidget. An arbitrary object anObject
may be passed in. The input mode is specified via inputMode. The dialog appears when
the shell is managed.

openDialogModeless
Create the receiver with a dialog shell as child of the current window. The dialog appears
when the shell is managed.

openDialogModeless: aWidget
Create the receiver with a dialog shell as child of aWidget. The dialog is modeless to its
parent window. The dialog appears when the shell is managed.

openDialogOn: anObject
Create the receiver with a dialog shell as child of the current window. The dialog appears
when the shell is managed.

openDialogParentModal
Create the receiver with a dialog shell as child of the current window. The dialog appears
when the shell is managed.

Accessing 489

openDialogParentModal: aWidget
Create the receiver with a dialog shell as child of aWidget. The dialog is modal to its
parent window. The dialog appears when the shell is managed.

openDialogSystemModal
Create the receiver with a dialog shell as child of the current window. The dialog appears
when the shell is managed.

openDialogSystemModal: aWidget
Create the receiver with a dialog shell as child of aWidget. The dialog is system modal.
The dialog appears when the shell is managed.

openOn: anObject
Create and realize the receiver. An arbitrary object anObject may be passed in.

openWithParent: aWbApplication
Create and realize the receiver as a child of aWbApplication. The receiver will float
above aWbApplication. Note that this is not the same as an MDI application.

Accessing
form
Answer the receiver’s form.

form: aWidget
Set the receiver’s form to aWidget.

mainWindow
Answer the receiver’s main window.

mainWindow: aWidget
Set the receiver’s main window to aWidget.

menuBar
Answer the receiver’s menu bar.

menuBar: aWidget
Set the receiver’s menu bar to aWidget.

menuNamed: aString
Answer the menu named aString.

parent
Answer the receiver’s parent.

490 Chapter 13 WbApplication Protocol

parent: aWidget
Set the receiver’s parent to aWidget.

properties
Answer the receiver’s property dictionary.

properties: anIdentityDictionary
Set the receiver’s property dictionary.

propertyAt: aSymbol
Answer the receiver’s property named aSymbol.

propertyAt: aSymbol ifAbsent: aBlock
Answer the receiver’s property named aSymbol. If no such property exists, evaluate
aBlock.

propertyAt: aSymbol ifAbsentPut: aBlock
Answer the receiver’s property named aSymbol. If no such property exists, store the value
of aBlock there.

propertyAt: aSymbol ifMissing: anObject
Answer the receiver’s property named aSymbol. If no such property exists, store
anObject there.

propertyAt: aSymbol put: anObject
Set the receiver’s property named aSymbol to anObject.

screen
Answer the CgScreen for the receiver.

shell
Answer the receiver’s shell.

shell: aWidget
Set the receiver’s shell to aWidget.

topLevelShell
Answer the receiver’s topLevelShell widget.

widgetNamed: aString
Answer the child of the receiver’s form named aString.

Subclass Overrides 491

Subclass Overrides
addApplicationMenus
Add the application menus to the menu bar.

addStandardLeftMenus
Add the standard left menus to the menu bar.

addStandardRightMenus
Add the standard right menus to the menu bar.

addSystemMenus
Add the system menus to the menu bar.

addWidgets
Add the widgets to the form.

closingWindow
This method is automatically invoked when closing a WbApplication window from the
system menu. It returns a Boolean indicating whether the close should continue.

defaultFont
Answers the default font used by the application.

defaultTimerProc
The default procedure that is executed in response to a timer event.

destroyWindow
This method is automatically invoked when the receiver is destroyed.

dispidAmbientPropertyAt: dispid
Default ambient property handler for OLE/ActiveX widgets. Subclasses can override this
method to customize behavior. Alternatively, consumers can set the
#ambientPropertyReceiver : and #ambientPropertySelector : attributes of the
OLE widget to provide a custom ambient property handler

embeddedFormClass
Return the default form class to use in embedding this application inside of another.

formClass
Return the default form class to use in the application.

initialize
Initialize the receiver.

492 Chapter 13 WbApplication Protocol

initializeGraphics
Initialize any resources required for graphics drawing. Currently this is done before
realizing the widget hierarchy so widget windows are not available.

initializeMenus
Initialize the menus with application specific behavior.

initializeShell
Initialize the shell.

initializeWidgets
Initialize the widgets with application specific behavior.

initialWindowPosition
Hook for dynamically setting the window’s position.

initialWindowSize
Hook for dynamically setting the window’s size.

initWindow
Initialize the application after it has been realized.

initWindow: anObject
Initialize the application with anObject after it has been realized.

mainWindowClass
Return the default main window class to use in the application.

preInitWindow
Initialize the application before it has been realized.

preInitWindow: anObject
Initialize the application with anObject before it has been realized.

setUpForm: aForm
Set up the create args for aForm.

setUpMainWindow: aWindow
Set up the create args for aWindow.

setUpShell: aShell
Set up the create args for aShell.

setUpShellCallbacks: aShell
Set up callbacks for aShell.

Prompting 493

setUpWindowCallbacks
Set up the callbacks for the shell and main window.

shellClass
Return the default shell class to use in the application.

shellName
Answer the name of the receiver’s shell. This is used as the default label of the window.
The default is to answer the receiver’s class name.

shouldAutoScale
Answers whether the window should auto scale based on the screen resolution. The
default is true.

shouldAutoScaleUsingDefaultFont
Answer whether the system should auto scale using the default font returned by
#defaultFont or the system font.

true = use default font.
false = use system font (this is the default mechanism)

shouldClearEventsOnExit
Answer whether the system should automatically process all remaining events when the
window is closed.

windowTitle
Hook for dynamically setting the window’s title.

Prompting
confirm: aString
Confirm the question posed by aString with the user. Answer true if the user chooses
YES. Otherwise answer false.

confirmYesNoCancel: aString
Confirm the question posed by aString with the user using the most appropriate device or
mechanism available. Answer true if the user chooses YES, false if the user chooses NO,
otherwise answer nil.

message: aString
Inform the user of the information contained in aString using the most appropriate device
or mechanism available. This method always answers nil.

494 Chapter 13 WbApplication Protocol

message: messageString title: titleString
Inform the user of the information contained in messageString using the most appropriate
device or mechanism available. This method always answers nil.

proceed: aString
Inform the user of the action described by aString that is about to take place and obtain a
proceed/cancel response. Answer true if the user chooses OK. Otherwise answer false.

prompt: message answer: suggestion
Prompt the user for a typed response presenting the information contained in message as
the prompt and suggestion as the default answer using the most appropriate device or
mechanism available. This operation returns nil if the user canceled, or a String
containing the user’s response.

prompt: message extendedSelectFrom: selectionList
Open a list chooser and return the selected object from the choices. If the user cancels
return nil.

prompt: message extendedSelectFrom: selectionList selectedItems: selectedItems
Open a list chooser and return the selected object from the choices. If the user cancels
return nil. Set the initial selection to selectedItems.

prompt: message multipleSelectFrom: selectionList
Open a list chooser and return the selected object from the choices. If the user cancels
return nil.

prompt: message multipleSelectFrom: selectionList selectedItems: selectedItems
Open a list chooser and return the selected object from the choices. If the user cancels
return nil. Set the initial selection to selectedItems.

prompt: message singleSelectFrom: selectionList
Open a list chooser and return the selected object from the choices. If the user cancels
return nil.

prompt: message singleSelectFrom: selectionList dependentListBlock: aBlock
Open a list chooser and return the selected object from the choices. If the user cancels
return nil. The aBlock is a one parameter block that is evaluated with the selection from
the first list to obtain the items for the dependent list when a selection is made in the first
list.

prompt: message singleSelectFrom: selectionList selectedItem: selectedItem
Open a list chooser and return the selected object from the choices. If the user cancels
return nil. Set the initial selection to selectedItem.

Utility 495

prompt: message singleSelectFrom: selectionList selectedItem: selectedItem
dependentListBlock: dependentListBlock
Open a double list chooser and return the selected object from the choices. If the user
cancels return nil. The dependentListBlock is a one parameter block that is evaluated with
the selection from the first list to obtain the items for the dependent list when an selection
is made in the first list.

prompt: message title: title answer: suggestion
Prompt the user for a typed response presenting the information contained in message as
the prompt and suggestion as the default answer using the most appropriate device or
mechanism available. This operation returns nil if the user canceled, or a String
containing the user’s response.

promptForFileName: prompt
Answer a file name entered by the user.

promptForFileName: prompt defaultName: fileName
Answer a file name entered by the user. Provide fileName as the default.

threeStateNotify: title withText: aString
Confirm the question posed by aString with the user using the most appropriate device or
mechanism available. Answer true if the user chooses yes, false if the user chooses no,
otherwise answer nil.

Utility
activate
Makes the receiver the active window and expands the receiver from an icon if necessary.

activeShell
Answer the current shell with focus.

addTimeout: interval receiver: receiver selector: selector clientData: clientData
This message allows a program to have a function called after a specified timeout. The
message creates the timeout and returns an (opaque) identifier for it. The length of the
timeout value is interval milliseconds. The specified callback is invoked when interval
elapses, and the timeout is removed from the timeout queue. The return value is an object
which uniquely identifies the pending timer pseudo-event. The pending event can be
deleted from the queue before the interval expires by calling #removeTimeout:..

asyncExecFirstInUI: aBlock
Evaluate aBlock in the u/i Process. No result is returned. Processes with higher priority
than the u/i will NOT block. In this case, aBlock is executed the next time the u/i
becomes active. If this message is sent by the u/i process, then aBlock will be executed
after all previously queued background graphic requests have been executed.

496 Chapter 13 WbApplication Protocol

asyncExecInUI: aBlock
Evaluate aBlock in the u/i Process. No result is returned. Processes with higher priority
than the u/i will NOT block. In this case, aBlock is executed the next time the u/i
becomes active. If this message is sent by the u/i process, then aBlock will be executed
after all previously queued background graphic requests have been executed.

allWindows [class method]
Answer a collection of all WbApplication windows that have realized shells.

backgroundColor: aCgRGBColor
Set the background color of the window and all non-text and non-list widgets to
aCgRGBColor.

bell
Ring the system bell.

breakInLongOperation: aBlock
Process a system break message in a long operation.

checkMenuNamed: aString
Check the menu named aString. This only works with toggle menus.

clearEvents
Clear events until there are no more.

defaultFontExtent
Answer the size of the default font.

defaultGrayColor
Answer the default gray color.

defaultGrayValue
Answer the default gray value.

deferRedrawInShortOperation: aBlock
Defer redrawing the receiver during aBlock. Meanwhile, display the hour glass cursor.

disableMenuNamed: aString
Disable the menu named aString.

emptyCollection
This is a dummy method that can be used whenever a selector returning an
OrderedCollection is required.

Utility 497

emptyIdentityDictionary
This is a dummy method that can be used whenever a selector returning an
IdentityDictionary is required.

enableMenuNamed: aString
Enable the menu named aString.

execLongOperation: aBlock
Show a busy dialog, and fork a background process to evaluate aBlock, while keeping the
user interface responsive. Return the result of evaluating aBlock. Show a busy cursor in
the invoking window. The code in aBlock must obey the rules for non-UI processes i.e.
direct UI operations are not permitted.

execLongOperation: aBlock message: message
Show a busy dialog, and fork a background process to evaluate aBlock, while keeping the
user interface responsive. Return the result of evaluating aBlock. Show a busy cursor in
all WbApplication windows. The code in aBlock must obey the rules for non-UI
processes i.e. direct UI operations are not permitted.

execLongOperation: aBlock message: message allowCancel: allowCancel
showProgress: showProgress
Show a busy dialog, and fork a background process to evaluate aBlock, while keeping the
user interface responsive. Return the result of evaluating aBlock. Show a busy cursor in
all WbApplication windows. The code in aBlock must obey the rules for non-UI
processes i.e. direct UI operations are not permitted. If allowCancel is set to true, a cancel
button will be displayed. The application can determine if the operation has been
cancelled by sending #cancelled to the dialog periodically. If showProgress is true,
percentage complete will be shown. The application must update the progress by sending
#fractionComplete: to the dialog with a fraction between 0 and 1. If the block defines a
parameter, the dialog is passed as the block parameter.

execLongOperation: aBlock message: message errorBlock: errorBlock
Show a busy dialog, and fork a background process to evaluate aBlock, while keeping the
user interface responsive. Return the result of evaluating aBlock. Show a busy cursor in
all WbApplication windows. The code in aBlock must obey the rules for non-UI
processes i.e. direct UI operations are not permitted.

execLongOperation: aBlock message: message title: title
Show a busy dialog, and fork a background process to evaluate aBlock, while keeping the
user interface responsive. Return the result of evaluating aBlock. Show a busy cursor in
all WbApplication windows. The code in aBlock must obey the rules for non-UI
processes i.e. direct UI operations are not permitted.

execLongOperation: aBlock message: message title: title allowCancel: allowCancel
showProgress: showProgress

498 Chapter 13 WbApplication Protocol

Show a busy dialog, and fork a background process to evaluate aBlock, while keeping the
user interface responsive. Return the result of evaluating aBlock. Show a busy cursor in
all WbApplication windows. The code in aBlock must obey the rules for non-UI
processes i.e. direct UI operations are not permitted. If allowCancel is set to true, a cancel
button will be displayed. The application can determine if the operation has been
cancelled by sending #cancelled to the dialog periodically. If showProgress is true,
percentage complete will be shown. The application must update the progress by sending
#fractionComplete: to the dialog with a fraction between 0 and 1. If the block defines a
parameter, the dialog is passed as the block parameter.

execLongOperation: aBlock message: message title: title allowCancel: allowCancel
showProgress: showProgress errorBlock: errorBlock
Show a busy dialog, and fork a background process to evaluate aBlock, while keeping the
user interface responsive. Return the result of evaluating aBlock. Show a busy cursor in
all WbApplication windows. The code in aBlock must obey the rules for non-UI
processes i.e. direct UI operations are not permitted. If allowCancel is set to true, a cancel
button will be displayed. The application can determine if the operation has been
cancelled by sending #cancelled to the dialog periodically. If showProgress is true,
percentage complete will be shown. The application must update the progress by sending
#fractionComplete: to the dialog with a fraction between 0 and 1. If the block defines a
parameter, the dialog is passed as the block parameter.

execLongOperation: aBlock message: message title: title errorBlock: errorBlock
Show a busy dialog, and fork a background process to evaluate aBlock, while keeping the
user interface responsive. Return the result of evaluating aBlock. Show a busy cursor in
all WbApplication windows. The code in aBlock must obey the rules for non-UI
processes i.e. direct UI operations are not permitted.

execShortOperation: aBlock
Evaluate aBlock in the UI process while showing a busy cursor in the active shell.

false
This is a dummy boolean method that can be used whenever a boolean selector method is
required.

flushEvents
Dispatch events until there are no more.

foregroundColor: aCgRGBColor
Set the foreground color of the window and all child widgets to aCgRGBColor.

inProgressDialog
Answer the in-progress dialog

Utility 499

inProgressDialog: aShell
Set the in-progress dialog to aShell.

isAltKeyDown
Answer whether the Alt key is down.

isControlKeyDown
Answer whether the Control key is down.

isShiftKeyDown
Answer whether the Shift key is down.

nil
This is a dummy method that can be used whenever a selector returning nil is required.

onCharacter: aCharacter do: aBlock
When Alt + aCharacter is hit, evaluate aBlock.

onCharacter: aCharacter perform: aSymbol
When Alt + aCharacter is hit, perform aSymbol.

onCharacter: aCharacter perform: aSymbol with: anObject
When Alt + aCharacter is hit, perform aSymbol with anObject as an argument.

onCharacter: aCharacter perform: aSymbol with: anObject with: anObject2
When Alt + aCharacter is hit, perform aSymbol with anObject and anObject2 as
arguments.

onCharacter: aCharacter perform: aSymbol with: anObject with: anObject2
with: anObject3
When Alt + aCharacter is hit, perform aSymbol with anObject, anObject2 and anObject3
as arguments.

onCharacter: aCharacter perform: aSymbol withArguments: anArray
When Alt + aCharacter is hit, perform aSymbol with anArray as arguments.

onCharacter: aCharacter send: aDirectedMessage
When Alt + aCharacter is hit, send aDirectedMessage.

onControlChar: aCharacter do: aBlock
When Control + aCharacter is hit, evaluate aBlock.

onControlChar: aCharacter perform: aSymbol
When Control + aCharacter is hit, perform aSymbol.

500 Chapter 13 WbApplication Protocol

onControlChar: aCharacter perform: aSymbol with: anObject
When Control + aCharacter is hit, perform aSymbol with anObject as an argument.

onControlChar: aCharacter perform: aSymbol with: anObject with: anObject2
When Control + aCharacter is hit, perform aSymbol with anObject and anObject2 as
arguments.

onControlChar: aCharacter perform: aSymbol with: anObject with: anObject2
with: anObject3
When Control + aCharacter is hit, perform aSymbol with anObject, anObject2 and
anObject3 as arguments.

onControlChar: aCharacter perform: aSymbol withArguments: anArray
When Control + aCharacter is hit, perform aSymbol with anArray as arguments.

onControlChar: aCharacter send: aDirectedMessage
When Control + aCharacter is hit, send aDirectedMessage.

removeTimeout: identifier
This message removes the timeout specified by identifier. Identifier is the value returned
by a #addTimeout: call. Note that timeouts are automatically removed once they expire
and the callback has been called. The identifier is the Association returned by the
addTimeout: call. The timerProcs are a SortedCollection.

setGrayBackgroundColor
Set the window background color gray.

setMenuNamed: aString labelString: newLabel
Set the menu named aString label string to newLabel.

showBusyCursorInAllWindowsWhile: aBlock [class method]
Show a busy cursor in all WbApplication windows while evaluating aBlock.

startTimer: anIntegerOrSymbol period: milliseconds
Start a timer identified by anIntegerOrSymbol with a period of milliseconds. If
anIntegerOrSymbol is a symbol, the method identified by the symbol will be executed. If
anIntegerOrSymbol is an integer, the #defaultTimerProc method will be executed. The
#timer callback will also be triggered for each timer event.

stopAllTimers
Stop all timers associated with the window.

stopTimer: anIntegerOrSymbol
Stop the timer identified by anIntegerOrSymbol.

Mini Help Support 501

suspendExecutionUntilRemoved
If the shell is not a dialog block until the shell is destroyed. If the shell is a dialog, the
widget does not get destroyed until the parent gets destroyed but gets unmanaged when
it is closed. Therefore if it is a dialog don't continue once it is unmanaged.

true
This is a dummy boolean method that can be used whenever a boolean selector method is
required.

uncheckMenuNamed: aString
Uncheck the menu named aString. This only works with toggle menus.

Mini Help Support
initializeMiniHelp
Turns on mini help for your window (call this in your #preInitWindow method. The
mini help text selector defaults to #miniHelpTextFor: .

initializeMiniHelp: aSelector
Turns on mini help and allows you to set an alternative mini help text selector.

initializeMiniHelpIfNecessary
Initializes mini help if it has not already been initialized.

miniHelpBackColor
Answers the background color to be used for the mini help window.

miniHelpClear
Popdown the Mini Help window.

miniHelpDelay
Answers the delay in milliseconds between the cursor entering the bounds of a widget
and the mini help appearing.

miniHelpDelay: millisecondCount
Sets the delay in milliseconds between the cursor entering the bounds of a widget and the
mini help appearing.

miniHelpEnabled
Answers whether mini help is currently enabled or not.

miniHelpEnabled: aBoolean
Sets whether mini help is currently enabled or not.

502 Chapter 13 WbApplication Protocol

miniHelpFont
Answers the font to be used in the mini help window.

miniHelpForeColor
Answers the foreground color to be used for the mini help window.

miniHelpSelector
Answers the mini help selector.

miniHelpSelector: aSymbol
Sets the mini help selector.

miniHelpTextFor: aWidget
Answers the help text for the widget pass in as the argument.

showMiniHelpFor: aWidget
Pop up the mini help window for aWidget.

tipText: aString
Set the tip text for the receiver.

Creating
buildAcceleratorTable
Build the accelerator table. This provides emulation for button keyboard accelerators.

createForm
Add a form to the main window.

createMainWindow
Add a main window to the shell.

createMenuBar
Create the receiver’s menuBar widget.

createMenus
Create the menus.

createPulldownMenus
Create the pulldown menus.

createShell
Create the shell.

Creating 503

createWindow
Create the window

createWorkRegion
Create the work region

destroyMenuBar
Destroy the menu bar.

do: aBlock withForm: aForm
Execute aBlock with the application’s form set to aForm.

do: aBlock withMenuBar: aMenuBar
Execute aBlock with the application’s form set to aMenuBar.

formArgs
Answer the arg block used by the form.

mainWindowArgs
Answer the arg block used by the main window.

manageShell
Manage the shell.

manageWidgets
Manage the widgets.

manageWidgetsFor: aForm
Manage the widgets for aForm.

mapShell
Map the shell.

menuBarArgs
Answer the create args for the menu bar.

newMenu
Return a new, empty menu.

realizeWindow
Realize the receiver’s widget hierarchy.

setInputMode: inputMode
Set the input mode for a modal dialog.

504 Chapter 13 WbApplication Protocol

setMainWindowAreas
Set the main window areas. The default is to have a menu bar and a work region and no
main scroll bars.

setUpMainWindowCallbacks: aWindow
Set up callbacks for aWindow.

shellArgs
Answer the arg block used by the shell.

505

Appendix A Customizing WindowBuilder Pro

WindowBuilder Pro is highly customizable and may be easily tailored with additional
capabilities that go beyond those available “out of the box”. This appendix discusses the
four major customization opportunities that are available to the developer:

• Adding support for new widgets

• Building a custom attribute editor

• Using Add-In modules

• Adding code generation

Adding Support for New Widgets
WindowBuilder Pro manipulates real instances of widgets in the main editor window. In
order to properly manipulate a widget, WindowBuilder Pro needs to know a few things
about it. Whenever a widget type is used for the first time, an instance of a
WbAttributeManager is created for it. There will be one instance of WbAttributeManager
for every widget in the system. This attribute manager is used for things like code
generation, attribute editing, copying, morphing, etc. Without intervention on the part of
the developer, the system will build a default attribute manager based on information
provided by the widget’s superclasses. Attributes that are local to the widget itself will
not be included without some additional effort. WindowBuilder Pro provides a number of
protocols in the CwWidget class that may be overridden in subclasses to customize their
attributes.

The available protocols are:

• wbAbstractClass

• wbAttributeEditorClass

• wbAttributeList

• wbAttributeComments

• wbAttributeResourceValues

506 Appendix A Customizing WindowBuilder Pro

• wbCallbackNames

• wbCallbackAnnotations

• wbCallbackDefaultDataSelectors

• wbCanTab

• wbCloneSpecialAttributesFrom

• wbColorAttributes

• wbDefaultParentScrollingPolicy

• wbDefaultValues

• wbDirectEditManager

• wbFontAttributeList

• wbImportantCallbacks

• wbImportantMessages

• wbIsomorphicClasses

• wbMaxSize

• wbMinSize

• wbOverrideDefaultAttributes:

• wbProcessEditorEvent:

• wbRequiredPoolDictionaries

• wbStyleAttribute

• wbSubStyleAttribute

wbAbstractClass
Answer whether the widget class is abstract and cannot be placed within WindowBuilder
Pro. This method must return false for any concrete widget class. If the widget is
subclassed from an existing concrete class, this method is already set up for you.

wbAttributeEditorClass
Answer the class to use as an attribute editor. See the following section, Building a
Custom Attribute Editor, for details. The following is an example from CwList:

wbAttributeEditorClass
^WbScrolledListEditor

Adding Support for New Widgets 507

wbAttributeList
Answer a list of valid attributes for the widget. This method should call super

wbAttributeList and then add a collection of symbols representing any non-inherited
attributes of the widget. Each attribute that is specified should have a corresponding get
and set method with the same name. The following is an example from CwList:

wbAttributeList
^super wbAttributeList

addAll: #(
selectionPolicy
browseSelectionCallback
defaultActionCallback
extendedSelectionCallback
items
multipleSelectionCallback
scrollHorizontal
selectedItems
singleSelectionCallback
visibleItemCount
topItemPosition
);

yourself.

wbAttributeComments
Answer a dictionary where the keys are attribute symbols and the values are the
descriptions of that attribute. These attribute comments are used to describe the attribute
in the generic attribute editor and the callback editor as well as in balloon help in the
custom attribute editors. The following is an example from CwList:

wbAttributeComments
^super wbAttributeComments

at: #defaultActionCallback put: ‘These callbacks are
triggered when an item is double clicked.’;

at: #items put: ‘An array of Strings that are to be
displayed as the list items.’;

at: #selectedItems put: ‘An array of Strings that
represents the list items that are currently
selected, either by the user or the application.’;

at: #selectionPolicy put: ‘Defines the interpretation
of the selection action.’;

at: #singleSelectionCallback put: ‘These callbacks
are triggered when an item is selected in single
selection mode. It is only valid when Selection
Policy is Single Select.’;

yourself.

508 Appendix A Customizing WindowBuilder Pro

wbAttributeResourceValues
Answer a dictionary where the keys are attribute symbols and the values are arrays
containing a list of WbResourceDescriptors representing valid keys in the CwConstants
or EwConstants pool dictionary. The first item in the array should be the default value.
The following is an example from CwList:

wbAttributeResourceValues
^super wbAttributeResourceValues

at: #selectionPolicy put: (OrderedCollection new
add: (WbResourceDescriptor

name: ‘XmSINGLESELECT’
commonName: ‘Single Select’
comment: ‘Allows only single selections. Under

Windows and OS/2, this is the same as
Browse Select’);

add: (WbResourceDescriptor
name: ‘XmMULTIPLESELECT’
commonName: ‘Multiple Select’
comment: ‘Allows multiple items to be

selected. The selection of an item is
toggled when it is clicked on. Clicking on
an item does not deselect previously
selected items.’);

add: (WbResourceDescriptor
name: ‘XmEXTENDEDSELECT’
commonName: ‘Extended Select’
comment: ‘Allows multiple items to be

selected, either by dragging the selection
or by clicking on items with a modifier key
held down. Clicking on an item without a
modifier key held down deselects all
previously selected items.’);

add: (WbResourceDescriptor
name: ‘XmBROWSESELECT’
commonName: ‘Browse Select’
comment: ‘Allows only single selection. The

selection changes when the mouse is
dragged. This is the default Selection
Policy. Under Windows and OS/2, this is the
same as Single Select’);

yourself);
yourself.

Adding Support for New Widgets 509

wbCallbackNames
Answer a dictionary where the keys are callback attribute symbols and the values are the
names of that attribute. This method maps callback attributes to their corresponding
callback names. This allows WindowBuilder Pro to use the correct callback name when it
generates code. The following is an example from CwList:

wbCallbackNames
^super wbCallbackNames

at: #defaultActionCallback put:
‘XmNdefaultActionCallback’;

at: #extendedSelectionCallback put:
‘XmNextendedSelectionCallback’;

at: #multipleSelectionCallback put:
‘XmNmultipleSelectionCallback’;

at: #singleSelectionCallback put:
‘XmNsingleSelectionCallback’;

yourself.

wbCallbackAnnotations
Answer a dictionary where the keys are callback attribute symbols and the values are the
annotations providing further information about that attribute (e.g., explanations of the
callData). These annotations are used in the generated callback stubs when “Use Long
Callback Comments” is enabled. The following is an example from CwList:

wbCallbackAnnotations
^super wbCallbackAnnotations

at: #defaultActionCallback put: #(
‘item - the String which is the selected item.’
‘itemPosition - the integer position of the
selected item in the list.’

);
at: #singleSelectionCallback put: #(

‘item - the String which is the selected item.’
‘itemPosition - the integer position of the
selected item in the list.’

);
at: #multipleSelectionCallback put: #(

‘item - the String which is the selected item.’
‘itemPosition - the integer position of the
selected item in the list.’

‘selectedItemCount - the integer number of
selected items.’

‘selectedItemPositions - a Collection containing
the integer positions of the selected items.’

‘selectedItems - a Collection of Strings which are
the selected items.’

);
yourself.

510 Appendix A Customizing WindowBuilder Pro

wbCallbackDefaultDataSelectors
Answer a dictionary where the keys are callback attribute symbols and the values are the
selectors retrieving the default data for the callback. The following is an example from
CwText:

wbCallbackDefaultDataSelectors
^super wbCallbackDefaultDataSelectors

at: #modifyVerifyCallback put: #value;
at: #valueChangedCallback put: #value;
yourself.

wbCanTab
Answer whether the receiver can be in the tab order. The default is true. The following is
an example from CwLabel:

wbCanTab
^false

wbCloneSpecialAttributesFrom: aCwWidget
Clone special attributes of aCwWidget into the receiver. In some cases, the base system
does not cleanly handle all attributes when used in copying and morphing operations (this
can be the case when an attribute is maintained by the operating system and not by an
instance variable of the widget itself). In those cases, it is necessary to set the
useInCloning flag of the attribute to false and handle the attribute copying manually in
this method. The following is an example from CwList:

wbCloneSpecialAttributesFrom: aCwWidget
super wbCloneSpecialAttributesFrom: aCwWidget.
aCwWidget wbItems notNil

ifTrue: [self wbItems: aCwWidget wbItems copy].

wbColorAttributes
Answer the attributes to be used for the color editor. This method would only be
overridden for widget types that supported more than just the two default color attributes.
The following is an example from CwPrimitive:

wbColorAttributes
^#(

backgroundColor
foregroundColor
).

Adding Support for New Widgets 511

wbDirectEditManager
Answer a suitable direct edit manager. WindowBuilder Pro allows the user to direct edit a
widget by ALT-clicking on it. This method allows you to customize the type of direct
editor that is invoked for the widget at hand. Several examples follow:

For CwList:
wbDirectEditManager

^WbDirectEditManager new
owner: self extendedWidgetOrSelf;
type: #multiLine;
get: #items;
set: #items:;
filter: [:string | string wbArrayOfLines];
yourself

For CwPushButton:
wbDirectEditManager

^WbDirectEditManager new
owner: self extendedWidgetOrSelf;
type: #singleLineInset;
get: #labelString;
set: #labelString:;
filter: nil;
yourself

For CwLabel:
wbDirectEditManager

^WbDirectEditManager new
owner: self extendedWidgetOrSelf;
type: #multiLine;
get: #labelString;
set: #labelString:;
filter: nil;
yourself

Four aspects of the direct editor may be customized:

• type - specifies the type of editor to pop up. Choices are #multiLine ,
#singleLine and #singleLineInset .

• get - specifies the get selector used to retrieve the value from the widget for initially
setting the contents of the direct editor.

• set - specifies the set selector used for updating the widget once direct editing is
finished.

• filter - specifies a filter (a block) to be applied to the direct editor’s result string
before it is passed to the widget. The direct editor only deals with strings. Some
widgets, like lists, want an array of strings for their contents. Using the block
“ [:string | string wbArrayOfLines] ” will convert a multi-line string into an
array of strings (one for each line).

512 Appendix A Customizing WindowBuilder Pro

wbDefaultParentScrollingPolicy
Answer the default scrolling policy when the receiver is placed within a
CwScrolledWindow. This method can either return XmAUTOMATIC or
XmAPPLICATIONDEFINED.

wbDefaultValues
Answer a dictionary where the keys are attribute symbols and the values are the default
values of that attribute. Generally, the default values for each attribute will be determined
automatically by the system when it first builds the attribute manager. This method need
only be used to provide defaults for attributes that would otherwise register as nil or to
override attributes that may return the wrong default value. The following is an example
from CwList:

wbDefaultValues
^super wbDefaultValues

at: #items put: OrderedCollection new;
at: #selectedItems put: OrderedCollection new;
at: #font put: CgDisplay default defaultFontStruct

name asPortableFontString;
yourself.

wbFontAttributeList
Answer a list of valid font attributes for the widget. It provides a hint to the system to use
the standard font selection dialog when dealing with these attributes. The following is an
example from CwList:

wbFontAttributeList
^super wbFontAttributeList

addAll: #(
font
);

yourself.

wbImportantCallbacks
Answer a list of important callbacks for the widget. These are the items that show up first
in the callback list in the Callback Editor and in the popup Connect menu. The following
is an example from CwPushButton:

wbImportantCallbacks
^super wbImportantCallbacks

addFirst: #activateCallback;
yourself

Adding Support for New Widgets 513

wbImportantMessages
Answer a list of important messages for the widget. These are the items that show up
when performing a visual connection to the widget. The following is an example from
CwToggleButton:

wbImportantMessages
^super wbImportantMessages

addAll: #(
#click
#check
#turnOff
#turnOn
#uncheck
#set:
);

yourself

wbIsomorphicClasses
Answer the classes that the receiver can be morphed to. The following is an example
from CwLabel:

wbIsomorphicClasses
^#(

#CwLabel
#CwText
#WbEnhancedText
#CwDrawnButton
#CwPushButton
#CwToggleButton
)

wbMaxSize
Answer the maximum size of the widget. This method would only be overridden if the
widget needed to constrain its size in one direction or another. The following is an
example from CwText:

wbMaxSize
self isDestroyed ifTrue: [^super wbMaxSize].
^super wbMaxSize x @ self preferredExtent y.

wbMinSize
Answer the minimum size of the widget. This method would only be overridden if the
widget needed to constrain its size in one direction or another. The following is an
example from CwText:

wbMinSize
self isDestroyed ifTrue: [^0@0].
^super wbMinSize x @ self preferredExtent y.

514 Appendix A Customizing WindowBuilder Pro

wbOverrideDefaultAttributes: attributeManager
Give the class the opportunity to override the default attribute manager set up for the
widget. Individual attributes may be augmented with additional flag information or
default characteristics may be changed by this method. This method is used to supply
information that is not captured by any of the other methods. The following is an
example from CwList:

wbOverrideDefaultAttributes: attributeManager
super wbOverrideDefaultAttributes: attributeManager.
(attributeManager attributes at: #x)

useParentIfScrolled: true.
(attributeManager attributes at: #y)

useParentIfScrolled: true.
(attributeManager attributes at: #topItemPosition)

isEditable: false.
(attributeManager attributes at: #selectionPolicy)

userDefault: XmSINGLESELECT.
(attributeManager attributes at: #items)

location: nil;
getSelector: #wbItems;
useInCloning: false;
yourself.

A number of fields and flags may be set for each attribute:

• default: anObject - modify the (system) default value. This value is used to
determine whether the attribute should be emitted during code generation. If the
value of the attribute is the same as the default value, no code will be generated for
that attribute.

• getSelector: aSymbol - modify the get selector.

• isEditable: aBoolean - is the attribute editable or not? If it is not editable, it will not
appear in the generic attribute editor.

• isPixmapAttribute: aBoolean - is the attribute a pixmap attribute? This is a signal to
use the graphics editor when editing this attribute.

• location: anIntegerOrNil - set the location to nil. The location specifies whether an
attribute is a direct instance variable of the widget. This information is used to
optimize cloning and morphing operations.

• setSelector: aSymbol - modify the set selector. The set selector is used in code
generation.

• useInCloning: aBoolean - should the attribute be used when a widget is copied?

• useInCodeGeneration: aBoolean - should the attribute be used in code generation?

• useInMorphing: aBoolean - should the attribute be used in morphing?

Adding Support for New Widgets 515

• useParentIfScrolled: aBoolean - should this attribute use the parent widget’s value
when the widget is within a scrolled window? This is generally only used for the x,
y, width and height attributes of scrolled lists and scrolled texts.

• userDefault: anObject - modify the user default. These defaults can also be set by
the user using the Template Editor. The user default is used in initially instantiating a
widget. Note that this value may be different from the system default value.

wbProcessEditorEvent: event
Process an event in the editor. Normally the event’s point will be extracted and used for
further processing. Answer false to indicate that the event was not handled. See
EwPMNotebook and EwWINNotebook for examples.

wbRequiredPoolDictionaries
Answer the list of required pool dictionaries required by any instance of the receiver. This
method would be overridden only in the case that a widget’s code generation would
reference constants in a pool dictionary other than CwConstants. Any pool dictionaries
specified by this method would be automatically appended to the WbApplication
definition in which the widget was added. The following is an example from
EwNotebook:

wbRequiredPoolDictionaries
^#(EwConstants CwConstants)

wbStyleAttribute
Answer the attribute to be used for the style combobox. This provides a fast path to the
single most important style attribute of a widget. The following is an example from
CwList:

wbStyleAttribute
^#selectionPolicy

wbSubStyleAttribute
Answer the attribute to be used for the sub-style combobox. This provides a fast path to
the second most important style attribute of a widget. The following is an example from
CwComboBox:

wbSubStyleAttribute
^#editable

You should have the “WindowBuilder Pro – Tools” configuration loaded whenever you
are adding enhancements or extending the definitions of any widgets. WindowBuilder
Pro caches all widget attributes (for performance reasons), so it is important to re-
initialize the widget attribute cache after you make any changes that affect widget
attributes (like defining new callbacks, code generation attributes, WbEnhancedText
validations, etc.). You can re-initialize the widget cache by executing the “Tools |
Initialize | Widgets” command in the WindowBuilder Pro menubar (available when you
load the WindowBuilder Pro Tools config. Alternatively, you can execute
“WbAttributeManager initializeWidgets” in a workspace

516 Appendix A Customizing WindowBuilder Pro

Building a Custom Attribute Editor
WindowBuilder Pro provides a framework for building custom attribute editors. The class
WbAbstractAttributeEditor is the superclass of all attribute editors. It does all of the work
of matching up attribute values from a selected widget to fields in the custom attribute
editor.

The steps involved to build a new editor are simple:

1. Start with an empty window.

2. For each attribute you wish to make available for editing, add a field to the window.
String and Integer values should be placed as CwText or WbScrolledText. Boolean
values should be CwToggleButtons. Attributes with multiple resource values defined
should be CwComboBoxes. Attributes represented by arrays of strings should us a
WbListItemEditor. WbListItemEditor is a WbApplication subclass and may be added
to a window via holding the ALT key down while invoking the “Add Nested
Application...” command.

3. As each field is added to the screen, its name should be set to exactly match the
name of its corresponding attribute. The name is used by WbAbstractAttributeEditor
to match the fields with the correct values.

4. Add CwLabels to any CwText and CwComboBox fields. There names should be
“<attribute name>Label”.

5. Add four buttons to the window: OK, Cancel, Apply and Generic.

6. Add the following callback handlers to the Activate Callback of each button:

• OK - #ok:clientData:calldata:

• Cancel - #cancel:clientData:calldata:

• Apply - #apply:clientData:calldata:

• Generic - #generic:clientData:calldata:

 Note that each of these handlers is inherited from WbAbstractAttributeEditor and need
not be overridden.

7. If a widget requires a pixmap attribute (e.g., its isPixmapAttribute flag is set to true),
add the field as a CwPushButton. The button’s Activate Callback should be
#pixmap:clientData:callData: .

8. Use the Tab & Z-Order Editor to set the tab order.

9. Use the Attachment Editor to specify attachments.

Building a Custom Attribute Editor 517

10. Save the window. Hold the ALT key down when invoking the save dialog. You can
then select WbAbstractAttributeEditor as the superclass. Make sure that the
application in which you save the window has the WindowBuilder Pro application as
prerequisite.

11. Add a #wbAttributeEditorClass instance method to the widget that returns the
WbAbstractAttributeEditor that you just created.

As an example of the above, examine the WbComboBoxEditor class in WindowBuilder
Pro:

The #addWidgets method for the above window is the following:

addWidgets
“Private: WARNING!!!! This method was
 automatically generated by WindowBuilder Pro.
 Code you add here which does not conform to
 the WindowBuilder Pro API will probably be lost
 the next time you save your layout definition.”

| apply borderWidth borderWidthLabel cancel
 comboBoxType comboBoxTypeLabel editable
 enabled generic items ok verifyBell visible
 visibleItemCount visibleItemCountLabel |

518 Appendix A Customizing WindowBuilder Pro

comboBoxTypeLabel := CwLabel
createWidget: ‘comboBoxTypeLabel’
parent: self form
argBlock: [:w | w

x: 4;
y: 4;
width: 60;
height: 24;
alignment: XmALIGNMENTEND;
labelString: ‘Type:’;
scale].

comboBoxType := CwComboBox
createWidget: ‘comboBoxType’
parent: self form
argBlock: [:w | w

x: 68;
y: 4;
width: 160;
height: 24;
scale].

borderWidthLabel := CwLabel
createWidget: ‘borderWidthLabel’
parent: self form
argBlock: [:w | w

x: 4;
y: 32;
width: 60;
height: 24;
alignment: XmALIGNMENTEND;
labelString: ‘Border:’;
scale].

borderWidth := CwComboBox
createWidget: ‘borderWidth’
parent: self form
argBlock: [:w | w

x: 68;
y: 32;
width: 160;
height: 24;
scale].

Building a Custom Attribute Editor 519

editable := CwToggleButton
createWidget: ‘editable’
parent: self form
argBlock: [:w | w

x: 240;
y: 4;
width: 76;
height: 24;
navigationType: XmTABGROUP;
labelString: ‘Editable’;
scale].

verifyBell := CwToggleButton
createWidget: ‘verifyBell’
parent: self form
argBlock: [:w | w

x: 240;
y: 32;
width: 92;
height: 24;
navigationType: XmTABGROUP;
labelString: ‘Verify Bell’;
scale].

visibleItemCountLabel := CwLabel
createWidget: ‘visibleItemCountLabel’
parent: self form
argBlock: [:w | w

x: 4;
y: 60;
width: 132;
height: 28;
alignment: XmALIGNMENTEND;
labelString: ‘Visible Item Count:’;
scale].

visibleItemCount := CwText
createWidget: ‘visibleItemCount’
parent: self form
argBlock: [:w | w

x: 140;
y: 60;
width: 40;
height: 28;
largeText: false;
scale].

520 Appendix A Customizing WindowBuilder Pro

visible := CwToggleButton
createWidget: ‘visible’
parent: self form
argBlock: [:w | w

x: 192;
y: 60;
width: 68;
height: 28;
navigationType: XmTABGROUP;
labelString: ‘Visible’;
scale].

enabled := CwToggleButton
createWidget: ‘enabled’
parent: self form
argBlock: [:w | w

x: 268;
y: 60;
width: 76;
height: 28;
navigationType: XmTABGROUP;
labelString: ‘Enabled’;
scale].

items := WbListItemEditor
createWidget: ‘items’
parent: self form
argBlock: [:w | w

x: 8;
y: 92;
width: 336;
height: 154;
items: #();
scale].

ok := CwPushButton
createWidget: ‘ok’
parent: self form
argBlock: [:w | w

x: 8;
y: 248;
width: 76;
height: 32;
navigationType: XmTABGROUP;
labelString: ‘OK’;
showAsDefault: 1;
scale].

Building a Custom Attribute Editor 521

cancel := CwPushButton
createWidget: ‘cancel’
parent: self form
argBlock: [:w | w

x: 92;
y: 248;
width: 76;
height: 32;
navigationType: XmTABGROUP;
labelString: ‘Cancel’;
scale].

apply := CwPushButton
createWidget: ‘apply’
parent: self form
argBlock: [:w | w

x: 176;
y: 248;
width: 76;
height: 32;
navigationType: XmTABGROUP;
labelString: ‘Apply’;
scale].

generic := CwPushButton
createWidget: ‘generic’
parent: self form
argBlock: [:w | w

x: 264;
y: 248;
width: 76;
height: 32;
navigationType: XmTABGROUP;
labelString: ‘Generic’;
scale].

comboBoxTypeLabel
attachLeft: 4 relativeTo: XmATTACHFORM;
attachTop: 4 relativeTo: XmATTACHFORM;
yourself.

comboBoxType
attachLeft: 68 relativeTo: XmATTACHFORM;
attachRight: 120 relativeTo: XmATTACHFORM;
attachTop: 4 relativeTo: XmATTACHFORM;
yourself.

borderWidthLabel
attachLeft: 4 relativeTo: XmATTACHFORM;
attachTop: 32 relativeTo: XmATTACHFORM;
yourself.

522 Appendix A Customizing WindowBuilder Pro

borderWidth
attachLeft: 68 relativeTo: XmATTACHFORM;
attachRight: 120 relativeTo: XmATTACHFORM;
attachTop: 32 relativeTo: XmATTACHFORM;
yourself.

editable
attachRight: 32 relativeTo: XmATTACHFORM;
attachTop: 4 relativeTo: XmATTACHFORM;
yourself.

verifyBell
attachRight: 16 relativeTo: XmATTACHFORM;
attachTop: 32 relativeTo: XmATTACHFORM;
yourself.

visibleItemCountLabel
attachLeft: 4 relativeTo: XmATTACHFORM;
attachTop: 60 relativeTo: XmATTACHFORM;
yourself.

visibleItemCount
attachLeft: 140 relativeTo: XmATTACHFORM;
attachTop: 60 relativeTo: XmATTACHFORM;
yourself.

visible
attachRight: 88 relativeTo: XmATTACHFORM;
attachTop: 60 relativeTo: XmATTACHFORM;
yourself.

enabled
attachRight: 4 relativeTo: XmATTACHFORM;
attachTop: 60 relativeTo: XmATTACHFORM;
yourself.

items
attachLeft: 8 relativeTo: XmATTACHFORM;
attachRight: 4 relativeTo: XmATTACHFORM;
attachTop: 92 relativeTo: XmATTACHFORM;
attachBottom: 42 relativeTo: XmATTACHFORM;
yourself.

ok
attachLeft: 8 relativeTo: XmATTACHFORM;
attachBottom: 8 relativeTo: XmATTACHFORM;
addCallback: XmNactivateCallback

receiver: self
selector: #ok:clientData:callData:
clientData: nil;

yourself.

Using Add-In Modules 523

cancel
attachLeft: 92 relativeTo: XmATTACHFORM;
attachBottom: 8 relativeTo: XmATTACHFORM;
addCallback: XmNactivateCallback

receiver: self
selector: #cancel:clientData:callData:
clientData: nil;

yourself.
apply

attachLeft: 176 relativeTo: XmATTACHFORM;
attachBottom: 8 relativeTo: XmATTACHFORM;
addCallback: XmNactivateCallback

receiver: self
selector: #apply:clientData:callData:
clientData: nil;

yourself.
generic

attachRight: 8 relativeTo: XmATTACHFORM;
attachBottom: 8 relativeTo: XmATTACHFORM;
addCallback: XmNactivateCallback

receiver: self
selector: #generic:clientData:callData:
clientData: nil;

yourself.

You should notice that other than code that is inherited from WbAbstractAttributeEditor
or directly generated by WindowBuilder Pro, there is no additional work that needs to be
done. For some examples of custom editors that do supply additional behavior, examine
the other WbAbstractAttributeEditor subclasses supplied with WindowBuilder Pro (e.g.,
WbLabelEditor, WbScrolledTextEditor, WbPushButtonEditor, etc.).

Using Add-In Modules
Once a widget has been enabled to the WindowBuilder Pro environment via defining its
attributes and building a custom editor, it is useful to add it to the tool palette. Add-In
modules provide a mechanism for adding widgets to the palette, adding menus to
WindowBuilder Pro itself, defining new WindowBuilder Pro properties, and enhancing
the default code generation.

The WbAbstractAddInModule class provides the default protocols for all add-ins.
Creating a new add-in is a simple matter of subclassing WbAbstractAddInModule and
overriding one or more of its protocols.

524 Appendix A Customizing WindowBuilder Pro

Four protocols define what aspects of the system this add-in affects:

• modifiesCodeGeneration - Does this add-in modify code generation?

• modifiesMenus - Does this add-in modify the menus?

• modifiesPalette - Does this add-in modify the palette?

• modifiesProperties - Does this add-in modify properties?

Just return true for any of these you wish to affect. Four additional protocols are provided
that actually do the work:

• modifyCodeGeneration: moduleCollection - Modify the code generation.

• modifyMenus: aMenuBar - Modify the menus.

• modifyPalette: thePalette - Modify the palette.

• modifyProperties: theProperties - Modify the properties.

Several other protocols are also provided that will be automatically invoked by the
system:

• addInName - Answer the name of the add-in.

• addInDescription - Answer a description of the add-in.

• addToBitmapModuleMap: aDictionary - Add to the bitmap module map.

• addToButtonModuleMap: aDictionary - Add to the button module map.

• cleanUpOnUnload - Clean up when unloading.

• initializeOnLoad - Perform initializations of loading.

The state of an add-in (e.g., whether it is loaded or unloaded) can be set via the
#setLoaded: or #loaded: methods.

As an example, examine the add-in that provides support for VisualAge within
WindowBuilder Pro.

WbAbstractAddInModule subclass: #WbVisualAgeAddInModule
 instanceVariableNames: ‘‘
 classVariableNames: ‘‘
 poolDictionaries: ‘‘!

!WbVisualAgeAddInModule class publicMethods !

addInName
“Answer the name of the Add-In”
^’VisualAge Support’!

Using Add-In Modules 525

addInDescription
“Answer a description of the Add-In”
^’Provides support for VisualAge integration’.!

modifiesMenus
“Does this add-in modify the menus?”
^true!

modifyMenus: aMenuBar
“Add the VisualAge menu to aMenuBar.”
aMenuBar

addMenu: (
aMenuBar owner newMenu

title: ‘~VisualAge’;
owner: aMenuBar owner;
add: #menuVisualAgeAttributeEditor

label: ‘A~ttribute Editor...’;
add: #menuVisualAgeActionEditor

label: ‘~Action Editor...’;
add: #menuVisualAgeEventEditor

label: ‘~Event Editor...’;
yourself).! !

!WbVisualAgeAddInModule class privateMethods !
initialize

“Private - Initialization sets my loaded state.”
self loaded: true.

This add-in notifies the system that it is interested in modifying the WindowBuilder Pro
menubar and then does so via the #modifyMenus: method. The menu methods
themselves are added as extensions to the WindowBuilder class itself (although they
could be anywhere else).

The second example illustrates adding new widgets to the tool palette and the Add menu:

WbAbstractAddInModule subclass: #SampleAddInModule
 instanceVariableNames: ‘‘
 classVariableNames: ‘‘
 poolDictionaries: ‘‘!

! SampleAddInModule class publicMethods !

addInName
“Answer the name of the Add-In”
^’Sample Add-In #1’!

526 Appendix A Customizing WindowBuilder Pro

addInDescription
“Answer a description of the Add-In”
^’Description of Sample Add-In #1’.!

addToButtonModuleMap: aDictionary
“Add to the button module map”
aDictionary

at: self module
put: (IdentityDictionary new

at: #SampleWidgets put: 100;
at: #SampleWidget1 put: 101;
at: #SampleWidget2 put: 102;
yourself).!

cleanUpOnUnLoad
“Clean up when unloading”
self editorClass

initializeBitmapMaps;
initializePalette!

initializeOnLoad
“Perform initializations of loading”
self editorClass

initializeBitmapMaps;
initializePalette!

modifiesPalette
“Does this add-in modify the palette?”
^true!

module
“Answer the resource DLL”
^’SAMPLE.DLL’!

modifyPalette: thePalette
“Modify the palette”
thePalette

add: ((self editorClass paletteGroup
label: #SampleWidgets mnemonic: $S
description: ‘‘)
add: (self editorClass paletteEntry

label: #SampleWidget1 mnemonic: $1
description: ‘‘);

add: (self editorClass paletteEntry
label: #SampleWidget2 mnemonic: $2
description: ‘‘);

yourself);
yourself! !

Using Add-In Modules 527

This add-in loads three additional pixmaps into WindowBuilder Pro’s pixmap cache
named “SampleWidgets”, “SampleWidget1” and “SampleWidget2”. The first represents a
new widget category. The latter two are the names of the two widgets that are being
added to the system. The pixmaps are loaded as bitmap resources from a resource-only
DLL that you create (here it is referred to as “SAMPLE.DLL”). Each toolbar bitmap in
the DLL must be 21 pixels wide by 21 pixels tall. Use either the Windows or OS/2
RC.EXE utility to create the resource DLL.

The example also notifies the system that it is interested in modifying the palette (which
also modifies the Add menu) and does so via the #modifyPalette: method. If the
#addToButtonModuleMap: method was not included above and no pixmaps were
added to the cache, a generic widget button would be used instead.

The final example illustrates defining new properties. These properties will be editable
from within the Property Editor. The current values of the properties can be used in
conjunction with other add-ins that modify the WindowBuilder Pro menus or code
generation.

WbAbstractAddInModule subclass: #SampleAddInModule2
 instanceVariableNames: ‘‘
 classVariableNames: ‘‘
 poolDictionaries: ‘‘!

! SampleAddInModule2 class publicMethods !
addInName

“Answer the name of the Add-In”
^’Sample Add-In #2’!

addInDescription
“Answer a description of the Add-In”
^’Description of Sample Add-In #2’!

cleanUpOnUnLoad
“Clean up when unloading”
self editorClass initializeProperties!

initializeOnLoad
“Perform initializations of loading”
self editorClass initializeProperties!

modifiesProperties
“Does this add-in modify the properties?”
^true!

528 Appendix A Customizing WindowBuilder Pro

modifyProperties: theProperties
“Modify the properties”
theProperties

at: self samplePropertyString
put: (IdentityDictionary new

at: #BooleanProperty
put: (WbPropertyDescriptor new

name: #BooleanProperty;
commonName: ‘Boolean Property’;
comment: ‘Description of property.’;
category: self samplePropertyString;
default: true;
changeBlock: [:newValue | “do something”];
yourself);

at: #StringProperty
put: (WbPropertyDescriptor new

name: #StringProperty;
commonName: ‘String Property’;
comment: ‘Description of property.’;
category: self samplePropertyString;
default: ‘default string’;
yourself);

at: #PointProperty
put: (WbPropertyDescriptor new

name: #PointProperty;
commonName: ‘Point Property’;
comment: ‘Description of property.’;
category: self samplePropertyString;
default: 0@0;
yourself);

yourself);
yourself.!

samplePropertyString
^#’Sample Properties’

This add-in notifies the system that it is interested in modifying the WindowBuilder Pro
property list and then does so via the #modifyProperties: method. Three add-ins of
different types are defined in a new category. An optional changeBlock may be specified
that takes the new value of the property as an argument.

Note that any single add-in module can actually affect multiple aspects of the system.
The three examples above could be easily combined into a single add-in that modifies the
WindowBuilder menu bar, property list and tool palette.

Adding Code Generation 529

Adding Code Generation
The WindowBuilder Pro code generation framework is also highly extensible. The
framework is composed of the WbCodeGenerator class that acts as a general coordinator
for multiple subclasses of WbCodeModule. There exists one subclass of WbCodeModule
for each type of method that WindowBuilder Pro can generate. Extending the code
generation framework involves adding new WbCodeModule subclasses and then tying
them into the WbCodeGenerator class.

When subclassing WbCodeModule, the following protocols are of interest:

category [class method]
Answer the primary category in which the method should be included. The default is
“WBPro-Generated”.

defaultStreamSize
Answer the default stream size to be used. The default is 256 bytes. This is used to set the
initial size of the stream.

generateBody
Generate the body of the method. This method executes after the message pattern and
any temporaries are defined. This is where most of the work is done. For stub methods
such as callback handlers, this method should do nothing. Look at the
WbWidgetDefinitionCodeModule and WbMenuDefinitionCodeModule classes for
examples.

generateCommentBody
Generate the comment body for the method. By default, this will generate the comment
“Generated by WindowBuilder Pro”.

generateCommentBodyIndent: indent
Generate the comment body for the method indented by indent. Having this method
invoke #generateWarningCommentBodyIndent: will generate the standard
WindowBuilder Pro warning message.

generateTemporaries
Generate the temporaries for the method. Look at the WbWidgetDefinitionCodeModule
class for an example.

initializeMethod
Perform special initializations before the method is generated.

530 Appendix A Customizing WindowBuilder Pro

isMeta
Should the method be a class method? The default is false. Override this method and
return true for class methods.

isPublic
Should the method be public? The default is false. Override this method and return true
to create a public method.

methodArguments
Answer the collection of method arguments. For each key word in the generated method,
there should be one argument provided. Look at the WbCallbackCodeModule class for an
example.

methodName
Answer the method name (as a Symbol) to be generated. All of the WbCodeModule
classes override this method.

postInitializeBody
Perform special initializations after the body of the method is generated.

preInitializeBody
Perform special initializations before the body of the method is generated.

In addition to these protocols, there are several helper methods that you can use:

codeGenerator
Answer the value of the codeGenerator instance variable. This is the instance of
WbCodeGenerator that is managing the current code module.

object
Answer the object for which code is being generated. This object is held by the
WbCodeGenerator instance that is managing the current code module.

policy
Answer the code storage policy instance. The code storage policy instance is responsible
for taking the generated method stream and storing it in the base system. The code
storage policy is maintained by the WbCodeGenerator instance that is managing the
current code module.

shouldStore
Answer the value of the shouldStore instance variable. This is a flag that indicates
whether the method should actually be saved or not. It is possible that during the course
of generating a method, an error is discovered or the method is empty and does not need
to be saved. Setting this flag to false will prevent the method from being saved.

Adding Code Generation 531

storageClass
Answer the class in which to create the method. This should be the class of the object for
which code is being generated.

stream
Answer the value of the stream instance variable. This is the current stream that the
method is being generated to.

After creating your WbCodeModule subclass, you need to add a class method to
WbCodeGenerator that references it. It should take the following form:

generateSomeCodeFor: anObject
“Generate code for <anObject>”
self

generateCodeFor: anObject
using: SomeCodeModule.

Examine the class methods of WbCodeGenerator for several examples. You can now
generate code via:

WbCodeGenerator generateSomeCodeFor: anObject

532 Appendix A Customizing WindowBuilder Pro

533

Appendix B Extended Widgets

Common Widgets provides a framework for developing custom widgets based on
existing widgets. These are called extended widgets. If the VisualAge portable API is
used to develop an extended widget, it will be portable between all platforms supported
by VisualAge. Extended widgets are often implemented using a CwDrawingArea, with
their visual appearance drawn using Common Graphics calls, and with user input
processed using event handlers.

Consider the following subset of the CwWidget class hierarchy.

CwWidget
CwBasicWidget

CwComposite
CwPrimitive
CwShell

CwExtendedWidget
CwExtendedComposite
CwExtendedPrimitive

The CwWidget class defines behavior common to all widgets. The CwBasicWidget
hierarchy provides the basic widgets described thus far, such as CwShell, CwText,
CwList, CwPushButton, CwForm and CwRowColumn. Basic widgets are implemented
using the native widgets provided by each platform. The implementation of basic widgets
is not portable.

The CwExtendedWidget class is the abstract superclass of all extended widgets. As with
the basic widget class hierarchy, it is divided up into primitive widgets
(CwExtendedPrimitive) and composite widgets (CwExtendedComposite).

Writing an Extended Widget
The first step in writing an extended widget is to create a subclass of the appropriate
extended widget framework class. Extended widgets that are not intended to contain
child widgets should be implemented as subclasses of CwExtendedPrimitive. Those that
are intended to contain child widgets should be implemented as subclasses of
CwExtendedComposite. It is important to understand this difference.

534 Appendix B Extended Widgets

A subclass of CwExtendedPrimitive can be implemented using a primary widget with
child widgets, however an application programmer making use of this type of extended
widget cannot add any children to it.

A subclass of CwExtendedComposite can be implemented using just a single widget, say
for example a CwForm with no children, but the same application programmer can create
this type of extended widget and add as many children as are permitted by the extended
widget’s API.

Once the subclass has been created, it should define an instance variable for each
resource and callback provided by the extended widget, as well as instance variables
required for any other aspects of the widget’s implementation.

Defining the Extended Widget Class

An extended widget is implemented using a widget tree consisting of other basic or
extended widgets. This tree is called the primary widget tree. The root of the primary
widget tree is known as the primary widget. The extended widget class must override the
#createPrimaryWidget:parent:argBlock: method. This method creates and
answers the primary widget, but does not create the children of the primary widget. If the
primary widget tree consists of more than one widget, the extended widget class must
override #createWidgetSystem . This method creates the remainder of the primary
widget tree, that is, the children of self primaryWidget .

Initialization

Three methods can be overridden to initialize the state of the widget. The initialize
method is executed as the first step in extended widget creation. It is useful for
initializing the internal state of the widget, except for resources. The
#initializeResources method initializes the instance variables representing
resources. Both of these methods are executed before the primary widget tree has been
created. The #initializeAfterCreate method is executed after the primary widget
tree has been created. It is useful for configuring widgets once they have been created,
and for initializing graphics resources.

Resources

Set and get accessor methods should be added for each resource provided by the
extended widget. Usually, the get method simply answers the corresponding instance
variable. The set method usually sets the corresponding instance variable and makes any
required changes in the primary widget tree.

Using an Extended Widget 535

Callbacks

Set and get accessor methods must be added for each callback provided by the extended
widget. To work properly with methods inherited from CwExtendedWidget, the get
method name must have the same selector as the value of the CwConstants constant used
to specify the callback, for example, exposeCallback for the XmNexposeCallback. If a
new name is created, it can be added to an application-specific pool dictionary, but the
same naming convention must be used. It must answer an ordered collection, to which
callback descriptors are added whenever a callback is registered. If the callback resource
is uninitialized, the get method must initialize the callback resource to be a new
OrderedCollection, and answer that. Registered callbacks can be executed by the
extended widget using the #callCallbacks:callData: method.

Widget-Specific Methods

An extended widget works by forwarding most widget messages to its primary widget.
All of the methods inherited from CwWidget are automatically forwarded to the primary
widget if they are not explicitly overridden. In simple cases, an extended widget’s
behavior can be implemented simply by adding resource and callback methods as
described above. For more complicated widgets, it is usually necessary to extend the
basic widget protocol by providing methods to support commonly used operations on the
extended widget.

Using an Extended Widget
Once an extended widget class has been defined, application developers can create
instances of the extended widget by sending the #createWidget:parent:argBlock:

or #createManagedWidget:parent:argBlock: method to the extended widget’s
class. The create argBlock should only set resources that are defined for the extended
widget or in CwWidget, and should not assume any underlying implementation.

Example: A Primitive Extended Widget
An example extended widget is provided in this section. It is a subclass of
CwExtendedPrimitive. For simplicity, the example does not include robust error-
checking, nor does it provide a complete set of resources.

536 Appendix B Extended Widgets

The WbLabelledText widget has a label on either the left or top and a text box either on
the right or bottom. It allows a user to enter text into its text box, and it invokes a
#valueChanged callback if a new value is present when the user either hits the tab key
or clicks on a different widget. The complete code for this example is in the
WbProRuntimeExamples application.

The extended widget is implemented using a CwForm as the primary widget with
CwLabel and CwText children. A #losingFocus callback on the CwText enables the
widget to test entered data, and possibly call any registered #valueChanged callbacks.

CwExtendedPrimitive subclass: #WbLabelledText
 instanceVariableNames: ‘label value format

valueChangedCallback textWidget labelWidget ‘
 classVariableNames: ‘‘
 poolDictionaries: ‘‘!

backgroundColor: resourceValue
“Specifies the background drawing color.”
super backgroundColor: resourceValue.
self children do: [:child |

child backgroundColor: resourceValue].

children
“Private - answer the receivers children”
^self primaryWidget children

createPrimaryWidget: theName parent: parent argBlock: argBlock
“Private - Create and answer the basic widget that is the
 root of the widget hierarchy for the receiver’s widget
 system.”
^self parent

createForm: theName, ‘_Form’
argBlock: argBlock

createWidgetSystem
“Private - Create the children of the receiver’s primary
 widget which form the widget hierarchy.”
| primaryWidget |
primaryWidget := self primaryWidget.
labelWidget := primaryWidget

createLabel: primaryWidget name, ‘Label’
argBlock: [:w | w

labelString: self label].
labelWidget manageChild.
textWidget := primaryWidget

createText: primaryWidget name, ‘Text’
argBlock: [:w | w

Example: A Primitive Extended Widget 537

borderWidth: 1;
value: self value].

textWidget
addCallback: XmNlosingFocusCallback

receiver: self
selector: #losingFocus:clientData:callData:
clientData: nil;

manageChild.
labelWidget setValuesBlock: [:w | w

topAttachment: XmATTACHFORM;
leftAttachment: XmATTACHFORM].

foregroundColor: foreground
“Specifies the background drawing color.”
super foregroundColor: resourceValue.
self children do: [:child |

child foregroundColor: resourceValue].

format
“Answer the layout format.”
^format

format: aSymbol
“Set the value of the format to aSymbol.”
(#(column row) includes: aSymbol)

ifTrue: [
format := aSymbol.
self isDestroyed

ifFalse: [
self

setTextWidgetAttachment;
setLabelWidgetFormat]].

initializeAfterCreate
“Private - Perform widget specific Initialization.”
self

setTextWidgetAttachment;
setLabelWidgetFormat.

initializeResources
“Private - Set the default extended widget resource values.
 This is sent during create with isCreated set to false.
 All extended resource variables should be initialized
 to default values here.”
label := String new.
value := String new.
format := #row.

538 Appendix B Extended Widgets

label
“Answer the value of the label resource.”
^label

label: aString
“Set the value of the label resource to aString.”
label := aString.
self isDestroyed

ifFalse: [self setLabelWidgetFormat]

losingFocus: widget clientData: clientData callData: callData
“Private - Catch losing focus callback and
 call value changed callback”
| textValue |
(textValue := textWidget value) ~= self value

ifTrue: [
self

value: textValue;
callCallbacks: XmNvalueChangedCallback
callData:

(CwValueCallbackData new value: textValue)].

setLabelWidgetFormat
“Private - Format labelWidget corresponding to format”
format == #column

ifTrue: [labelWidget labelString: self label]
ifFalse: [

labelWidget
labelString: self label, ‘: ‘;
height: textWidget height].

setTextWidgetAttachment
“Private - Position textWidget corresponding to format”
format = #column

ifTrue: [
textWidget setValuesBlock: [:w | w

topAttachment: XmATTACHWIDGET;
topWidget: labelWidget;
leftAttachment: XmATTACHFORM;
rightAttachment: XmATTACHFORM]]

ifFalse: [
textWidget setValuesBlock: [:w | w

topAttachment: XmATTACHFORM;
leftAttachment: XmATTACHWIDGET;
leftWidget: labelWidget;
rightAttachment: XmATTACHFORM]].

Example: A Primitive Extended Widget 539

value
“Answer the value of the value resource.”
^value

value: aString
“Set the value of the value resource to aString.”
value := aString.
self isDestroyed

ifFalse: [textWidget value: aString]!

valueChangedCallback: resourceValue
“Set valueChangedCallback to resourceValue.”
valueChangedCallback := resourceValue.

valueChangedCallback
“Private - Answer valueChangedCallback.”
valueChangedCallback

ifNil: [self valueChangedCallback: OrderedCollection new].
^ valueChangedCallback

Using the WbLabelledText Primitive Extended Widget

The following code creates a WbLabelledText instance, sets its name and label resources
inside the create argBlock, and hooks a valueChanged callback to it.

| shell entryField |
shell := CwTopLevelShell

createApplicationShell: ‘WbLabelledText Test’
argBlock: nil.

entryField := WbLabelledText
createManagedWidget: ‘entryField’
parent: shell
argBlock: [:w |

w
label: ‘Name :’;
value: ‘Your name here’].

entryField
addCallback: XmNvalueChangedCallback
receiver: self
selector: #valueChanged:clientData:callData:
clientData: nil.

shell realizeWidget.

valueChanged: widget clientData: clientData callData: callData
“Display the new value on the transcript.”
Transcript cr; show: ‘Value changed to: ‘ ,

callData value printString.

540 Appendix B Extended Widgets

The WbLabelledText class can be subclassed to provide a slightly different extended
widget by simply overriding one method, as seen below in the class definition for
WbLabelledNumericText.

WbLabelledText subclass: #WbLabelledNumericText
 instanceVariableNames: ‘‘
 classVariableNames: ‘‘
 poolDictionaries: ‘‘

losingFocus: widget clientData: clientData callData: callData
“Private - Process a losing focus callback for the
 primary widget.”
| textValue |
textValue:= textWidget value.
“Verify that the new value string represents a number.
 If it doesn’t, reset the text widget and return.”
(newValue notEmpty and: [newValue conform: [:c | c isDigit]])

ifFalse: [^self value: value].
“If the new value is different, invoke the
 entryField widget’s valueChanged callback.”
self value ~= textValue

ifTrue: [
self

value: textValue;
callCallbacks: XmNvalueChangedCallback
callData:

(CwValueCallbackData new value: textValue)]

541

Appendix C User Interface Process Model

The Common Widgets user interface has been modeled based on the input event
processing model supported by OSF/Motif. A central event processing loop reads events
from the operating system and dispatches them to individual widgets that process them.
User interfaces (GUIs) including OSF/Motif, Microsoft Windows, IBM’s OS/2
Presentation Manager, and the Apple Macintosh operating system use this technique.

• In Common Widgets, the event polling loop has been implemented fully within high-
level Smalltalk code. This has a number of significant benefits to the application
programmer:

• Existing Motif application programmer knowledge is maintained, since custom event
loops can be constructed in the standard Motif style without fear of error-causing
interactions with hidden event handling mechanisms.

• Event polling occurs only at controlled points during system execution, so
application code runs at maximum speed.

• The system requires none of the cumbersome and error-prone low-level
synchronization code required by systems that attempt to hide the event loop below
the control of the application programmer.

• Complex multi-threaded applications can safely perform work in background
processes, while the user interface process continues to keep the user interface
responsive.

With Common Widgets, only the single Smalltalk user interface process is permitted to
dispatch events or directly perform user interface operations. Common Widgets facilitates
a proactive approach to event management, as opposed to a defensive one. Rather than
write code to defend themselves against asynchronous user interface events, such as
exposes, menu operations, or user input, application programmers control the user
interface event processing. Event processing is fully synchronous from the perspective of
the user interface process, although it can be asynchronous from the perspective of non-
UI processes.

Unfortunately, as is often the case, increased capability comes at the cost of increased
responsibility. In the case of the polled event model, application programmers are
responsible for writing their applications in ways that allow polling to occur at frequent
intervals. The responsiveness of an application—that is, the delay between the availability
of an event and processing of the event by the application—is directly affected by the
frequency at which the application polls. Although they vary in their sensitivity to

542 Appendix C User Interface Process Model

failures, all of the GUIs mentioned above specify that frequent polling is required to
maintain application responsiveness.

Common Widgets provides support for maintaining application responsiveness while
long-running tasks execute. This support is based on the Common Process Model
together with a standard application program interface (API) for managing the
interactions between non-UI tasks and the user interface. This is discussed in detail in the
following sections. First, a system view is presented, which provides an overview of the
implementation of these mechanisms, and then an application view is presented, which
discusses how the mechanisms are used in building applications.

The System View
In Smalltalk images that include a user interface (Common Widgets), the startUp class
(System startUpClass) is responsible for providing a polling loop for the user interface
process, an instance of UIProcess. The UIProcess sends the message #messageLoop to
the startUp class to start the polling loop. The standard startUp class,
EtWindowSystemStartUp, implements a simple polling loop similar to the one shown
below:

messageLoop
“Run the dispatch loop.”
[true] whileTrue: [

CwAppContext default readAndDispatch
ifFalse: [CwAppContext default sleep]

]

In general, application programmers never need to modify this code because it provides
full functionality for all but the most exceptional circumstances. However, as mentioned
above, application programmers can replace this loop with their own.

The message loop makes use of two methods defined in class CwAppContext:

readAndDispatch Reads a single event, if one is available, from the underlying
operating system, dispatches it to the appropriate widget, and
handles any callbacks that occur. In addition, it handles any
pending requests for user interface operations by non-UI
processes, as shown below. Finally, it returns true if an event was
processed and false otherwise.

sleep Checks for user interface activity, and if none, removes the
UIProcess from the ready-to-run queue. The system assumes there
is user interface activity in the following cases:

The System View 543

• There are events to process

• There are background user interface requests to be executed

• There are work procs registered

• There are timer procs registered

As long as there is any activity in the user interface, the UIProcess will continue to poll
for events as quickly as possible. As soon as the activity stops, the UIProcess becomes
inactive and suspends. This enables any other Smalltalk processes that are running at the
same or lower priority than the UIProcess to execute.

Because sending the CwAppContext default sleep method can deactivate the UIProcess,
there must be a mechanism for reactivating it. To support this, sleep enables an operating
system-specific mechanism that causes the private message CwAppContext default wake
to be sent when new events become available. This wake method is also sent by all other
methods that generate user interface activity, causing the UIProcess to respond
immediately.

If the underlying operating system does not provide any mechanism for triggering user
written code when events become available, the CwAppContext can still function by
generating a Smalltalk process that wakes the UIProcess at regular, user-settable
intervals. By default, this is called the “CwAsyncIOProcess”.

As previously mentioned, if there is no user interface activity the UIProcess is
deactivated, enabling other Smalltalk processes at the same or lower priority to run.
However, if there are no other active processes to run, a system-provided “idle” process is
executed, which repeatedly sends the #suspendSmalltalk message to the default
CwAppContext:

suspendSmalltalk Suspends the entire VisualAge system, using an operating system-
specific facility, until there is event activity. When the VisualAge
system is suspended it consumes little or no processor resources.
Under multi-tasking operating systems this enables other
applications full access to the CPU.

As soon as input is available, both the VisualAge system and the UIProcess are
reactivated, because they are higher priority than the idle process,.

If the operating system does not provide a facility for suspending execution of an
application until input is available, the #suspendSmalltalk method simply returns to
its sender. In this case, Common Widgets continues to run normally, but VisualAge
competes for resources with any other applications being run by the operating system.

544 Appendix C User Interface Process Model

Note that there is an interaction between the #suspendSmalltalk method and the
Smalltalk Delay class. If the idle process runs because a higher priority process has
delayed, the system must be reactivated when the Delay expires. This situation is handled
in one of three ways depending on the capabilities of the operating system:

• With operating systems such as UNIX where the Delay class uses the same
mechanism that #suspendSmalltalk uses to detect input activity, the system is
reactivated with no further intervention.

• With operating systems where Delay uses a different mechanism than
#suspendSmalltalk , but it is possible for a user written application to post a user
interface event, this facility is used to reactivate the system.

• If neither of the above mechanisms are available, VisualAge checks for Delays and
deactivates the system only when there are none pending.

The Application Programmer’s View
This section looks at the impact of input polling on application code.

When programming with OSF/Motif, or other modern window systems, application
programmers writing simple applications typically do not worry much about the details
of the input model. They simply define the kinds and layout of the widgets that make up
their application windows, register the appropriate callbacks, or equivalent, for user
actions, and implement the code for these callbacks. Although this is ideally true, one
important aspect is sometimes not considered: because callbacks are executed by the
same process that is running the user interface, all of the code that is executed by the
callback—an operation—is executed before the application returns to polling. Thus,
when long-running operations are executed, application responsiveness, and whole
system responsiveness on some operating systems, is affected.

In Common Widgets, programmers construct applications using the standard OSF/Motif
model described above. However, additional facilities are provided to allow long-running
operations to execute without impacting responsiveness.

Because VisualAge provides support for multiple, priority-scheduled threads of control,
or processes, operations that do not use user interface facilities can be executed by a
separate, low-priority process, called a background process. The user interface remains
responsive because it is higher priority than the background process and is activated
whenever input is available.

Unfortunately, OSF/Motif itself does not use a multi-threaded model and thus it is not
possible for multiple application processes to concurrently execute user interface code,

The Application Programmer’s View 545

for example, redrawing a widget, performing an individual graphical operation, or
reading an event. Some kind of synchronization is necessary.

It is possible for each application to implement its own synchronization scheme that
prevents background processes from attempting to concurrently execute user interface
code. However, VisualAge provides standard mechanisms to support this kind of
synchronization.

A background user interface request is a block of code that must be executed by the
UIProcess at a point when no other user interface code is being executed. The following
two methods are then implemented in class CwAppContext to take background user
interface requests.

Note: A background (non-UI) process must never make widget or graphics requests
directly—it must use #syncExecInUI: or #asyncExecInUI: to ask the user
interface to issue the request on its behalf.

Background user interface requests are executed by atomically interleaving their
execution with the event and callback processing of the user interface process. Once
execution of the block has been started, no further user interface events can be processed
until execution of the block has been completed.

asyncExecInUI: The UIProcess executes aBlock during #readAndDispatch

processing, at the next “clean” point, that is, at the next point where it
is not already executing user interface code. No result is returned.

Processes with higher priority than the UIProcess do not block when this method is
executed. In this case, aBlock is executed the next time the UI becomes active and
reaches a clean point. Processes at the same or lower priority than the UIProcess
normally block until aBlock has been executed, but this is not guaranteed.

The process that executes this message is not provided any indication of when aBlock has
been executed. In particular, it is not guaranteed that aBlock has been executed when the
method returns.

If this message is sent by code that is executing in the UIProcess, then aBlock is executed
after all previously queued background user interface requests have been executed.

Tip: A background process can re-awaken the UIProcess and cause a context switch
(since the UIProcess is higher priority) by executing: CwAppContext default
asyncExecInUI: []

546 Appendix C User Interface Process Model

syncExecInUI: aBlock is executed by the UIProcess during #readAndDispatch

processing, at the next “clean” point, that is, at the next point where it
is not already executing user interface code. The result of evaluating
aBlock is returned.

Execution of the process that evaluates this method always suspends until aBlock has
been evaluated.

If this message is sent by code that is executing in the UIProcess, the block is executed
immediately.

Both of these methods are implemented to add the code to be executed, aBlock, to a
collection of background user interface requests maintained by the CwAppContext. This
collection is FIFO ordered so operations can use #syncExecInUI: to ensure that all
previously sent #asyncExecInUI: messages have been processed.

After adding the request, both of the above methods send the message CwAppContext
default wake to re-activate the UIProcess if it was sleeping. As was described in the
previous section, the CwAppContext processes the background user interface requests as
part of the normal functioning of the readAndDispatch method. Processing of pending
background user interface requests is interleaved with user interface event dispatching.

Using the above methods, it is possible for programmers to construct applications that are
both responsive and contain long-running operations. The long-running operations are
executed by background tasks that use #asyncExecInUI: or #syncExecInUI: to
access the user interface. Obviously, the programmer is responsible for ensuring that the
individual blocks that are passed to the “ExecInUI” methods do not take an unusually
long time to execute.

Note: Since execution of background graphics requests can be deferred while events are
processed, background user interface request blocks must be prepared for
eventualities such as widgets being destroyed between the request being posted
and executed.

Examples of Applications with Long-Running
Operations

The following are some overviews of correct implementation styles when building
applications with long-running operations using VisualAge. These examples are intended
to show typical ways that applications can be written using VisualAge. Of course, every
application is different so developers can use any or all of these techniques, or construct
new idioms that are more appropriate to their problem domain. The important point to

Examples of Applications with Long-Running Operations 547

remember is that there are no surprises. Every aspect of the polling model is accessible to
the application developer. Nothing is done “under the covers.”

Example 1: A Simple Text Editor

A simple text editing application is constructed using VisualAge. The application is
responsive in all situations except while reading or writing the file that is being edited. To
maintain responsiveness in this situation, file reading and writing are moved to a
background process. The operations are modified to use a modal “percentage complete”
dialog that is updated by the background process using #asyncExecInUI: . When the
file has been completely read or written, the background process uses a call to
#syncExecInUI: to close the dialog.

Example 2: A Program Development Environment

A program development environment is constructed that uses a database to store source
code. Saving large segments of source code is found to cause a lack of responsiveness
because several database accesses are required. To maintain responsiveness, the saving
operation is modified to:

• Disable any menus or buttons that could affect the saving operation

• Change the cursor to indicate that an operation is “in progress”

• Generate a background process that first saves the source to the database, and then
uses #asyncExecInUI: to re-enable the menus and buttons and set the cursor back
to normal.

Example 3: A Complex Drawing Editor

A drawing editor is constructed that allows large, complex drawings to be built. The
system is responsive in all situations except while updating a display of a large drawing.
The update display (refresh) operation is modified as follows:

• First, it checks the complexity of the drawing (for example, by detecting the total
number of primitive graphical objects that it contains) and if it is below a particular
threshold, it refreshes the drawing directly.

• If the drawing is too complex to refresh in the UIProcess, the operation changes the
cursor to indicate that a refresh operation is “in progress.”

548 Appendix C User Interface Process Model

• Then it generates a background process that draws the diagram, one component at a
time, using a background user interface request for each component. After the
diagram is redrawn, the application sets the cursor back to its standard shape using a
synchronous background user interface request. The application retains a reference
to the background process in order to terminate it if the user performs some action
that invalidates its usefulness (for example, resizing or closing the window, or using
a menu entry to request another refresh or switch to a different drawing).

Notice that in this example, the same code could be used to do the actual refreshing of
the drawing, regardless of whether it is being executed by the UIProcess or by a
background process, since the “ExecInUI” methods can always be called by both
background processes and the UIProcess.

549

Appendix D Common Widgets
Platform Differences

Parts of the Common Widgets subsystem can behave differently depending on constraints
of the platform (hardware, operating system and window system). For example, Windows
supports only one alignment for text in button widgets. Where possible, Common
Widgets features are mapped to the closest available on the platform.

Windows and OS/2 Platform Differences
The tables below identify the platform constraints of the Common Widgets subsystem
under Windows and OS/2. Blank cells indicate that the corresponding item is fully
supported for the indicated platform.

General

Item DOS/Windows OS/2 PM

Border width The borderWidth resource can only
be 0 or 1 pixels

The borderWidth resource can only
be 0 or 1 pixels

Background and foreground color Only solid colors are supported.
Colors are not dithered.

Arrow Button Widgets
(CwArrowButton)

Item DOS/Windows OS/2 PM

Sizing Displays the message ‘Arrow too
big’ when the widget is grown

such that the bitmap that is used
to draw the arrow becomes

larger than 64K

Border width The borderWidth resource is
ignored

550 Appendix D Common Widgets Platform Differences

Button and Label Widgets

(CwLabel, CwPushButton,
CwToggleButton,

CwCascadeButton, CwDrawnButton)

Item DOS/Windows OS/2 PM

Alignment The alignment resource is
ignored for CwPushButton and
CwToggleButton. The label is

placed by the OS.

The alignment resource is
ignored for CwPushButton and
CwToggleButton. The label is

placed by the OS.

Margins The following resources affect
only the total width and height of
the widget, not the positioning of

the label or pixmap inside the
widget: marginBottom,margin-

Height, marginLeft, marginRight,
marginTop, marginWidth

The following resources affect
only the total width and height of
the widget, not the positioning of

the label or pixmap inside the
widget: marginBottom,margin-

Height, marginLeft, marginRight,
marginTop, marginWidth

Default shadow width The showAsDefault resource can
only be 0 or 1

The showAsDefault resource can
only be 0 or 1

Border width The borderWidth resource is
ignored

As menu items The following are not supported:
backgroundColor, foreground-
Color, tab traversal and focus

control (setInputFocus, naviga-
tionType, traverseOn), and
geometry requests (and the

geometry values are undefined).
The following methods do

nothing: stacking order requests
(bringToFront), event handlers

(even though they can be
hooked), deferRedraw:, and

updateWidget

The following are not supported:
backgroundColor, foreground-
Color, tab traversal and focus

control (setInputFocus, naviga-
tionType, traverseOn), and
geometry requests (and the

geometry values are undefined).
The following methods do

nothing: stacking order requests
(bringToFront), event handlers

(even though they can be
hooked), deferRedraw:, and

updateWidget

Color Cannot set backgroundColor or
foregroundColor

Windows and OS/2 Platform Differences 551

Combo Box Widgets

(CwComboBox)

Item DOS/Windows OS/2 PM

Event handlers Event handlers can be hooked on the
combo box widget but not on the

children that implement the combo box

Event handlers can be hooked on the
combo box widget but not on the

children that implement the combo box

Editing When the comboBoxType resource is
XmSIMPLE, the combo box is always

editable. The editable resource has no
effect

When the comboBoxType resource is
XmSIMPLE, the combo box is always

editable. The editable resource has no
effect

Default selection When the comboBoxType resource is
XmDROPDOWN and there is no initial

string setting, the first item in the
combo box is selected when the combo

box is dropped

List Widgets

(CwList & WbScrolledList)

Item DOS/Windows OS/2 PM

Selection policy XmSINGLESELECT behaves the
same as XmBROWSESELECT

XmSINGLESELECT behaves the
same as XmBROWSESELECT

Size limit The total number of characters in all
list items, plus one for each list item,

must be less than 64K

The total number of characters in all
list items, plus one for each list item,

must be less than 64K

Automatic scrolling Positioning the list (setting the top and
bottom item) may not actually scroll

the list. This is because only one blank
line is allowed at the bottom of the list

and therefore, depending on the
number of items, the height of the list
and the desired position, the list may

not scroll.

Positioning the list (setting the top and
bottom item) may not actually scroll

the list. This is because only one blank
line is allowed at the bottom of the list

and therefore, depending on the
number of items, the height of the list
and the desired position, the list may

not scroll.

Scroll bars When created normally (not as a
scrolled list), no scroll bars appear.

When created as a scrolled list, the
vertical scroll bar is visible only when

required.

The horizontal scroll bar is visible
when the scrollHorizontal resource is
true and the list contains an item that

is wider than the width of the list.

When created normally (not as a
scrolled list), a vertical scroll bar

appears.

When created as a scrolled list, the
vertical scroll bar is always visible.

The horizontal scroll bar is visible
when the scrollHorizontal resource is

true.

Border width The widget is always displayed with a
1-pixel border.

552 Appendix D Common Widgets Platform Differences

Main Window Widgets

(CwMainWindow)

Item DOS/Windows OS/2 PM

Organization Must be created as the child of a shell Must be created as the child of a shell

Scroll bar limitations Scroll bar children have the following
limitations: the help callback is

ignored, tab traversal and focus
control (setInputFocus,

navigationType, traverseOn) are not
supported, geometry requests are
ignored and the initial geometry

values are undefined. The following
methods do nothing: stacking order

requests (bringToFront), event
handlers (even though they can be

hooked), deferRedraw:, and
updateWidget

Scroll bar children have the following
limitations: the help callback is

ignored, tab traversal and focus
control (setInputFocus,

navigationType, traverseOn) are not
supported, geometry requests are
ignored and the initial geometry

values are undefined. The following
methods do nothing: stacking order

requests (bringToFront), event
handlers (even though they can be

hooked), deferRedraw:, and
updateWidget

Windows and OS/2 Platform Differences 553

Menus and Menu Bars

(CwRowColumn with
rowColumnType of XmMENUBAR,

XmMENUPULLDOWN or
XmMENUPOPUP)

Item DOS/Windows OS/2 PM

Types of child widgets Only CwLabel, CwToggleButton,
CwSeparator or CwCas-

cadeButton can be added

Only CwLabel, CwToggleButton,
CwSeparator or CwCas-

cadeButton can be added

Help callback Not supported Not supported

Background color Not supported Not supported

Tab traversal and focus control
(setInputFocus:, interceptEvents:,

grabPointer:, ungrabPointer:,
navigationType, traverseOn)

Not supported Not supported

Geometry requests Geometry requests are ignored
and the initial geometry values

are undefined

Geometry requests are ignored
and the initial geometry values

are undefined

Stacking order Stacking order requests
(bringToFront) do nothing

Stacking order requests
(bringToFront) do nothing

Event handlers Can be hooked but do nothing Can be hooked but do nothing

Updating widgets The updateWidget method does
nothing

The updateWidget method does
nothing

Ignored resources The following resources are
ignored: adjustLast, borderWidth,

entryAlignment, entryBorder,
marginHeight, marginWidth,
numColumns, orientation,

packing, spacing

The following resources are
ignored: adjustLast, borderWidth,

entryAlignment, entryBorder,
marginHeight, marginWidth,
numColumns, orientation,

packing, spacing

Accelerator text with pixmap menu
items

When a child has a labelType of
XmPIXMAP, its acceleratorText

is not shown

When a child has a labelType of
XmPIXMAP, its acceleratorText

is not shown

Drawn buttons CwDrawnButton children are not
supported

CwDrawnButton children are not
supported

Separators The separatorType, orientation,
and margin resources are

ignored for CwSeparator chil-
dren.

The separatorType, orientation,
and margin resources are

ignored for CwSeparator chil-
dren.

554 Appendix D Common Widgets Platform Differences

Menu Bars

(CwRowColumn with
rowColumnType of XmMENUBAR)

Item DOS/Windows OS/2 PM

Unmapping Unmapping the widget has the
same visual effect as unmanag-

ing

Unmapping the widget has the
same visual effect as unmanag-

ing

Parent widget Can only be created as a child of
a CwMainWindow

Can only be created as a child of
a CwMainWindow

Menus

(CwRowColumn with
rowColumnType of

XmMENUPULLDOWN or
XmMENUPOPUP)

Item DOS/Windows OS/2 PM

Redrawing The redraw and
redraw:y:width:height: methods

do nothing.

The redraw and
redraw:y:width:height: methods

do nothing.

Scale Widgets

(CwScale)

Item DOS/Windows OS/2 PM

Event handlers Event handlers can be hooked on the scale
widget but not on the children that

implement the scale

Event handlers can be hooked on the scale
widget but not on the children that

implement the scale

Scrolled Bar Widgets

(CwScrollBar)

Item DOS/Windows OS/2 PM

Border width Ignored Ignored

Windows and OS/2 Platform Differences 555

Scrolled Window Widgets

(CwScrolledWindow)

Item DOS/Windows OS/2 PM

Organization The work area must be a child of
the scrolled window

The work area must be a child of
the scrolled window

Scroll bar limitations Scroll bar children have the fol-
lowing limitations: the help callback
is ignored, tab traversal and focus

control (setInputFocus,
navigationType, traverseOn) are not
supported, geometry requests are
ignored and the initial geometry

values are undefined. The following
methods do nothing: stacking order

requests (bringToFront), event
handlers (even though they can be

hooked), deferRedraw:, and
updateWidget

Scroll bar children have the fol-
lowing limitations: the help callback
is ignored, tab traversal and focus

control (setInputFocus,
navigationType, traverseOn) are not
supported, geometry requests are
ignored and the initial geometry

values are undefined. The following
methods do nothing: stacking order

requests (bringToFront), event
handlers (even though they can be

hooked), deferRedraw:, and
updateWidget

Text Widgets

(CwText & WbScrolledText)

Item DOS/Windows OS/2 PM

Highlight vs. selection Highlight and selection are the
same. It is not possible to set the

highlight without affecting the
selection.

Highlight and selection are the
same. It is not possible to set the

highlight without affecting the
selection.

Highlight appearance XmHIGHLIGHTSELECTED
appears as inverse text

XmHIGHLIGHTSELECTED
appears as inverse text

Insertion vs. selection Insertion and selection are the
same. It is not possible to move

the insertion point without affecting
the selection.

Insertion and selection are the
same. It is not possible to move

the insertion point without affecting
the selection.

Insertion point The insertion point (cursorPosition,
getInsertionPosition) is always

answered as the beginning of the
selection

Visual appearance The selection is hidden when the
widget loses focus

Background and foreground color Only solid background colors are
supported

556 Appendix D Common Widgets Platform Differences

Top Level Shells and Dialog
Shells

(CwTopLevelShell, CwDialogShell)

Item DOS/Windows OS/2 PM

Window titles Centered Left

Behavior of mwmDecorations resource 1) A title bar is always included
(MWMDECORTITLE).

2) If MWMDECORMAXIMIZE or
MWMDECORMINIMIZE is set,

MWMDECORRESIZEH is added.

3) If a menu bar is added to a
shell that has MWMDECOR-
BORDER, Windows does not

paint the shell properly.

No title bar is included unless
MWMDECORTITLE is set.

557

Appendix E VisualAge Integration

This extension adds a VisualAge menu to WindowBuilder Pro and enables
WindowBuilder Pro created windows (WbApplication subclasses) to function as
VisualAge parts.

Prerequisites
The WindowBuilder Pro/VisualAge integration requires both WindowBuilder Pro and the
VisualAge visual tools (e.g., the Composition Editor) as prerequisites. The
WindowBuilder Pro/VisualAge integration classes will be automatically loaded when
WindowBuilder Pro is installed into an image containing the VisualAge visual tools.

Using WindowBuilder Pro Created Parts In VisualAge
WindowBuilder Pro created windows (WbApplication subclasses) may be used as parts
within the VisualAge Composition Editor by adding the windows to a VisualAge canvas
as wrappered parts. To add a WbApplication window to a VisualAge canvas, use the
Options menu, Add Part submenu within VisualAge’s Composition Editor. When dropped
on the canvas, the window will appear as an icon representing a wrappered part.

New with V4.5, WindowBuilder Pro windows may be embedded within VisualAge
windows as visual components (similar to CompositePanes within VisualSmalltalk) in
addition to being used as standalone windows. WindowBuilder Pro windows placed on
the Composition Editor canvas will appear as icons. If they are dragged and dropped onto
a VisualAge window, they will show up as an embedded visual component. This makes
WindowBuilder Pro the ideal environment for creating complex, reusable visual parts.

Once added to the Composition Editor’s canvas, VisualAge connections may be made
between the WbApplication window and other parts in the Composition Editor. Valid
connection features for the window may be viewed from the Connect context sensitive
menu for the part.

558 Appendix E VisualAge Integration

WindowBuilder Pro may be invoked directly from the VisualAge Composition Editor by
double clicking on the WbApplication window’s icon, which is analogous to opening the
settings for a part within VisualAge. Changes saved through WindowBuilder Pro will be
immediately available within the VisualAge editors. Changing a WbApplication subclass
changes every occurrence of that class throughout the system.

Defining VisualAge Connection Features In
WindowBuilder Pro

Common connection features understood by all WindowBuilder Pro applications are
defined by the WbApplication superclass. Connection features specific to a given
WbApplication subclass must be defined through the VisualAge feature editors in
WindowBuilder Pro.

Within WindowBuilder Pro, the VisualAge menu provides access to three editors which
define the VisualAge connection features for a WbApplication subclass. The Attribute,
Action, and Event editors respectively define VisualAge attributes, actions, and events for
the class being edited. Each editor lists the non-inherited features already defined for the
class, and allows the addition, deletion, or changing of features in the list.

Attribute Editor 559

Attribute Editor

The Attribute Editor allows the selection of a get selector from a list of non-inherited get
selectors. The get selector corresponds to the attribute that will be exported by the class
as a VisualAge attribute. The VisualAge attribute connection will use the chosen get
selector to access the value of the exported attribute. Because attributes are accessed via
selector, the list of possible attributes is limited to the possible get selectors for the class.

Once a get selector has been chosen, the editor attempts to find and display a matching
set selector. The VisualAge attribute connection will use the chosen set selector to set the
value of the exported attribute. The set selector should be left blank if the attribute being
defined is a read-only attribute.

The change symbol defaults to the same name as the chosen get selector, but may be
changed as necessary. The change symbol allows the window to signal an attribute
change to other VisualAge parts that are interested in that attribute. The Attribute Editor
allows the definition of the change symbol, but does not automatically generate code to
signal attribute changes. Smalltalk code similar to the following fragment must be
inserted into the set methods of the class being edited to signal the event represented by
the change symbol:

self
triggerCallback: #attributeName
with: attributeValue.

Without such code, VisualAge parts that are connected to a WbApplication window’s
attributes will never be signaled that the attributes have changed.

560 Appendix E VisualAge Integration

The attribute class defaults to Object, but may be changed as necessary. Only defined
classes are accepted as valid. VisualAge uses the class of an attribute to determine if both
ends of the attribute connection are compatible. Since Object is the ancestor of almost all
classes, it provides the most generic compatibility. The attribute class may be changed to
fine tune attribute compatibility.

The buttons on the Attribute Editor function as follows:

Add Adds the currently selected values to the list.

Delete Deletes the currently selected items from the list.

Update Updates the selected list item with any changed values.

OK Generates the class method containing the VisualAge attribute definitions
(attributeSpecs) for the WindowBuilder application being edited and closes the
window.

Cancel Closes the window.

Action Editor

The Action Editor allows the selection of a selector from a list of non-inherited selectors.
The selector corresponds to the action that will be exported by the WbApplication
subclass as a VisualAge action. The VisualAge action connection will use the chosen
selector to invoke the exported action. Because actions are accessed via selector, the list
of possible actions is limited to the non-inherited selectors for the class.

Event Editor 561

Once a selector has been chosen, the editor displays any parameters for that selector as
appropriate. VisualAge uses the parameter information to provide a connection point for
each parameter. VisualAge shows the parameter name on the context sensitive Connect
menu for the action, and the parameter class is used to determine the compatibility
between the parameter and the object it is connected with. The parameter name defaults
to anObject, but may be changed as appropriate. The parameter class defaults to Object,
providing the most generic compatibility. Only defined classes are accepted as valid.

The buttons on the Action Editor function as follows:

Add Adds the currently selected values to the list.

Delete Deletes the currently selected items from the list.

Update Updates the selected list item with any changed values.

OK Generates the class method containing the VisualAge action definitions
(actionSpecs) for the WindowBuilder application being edited and closes the
window.

Cancel Closes the window.

Event Editor

The Event Editor allows the entry and update of events and their respective parameters.
Since events may not necessarily correspond to any selector, the editor does not present a
list of selectors to choose from. Instead, it allows the user to enter events on the left, and
enter any parameters for those events on the right. The VisualAge event connection will
use the entered event name as the exported event.

562 Appendix E VisualAge Integration

Once an event has been entered, the parameters for that event may be altered. VisualAge
uses the parameter information to provide a connection point for each parameter.
VisualAge shows the parameter name on the context sensitive Connect menu for the
event, and the parameter class is used to determine the compatibility between the
parameter and the object it is connected with. The parameter name defaults to anObject,
but may be changed as appropriate. The parameter class defaults to Object, providing the
most generic compatibility. Only defined classes are accepted as valid.

Events may be signaled arbitrarily from pre-existing methods. Although WindowBuilder
Pro generates the connection points for the events, it cannot generate the code necessary
to signal the events. Smalltalk code similar to the following fragment must be inserted
into the methods of the class being edited to signal the events defined in the Event Editor:

self
triggerCallback: #eventName
with: parameter1
with: parameter2
with: parameter3.

or:

self
triggerCallback: #eventName
withArguments: parameterValueArray.

Without such code, VisualAge parts will be able to connect to the events defined for a
WbApplication window but those events will never be signaled.

The buttons on the Event Editor function as follows:

Add Adds the entered event or parameter to its respective list.

Delete Deletes the entered event or parameter from its respective list.

OK Generates the class method containing the VisualAge event definitions
(eventSpecs) for the WindowBuilder application being edited and closes the
window.

Cancel Closes the window.

Integration Examples Using WindowBuilder Pro And
VisualAge

The tests in WbProVisualAgeExamples (a subapplication of WbProRuntimeExamples)
demonstrate defining a VisualAge interface for a WbApplication and then using that

Integration Examples Using WindowBuilder Pro And VisualAge 563

application as a part within VisualAge. To view an example of WindowBuilder Pro and
VisualAge integration, launch the VisualAge Organizer and do the following:

1. Select the WbProRuntimeExamples application

2. Click to the left of the WbProRuntimeExamples icon to reveal the subapplications.
You may then double click on any of the example parts

Edit IntegrationTest1 to view a VisualAge application with an embedded WindowBuilder
application (VATest1). The connection points provided by VATest1 were defined by the
WindowBuilder VisualAge Feature Editors. IntegerationTest1 demonstrates an action
connection and an event connection. The following behavior may be observed when
testing IntegerationTest1:

• Clicking the “Open” button opens VATest1 on the file listed in the “Filename” box
(via the open button’s clicked event connected to VATest1’s openWidget action).

• Closing VATest1 also closes the IntegrationTest1 window (via VATest1’s
closedWidget event connected to closeWidget action of the main window).

Preferred Connections

VisualAge uses the notion of preferred connections to mean those attributes, actions, and
events that appear cascaded from the Connect context sensitive menu choice. Non-
preferred connections are those connections that appear when More is selected from the
Connect submenu. By default, all the attributes, actions, and events generated for
WbApplication windows appear on the More connections menu. To define any or all of
these attributes, actions, and events as preferred connections, create a class method
similar to the following for the WbApplication subclasses. This method defines the
preferred attributes, actions, and events that will cascade from the Connect submenu:

preferredConnectionFeatures
 “Answer an array of the attributes, actions, and

 events that will appear on the Connect submenu”

 ^#(‘attribute1’ ‘attribute2’ ‘attribute3’ ...
 ‘action1’ ‘action2’ ‘action3’ ...
 ‘event1’ ‘event2’ ‘event3’ ...).

564 Appendix E VisualAge Integration

565

Index

—2—
20Comma10, 460

—7—
7Comma2, 461
7Comma4, 461

—A—
About, 91, 95
About To Close Widget, 217
About To Manage Widget, 217
About To Open Widget, 217
AbtOleExtendedWidget, 135, 439
Accelerator Keys, 65
activate, 495
Activate Callback, 219, 223, 230, 263, 302,

378, 420, 425, 447, 458, 484
activateVerb:, 433
activationPolicy:, 433
activeScale:, 371
activeShell, 495
ActiveX, 3, 130, 135, 438, 491

Events, 439
Add Menu, 134

Button, 134
Composite, 134
Container, 135
List, 134
Nested Application, 136
New Widget, 135
Notebook, 135
OLE/ActiveX, 135
Other, 135
Slider, 135

Text, 134
Windows 95, 135

addAllShowing:, 241
addApplicationMenus, 491
addCallback:receiver:selector:

clientData:, 205
addEventHandler:receiver:selector:

clientData:, 206
Add-In Modules, 523–28
addItem:position:, 221, 241, 254, 445, 472
addItems:position:, 221, 241, 254, 445, 472
addItemUnselected:position:, 241, 254, 472
addOleEventHandler:receiver:selector:, 440
addShowing:, 241
addStandardLeftMenus, 491
addStandardRightMenus, 491
addSystemMenus, 491
addTimeout:receiver:selector:

clientData:, 495
addWidgets, 73, 74, 491
adjustLast:, 267, 466
Align Bottom, 117
Align Center, 117
Align Left, 117
Align Menu, 29, 117

Bottom, 117
Center, 117
Left, 117
Middle, 117
Right, 117
Top, 117

Align Middle, 117
Align Right, 117
Align Top, 117
Aligning Widgets, 37
alignment:, 229, 249, 297, 452
allChildren, 207
allMajorChildren, 207
Allow Reparenting, 31, 127, 129

566 Index

allWindows, 496
Alpha, 460
AlphaNoSpace, 460
AlphaNumeric, 460
AlphaNumericNoSpace, 460
Always Add Forms To Frames, 129
ambientPropertyReceiver:, 440
ambientPropertySelector:, 440
Any, 460, 461
Application-Drawn Buttons, 197
applicationDrawnBackground:, 328, 336,

343, 352, 387, 399
applicationDrawnStates:, 322
Arm Callback, 219, 230, 263, 305, 420, 425
arrowDirection:, 219
asyncExecFirstInUI:, 495
asyncExecInUI:, 496, 545
Attach a Callback, 19
Attachment Editor, 46, 104
Attachment Styles, 48

Adding, 48
Attachments, 46, 74, 103, 124, 125
Attribute Bar, 14
Attribute editor, 17
Attribute Toolbar, 86
Attributes Menu, 101

Attachments, 103
Call Outs, 112
Callbacks, 106
Colors, 102
Drag Drop, 112
Font, 101
Help, 114
Menus, 104
Morph, 116
NLS, 115
Selected Widget Attributes, 109
Tab & Z-Order, 110
Window Attributes, 109

Auto Save, 128, 129
Auto Size Selection, 30, 120
Auto Update Outboards, 129
Automatic Load, 11
autoSize:, 421

—B—
backgroundColor:, 207, 496
backPagePosition:, 363
basicWidget, 207

Begin Edit Callback, 330, 337, 345, 353,
383

bell, 496
bindingType:, 363
Boolean, 460
borderWidth:, 207
Bottom, 117
bottomLimitWidget:, 274
bottomOrRightScaleMax:, 372
bottomOrRightScaleMin:, 372
bottomOrRightScaleResolution:, 372
bottomOrRightScaleShaftIncrement:, 372
bottomOrRightScaleValue:, 372
boundingBox, 208
breakInLongOperation:, 496
Bring Forward, 118, 124
Bring To Front, 118, 124
bringToFront, 208
bringToFrontOf:, 208
Browse, 253, 266, 309
Browse Class, 100
Browse Selection Callback, 246, 257, 323,

330, 338, 345, 354, 390, 401, 476
Browse Widget Class, 100, 125
Button and Label Widgets, 189
Button Menu, 217
Button Motion, 217
Button Press, 217
Button Release, 217
Button1 Motion, 217
Button2 Motion, 217
Button3 Motion, 217
buttonSet:, 267, 466
buttonStyle:, 372
buttonType:, 311

—C—
Call Out Editor, 112
Call Outs, 50, 58, 112
Callback Editor, 51, 54, 57, 82, 106

OLE Events, 439
Callbacks, 15, 74, 106, 125, 151, 163, 535
case:, 452
category, 529
Cell Block Selection Callback, 390, 401
Cell Single Selection Callback, 390, 402
Cell Value Callback, 383
cellTabbingPolicy:, 388, 399
Center, 117

Index 567

Change Grid Size, 38
character:, 452
check, 304
Check Boxes, 195
checkMenuNamed:, 496
children, 208
Children Callback, 354, 402
childrenSelector:, 242
Class Browser, 21
clear, 297, 479
Clear, 99, 253, 266, 309
clearEvents, 496
clearSelection, 297, 453, 479
click, 229, 262, 304
clientClipping:, 433
clientName:, 433, 441
clientType:, 433
clipBackgroundPixmap:, 284
close, 487
closeAndExit, 487
closeAndExitIfLast, 487
Closed Widget, 217
closingWindow, 491
Code Generation, 529–31
codeGenerator, 530
Collapse Callback, 319
Color, 102, 123, 125
Color Editor, 43, 102
Color Model, 44
Colors, 43, 155
Column Heading Selection Callback, 391,

402
columns:, 297, 453, 479
Combo Box Widgets, 202
comboBoxType:, 221, 445
Comment Methods, 130
Common Widget, 173
Common Widgets, 137, 541

Platform Differences, 549–56
Company Name, 130
Configuration Maps Browser, 11
configureWidget:y:width:height:borderWidt

h:, 208
Confirm Non-Undoable, 130
confirm:, 493
confirmYesNoCancel:, 493
Copy, 98
Copyright, 130
Copyright After Body, 130
copySelection, 297, 453, 479

corner, 208
Create Class, 20, 95
createGroup:argBlock:, 409
createLabelTool:argBlock:, 409
createPanel:argBlock:, 290
createProgressBarTool:argBlock:, 409
createPushButtonTool:argBlock:, 409
createRadioButtonTool:argBlock:, 409
createSeparatorTool:argBlock:, 409
createTab:argBlock:, 293
createToggleButtonTool:argBlock:, 409
createToolButton:argBlock:, 310
createWidget:parent:argBlock:, 487
Creating a Widget, 144
Currency, 461
CurrencyNoDecimal, 461
cursorPosition:, 297, 453, 479
Custom Attribute Editor, 515–23
Cut, 98
cutSelection, 298, 453, 479
CwArrowButton, 134, 139, 166, 219–20,

549
CwCascadeButton, 550
CwComboBox, 134, 139, 166, 202, 221–25,

551
CwComposite, 138
CwConstants, 151
CwDialogShell, 140, 174, 556
CwDrawingArea, 135, 140, 166, 180, 226–

28, 533
CwDrawnButton, 134, 139, 166, 197, 229–

33, 550
CwExtendedComposite, 534
CwExtendedPrimitive, 534
CwForm, 31, 42, 50, 134, 140, 166, 184,

234–37
CwFrame, 31, 134, 140, 166, 238–40
CwHierarchyList, 134, 241–48
CwLabel, 134, 139, 166, 191, 249–52, 550
CwList, 139, 166, 199, 551
CwMainWindow, 140, 166, 176, 552
CwObjectList, 134, 252–59
CwOverrideShell, 140
CwPanel, 291
CwPrimitive, 138
CwProgressBar, 260–61
CwPushButton, 134, 139, 166, 191, 262–66,

550
CwRowColumn, 31, 42, 50, 134, 140, 166,

184, 267–73

568 Index

CwSash, 274–75
CwScale, 135, 140, 166, 274–79, 554
CwScrollBar, 135, 139, 166, 280–83, 554
CwScrolledWindow, 31, 50, 134, 140, 166,

177, 284–87, 555
CwSeparator, 135, 139, 166, 288–96
CwShell, 138
CwStatusBar, 290–92
CwTab, 295
CwTabStrip, 293–96
CwText, 134, 139, 166, 178, 297–303, 555
CwToggleButton, 134, 139, 166, 193, 304–

9, 550
CwToolBar, 310–13
CwToolButton, 311
CwTopLevelShell, 140, 166, 173, 174, 556
CwTrackBar, 314–17
CwTransientShell, 140, 174
CwTreeView, 318–20

—D—
Date, 461
deactivationPolicy:, 434
decimalPoints:, 276
decorationPolicy:, 434
Decrement Callback, 281, 379
Default Action Callback, 246, 257, 323,

330, 338, 345, 354, 391, 403, 476
Default Widget Font, 130
defaultButton:, 262
defaultFont, 491
defaultFontExtent, 496
defaultGrayColor, 496
defaultGrayValue, 496
defaultStreamSize, 529
defaultTimerProc, 491
deferRedraw:, 208
deferRedrawInShortOperation, 496
deleteAllItems, 221, 242, 254, 290, 293,

310, 445, 472
deleteItem:, 222, 242, 254, 290, 293, 310,

446, 472
deleteItems:, 242, 254, 293, 310, 473
deleteItemsPos:position:, 222, 242, 255,

446, 473
deletePos:, 222, 242, 255, 446, 473
deselectAllItems, 242, 255, 473
deselectItem:, 242, 255, 473
deselectPos:, 242, 255, 473

Design Surface, 14
Destroy Callback, 218
Destroying a Widget, 145
destroyWidget, 209
destroyWindow, 491
Direct Edit, 17, 30
direction:, 367, 415
disable, 209
disableAll, 209
disableMenuNamed:, 496
Disarm Callback, 219, 231, 263, 306, 420,

425
Disk Installation, 9
dispidAmbientPropertyAt:, 491
display, 209
Display Callback, 323
Display Grid, 39
displayAsIcon:, 434
Distribute, 35
Distribute Horizontally, 119
Distribute Vertically, 119
Distributing Widgets, 35
Drag Callback, 277, 281, 315, 374
Drag Drop, 112, 156–62
Drag Drop Editor, 112
Drag Outlines, 125, 130
Draw Background Callback, 330, 338, 345,

354, 391, 403
Draw Grid, 39, 122, 130
Drawing Area Widgets, 180
drawPolicy:, 410, 411
Duplicate, 99
dynamicPopupMenu:owner:, 209

—E—
Edit an Existing Window, 26
Edit Class, 26, 87, 92, 94
Edit Menu, 97

Browse Class, 100
Browse Widget Class, 100
Clear, 99
Copy, 98
Cut, 98
Duplicate, 99
Paste, 99
Redo, 97
Select All, 99
Select All In Same class, 99
Select All In Same Hierarchy, 100

Index 569

Undo, 97
Undo/Redo List, 98

Edit Window, 87
editable:, 222, 298, 378, 382, 388, 399, 446,

453, 479
editMode:, 298, 453, 480
embeddedFormClass, 491
emphasisPolicy:, 328, 343, 352
enable, 209
enableAll, 209
enabled:, 209
enableMenuNamed:, 497
End Edit Callback, 331, 338, 346, 354, 384
Enter Notify Callback, 413, 415, 418, 420,

423, 425
Entry Callback, 269, 468
entryAlignment:, 267
entryBorder:, 268
etched:, 382
Event Handlers, 15, 151, 167

Entering code for, 21
EwDrawnList, 134, 321–26
EwFlowedIconList, 135, 327–34
EwGroupTool, 409, 411
EwIconArea, 135, 335–41
EwIconList, 135, 342–49
EwIconTree, 135, 350–58
EwLabelTool, 409, 413
EwPage, 135, 359–62
EwPMNotebook, 135, 363–66
EwProgressBar, 367–70
EwProgressBarTool, 415
EwPushButtonTool, 409, 418
EwSeparatorTool, 409, 420
EwSlider, 135, 371–77
EwSpinButton, 134, 378–81
EwTableColumn, 382–85, 386, 397
EwTableList, 134, 386–96
EwTableTree, 134, 397–407
EwToggleButtonTool, 409, 423
EwToolBar, 408–29
EwWINNotebook, 135, 293, 430–31
Example Application, 79
execLongOperation:, 497
execLongOperation:message:, 497
execLongOperation:message:allowCancel:

showProgress:, 497
execLongOperation:message:

errorBlock:, 497
execLongOperation:message:title:, 497

execLongOperation:message:title:
allowCancel:showProgress:, 497

execLongOperation:message:title:
allowCancel:showProgress:
errorBlock:, 498

execLongOperation:message:title:
errorBlock:, 498

execShortOperation:, 498
Exit, 96
exitSystem, 487
Expand Callback, 319
Expand Collapse Callback, 355, 403
Expose Callback, 227, 231, 235, 239, 270,

277, 285, 294, 311, 464, 468
Extended Selection Callback, 246, 257, 323,

331, 339, 346, 355, 392, 403, 476
Extended Widgets, 533–40
extendedWidget, 209
extendedWidgetOrSelf, 210
extent, 210

—F—
false, 498
field:, 453
File Menu, 92

About, 95
Exit, 96
New, 92
Open, 92
Revert, 94
Save, 94
Save As, 94
Spawn

New, 93
Open, 94

Test Window, 95
File Name, 252, 265, 308
Floating Tools, 14
flushEvents, 498
Focus Callback, 223, 227, 231, 235, 239,

270, 277, 285, 294, 302, 311, 374, 379,
447, 458, 464, 468, 484

focusDecorationPolicy:, 434
Font, 101, 125
Font Editor, 101
Fonts, 42, 153
foregroundColor:, 210
form, 489
Form Widgets, 185

570 Index

formClass, 491
fractionBase:, 234, 359
fractionComplete:, 368, 415
frameThickness:, 463
Function Methods, 150

—G—
Generate All Stubs, 130
Generate Copyright, 130
Generate Default Handler Names, 130
Generate OLE Properties, 130, 438, 444
generateBody, 529
generateCommentBody, 529
generateCommentBodyIndent:, 529
generateTemporaries, 529
Generic Attribute Editor, 109
getEditable, 298, 454, 480
getFocus:, 454
getInsertionPosition, 298, 454, 480
getLastPosition, 298, 454, 480
getMatchPos:, 242, 255, 473
getSelectedPos, 242, 255, 473
getSelection, 298, 455, 480
getSelectionPosition, 298, 455, 480
getState, 304
getString, 222, 299, 446, 455, 480
getTopCharacter, 299, 455, 480
getValue, 276
Graphics Editor, 252, 265, 308
Grid, 38

Changing Size, 38
Grid Size, 131

—H—
Handle, 15
Handle Size, 131
hasChildren, 210
hasChildrenSelector:, 242
heading:, 382
headingFont:, 388, 399
headingSeparatorThickness:, 388, 399
headingVisualStyle:, 388, 400
height:, 210
Help, 114
Help Callback, 218
Help Editor, 114
hideShow, 243
hideShowAll, 243

hideWindow, 210
hierarchyPolicy:, 352
hierarchySelector:, 243
horizontalAlignment:, 382, 413, 416, 418,

421, 423
horizontalHeadingAlignment:, 382
horizontalMargin:, 372
horizontalSpacing:, 234, 359

—I—
Icon, 196
ICs, 90
ID, 253, 266, 308
image:, 295, 312, 368, 414, 416, 418, 421,

423
imageColor:, 368
imageHeight:, 410, 419, 423
imageWidth:, 410, 419, 424
Increment Callback, 281, 379
increment:, 280, 314, 378
indentation:, 318
indicatorOn:, 304
indicatorType:, 304
Inherit Pool Dictionaries, 131
initialize, 491
initializeGraphics, 492
initializeMenus, 73, 492
initializeMethod, 529
initializeMiniHelp, 501
initializeMiniHelpIfNecessary, 501
initializeShell, 492
initializeWidgets, 73, 492
initialWindowPosition, 492
initialWindowSize, 492
initWindow, 73, 492
innerMargin:, 329, 336, 344, 352
inProgressDialog, 498
Input Callback, 227
insert:value:, 299, 455, 481
insertAndShow:value:, 299, 455, 481
Installation, 9
Integer, 460, 461
Intercept Expose Callback, 227, 235, 239,

270, 277, 286, 294, 311, 464, 468
invoke:withArguments:, 441
invoke:withArguments:returnType:, 441
isAligned:, 268, 466
isAltKeyDown, 499
isControlKeyDown, 499

Index 571

isHomogeneous:, 268, 466
isMeta, 530
isPublic, 530
isShiftKeyDown, 499
isShowing:, 243
isVisible, 210
itemCount, 222, 243, 255, 446, 473
itemExists:, 222, 243, 255, 446, 473
itemHeight:, 322, 329, 344, 352, 388, 400
items, 290, 294, 310
items:, 222, 255, 322, 329, 336, 344, 352,

378, 388, 400, 446, 466, 473
itemWidth:, 322, 329, 344, 352

—K—
Key Press, 218
Key Release, 218

—L—
labelInsensitivePixmap:, 229, 249, 262, 304
labelOrientation:, 329, 337, 344, 353
labelPixmap:, 230, 249, 262, 305
labelString:, 230, 238, 249, 262, 290, 291,

295, 305, 312, 463
labelType:, 230, 250, 262, 305
largeText:, 299, 456, 481
Layout Widgets, 184
lcid:, 434, 441
Leave Notify Callback, 413, 415, 418, 420,

423, 425
Left, 117
leftLimitWidget:, 274
licenseKey:, 441
Line Before Comment, 131
lineDelimiter, 299, 456, 481
List Widgets, 199
listMsg:, 243
lockedColumns:, 388, 400
Losing Focus Callback, 223, 227, 231, 235,

239, 270, 277, 286, 294, 302, 311, 374,
379, 447, 458, 464, 468, 484

—M—
Main Toolbar, 85
Main Window Widgets, 176
mainWindow, 489
mainWindowClass, 492

majorTabHeight:, 364
majorTabWidth:, 364
Make Callbacks Private, 131
manageChild, 210
Managing a Widget, 144
Managing and Unmanaging Widgets, 146
Manual Load, 11
Map Callback, 270, 468
Mapping a Widget, 144
Mapping and Unmapping Widgets, 146
mapWidget, 210
margin:, 288, 421
marginBottom:, 414, 416
marginHeight:, 226, 234, 238, 268, 359,

410, 412, 414, 416, 419, 421, 424, 463,
466

marginLeft:, 414, 416
marginRight:, 414, 416
marginTop:, 414, 416
marginWidth:, 226, 234, 238, 268, 359, 410,

412, 414, 416, 419, 421, 424, 463, 467
Max Undo Levels, 131
Max Window Size, 131
maximum:, 260, 276, 280, 314, 378
maxLength:, 222, 300, 446, 456, 481
Measure Callback, 324
Menu Bar, 14
Menu Editor, 63, 80, 104
menuBar, 489
Menubar

Creating, 63
menuNamed:, 489
Menus, 63, 104, 125, 553, 554

Adding Menu Items, 64
Adding Popup Menus, 68
Adding Separators, 65
Adding Submenus, 65
Adding Titles, 64
Assigning Groups, 66
Changing Receiver, 67
Eduting, 66
Enabling and Toggling, 67
Keyboard Accelerators, 66
Mnemonics, 65
Selectors, 67
Testing, 68
Viewing Groups, 67

message:, 493
methodArguments, 530
methodName, 530

572 Index

Middle, 117
Mini Help, 114, 127
Mini Help Delay, 131
Mini Help Enabled, 131
Mini Help On Toolbars Only, 131
miniHelpBackColor, 501
miniHelpClear, 501
miniHelpDelay, 501
miniHelpEnabled, 501
miniHelpFont, 502
miniHelpForeColor, 502
miniHelpSelector, 502
miniHelpTextFor:, 502
minimum:, 260, 276, 280, 314, 378
minimumWidth:, 412, 414, 417, 419, 421,

424
minorTabHeight:, 364
minorTabWidth:, 364
Mnemonic Keys, 65
mnemonic:, 230, 250, 262, 305
Modify Verify Callback, 223, 246, 258, 294,

302, 311, 324, 331, 339, 346, 355, 379,
392, 404, 447, 458, 484

Module Name, 252, 266, 308
Morph, 60, 116
Morphing, 49
Motif, 44, 102, 137, 541
Move a Widget, 16
Move By Pixel, 29, 119, 124
moveWidget:y:, 210
Multiple Selection Callback, 246, 258, 324,

331, 339, 346, 355, 392, 404, 476
Multiple Selection Lists, 201

—N—
name, 211
Name Field, 14
Naming and Labeling a Widget, 16
Naming Widgets, 77
navigationType:, 211
Nested Application, 136
Nested Direct Manipulation, 31, 131
New, 87, 92
New Widget, 135
New Widgets Support, 505–15
New Window, 87
nil, 499
NLS, 115
NLS Editor, 115

notifyAlways:, 410
Nudge, 29, 119, 120, 124
Number, 461
numColumns:, 268, 411, 412, 467
Numeric, 460
numItems, 290, 294, 310

—O—
object, 530
Objectshare Systems, 2
OLE, 3, 130, 135, 432, 438, 491

Control Properties, 444
Events, 439
Wrapping Controls, 439

OleClient, 135, 432–38
OleControl, 130, 135, 438–44
onCharacter:do:, 499
onCharacter:perform:, 499
onCharacter:perform:with:, 499
onCharacter:perform:with:with:, 499
onCharacter:perform:with:with:with:, 499
onCharacter:perform:withArguments:, 499
onCharacter:send:, 499
onControlChar:do:, 499
onControlChar:perform:, 499
onControlChar:perform:with:, 500
onControlChar:perform:with:with:, 500
onControlChar:perform:with:with:with:, 500
onControlChar:perform:

withArguments:, 500
onControlChar:send:, 500
open, 72, 488
Open, 87, 92
openDialog, 488
openDialog:, 488
openDialog:inputMode:, 488
openDialog:on:, 488
openDialog:on:inputMode:, 488
openDialogModeless, 488
openDialogModeless:, 488
openDialogOn:, 488
openDialogParentModal, 488
openDialogParentModal:, 489
openDialogSystemModal, 489
openDialogSystemModal:, 489
Opened Widget, 218
openOn:, 489
openWithParent:, 489
Options Menu, 122

Index 573

Allow Reparenting, 127
Always Add Forms To Frames, 127
Auto Save, 128
Drag Outlines, 125
Draw Grid, 122
Mini Help, 127
Nested Direct Manipulation, 127
Properties, 129
Redraw, 133
Set Grid Size, 123
Show Tab & Z-Order, 125
Target Is First, 126
Templates, 128
Tools, 123

Attachments, 124
Color, 123
Nudge, 124
Tab & Z-Order, 124
Widget Selection, 125

Update Outboards, 127
Use Fence, 126
Use Grid, 122
Use Scrolled Window Child, 127

orientation:, 268, 274, 276, 280, 288, 315,
364, 368, 372, 417, 422, 467

origin, 211
owner, 211

—P—
Pack Horizontally, 119
Pack Vertically, 119
packing:, 269, 467
Page Change Callback, 364, 430
Page Decrement Callback, 281
Page Enter Callback, 360
Page Increment Callback, 281
Page Leave Callback, 360
pageButtonHeight:, 364
pageButtonWidth:, 364
pageIncrement:, 280, 315
pageLabel:, 359
ParcPlace-Digitalk, 2
parent, 211, 489
Parent-Child Widget Tree, 141
parentSelector:, 243
Passing Arguments, 75
Passing Messages, 77
password:, 456
paste, 300, 456, 481

Paste, 99
PhoneNumberExtUS, 461
PhoneNumberUS, 462
Pixmap, 196
Place a Widget, 16
Placing

Multiple Widgets, 31
Pointer Motion, 218
policy, 530
Popdown Callback, 224, 448
Popup Callback, 224, 448
Popup Menus, 68

Adding to a Widget, 68
Creating, 69
Removing, 69

Popup Widget Menus, 59
popupMenu, 211
popupMenu:, 211
popupMenu:owner:, 211
Position Button, 27
Position Menu, 118

Bring Forward, 118
Bring To Front, 118
Distribute Horizontally, 119
Distribute Vertically, 119
Move By Pixel, 119
Pack Horizontally, 119
Pack Vertically, 119
Send To Back, 118
Set Widget Position, 119

Positive10Comma10, 460
PositiveInteger, 460
PositiveNumeric, 460
postInitializeBody, 530
Preferred Icon Extent, 252, 265, 308
preInitializeBody, 530
preInitWindow, 73, 492
Prerequisites, 9
primaryWidget, 211
printItems:, 243
printSelector:, 244, 255, 446
proceed:, 494
processingDirection:, 276, 280
prompt:answer:, 494
prompt:extendedSelectFrom:, 494
prompt:extendedSelectFrom:

selectedItems:, 494
prompt:multipleSelectFrom:, 494
prompt:multipleSelectFrom:

selectedItems:, 494

574 Index

prompt:singleSelectFrom:, 494
prompt:singleSelectFrom:

dependentListBlock:, 494
prompt:singleSelectFrom:selectedItem:, 494
prompt:title:answer:, 495
promptForFileName:, 495
promptForFileName:defaultName:, 495
properties, 211, 490
Properties, 90, 129
properties:, 211
Property Editor, 90, 97, 129, 438
propertyAt:, 212, 442, 490
propertyAt:ifAbsent:, 212, 490
propertyAt:ifAbsentPut:, 490
propertyAt:ifMissing:, 212, 490
propertyAt:put:, 212, 442, 490
propertyAt:withArguments:, 442
propertyAt:withArguments:put:, 442
pushButtonEnabled:, 230

—R—
radioAlwaysOne:, 269, 467
radioBehavior:, 269, 412, 424, 467
readAndDispatch, 542
readOnly, 300, 482
readOnly:, 373
readWrite, 300, 482
realizeWidget, 212
Realizing a Widget, 145
realWidget, 212
Recompute Size, 30
recomputeSize:, 230, 250, 263, 291, 305
Redo, 97
redraw, 212
Redraw, 133
redraw:y:width:height:, 212
redrawOff, 212
redrawOn, 212
Reframing Widgets, 46
Register, 91
Registration Dialog, 91
remove, 300, 456, 482
removeAllCallbacks:, 212
removeCallback:receiver:selector:

clientData:, 213
removeEventHandler:receiver:selector:, 213
removeOleEventHandler:receiver:

selector:, 442
removeShowing:, 244

removeShowing:ifAbsent:, 244
removeTimeout:, 500
Re-ordering Widgets, 41
replace:toPos:value:, 300, 456, 482
replaceItems:newItems:, 244, 255, 473
replaceItemsPos:position:, 222, 244, 256,

446, 474
Replicate Height, 34, 120
Replicate Width, 34, 120
Replicating Widget Sizes, 34
resizable:, 382
Resize a Widget, 16
Resize Callback, 220, 224, 227, 231, 235,

239, 250, 260, 263, 270, 277, 281, 286,
289, 290, 294, 302, 306, 311, 316, 319,
413, 415, 418, 420, 423, 425, 435, 443,
448, 458, 464, 468, 476, 484

resizeHeight:, 269, 467
resizePolicy:, 235, 360
resizeWidget:height:borderWidth:, 214
resizeWidth:, 269, 468
Resources, 147
Returning Values, 75
Revert, 94
ribbonImage:, 368, 417
ribbonStrip:, 373
Right, 117
rightLimitWidget:, 274
Round2, 462
Round3, 462
Row-Column Widgets, 188
rows:, 300, 456, 482
rowSeparators:, 389, 400
Rubberbanding, 32
rubberPositioning:, 235, 360
Runtime ICs, 90

—S—
Save, 20, 94
Save As, 94
scale, 214
scaleFactor:, 214
screen, 214, 490
scroll:, 300, 457, 482
scrollBarDisplayPolicy:, 284
Scrolled Window Widgets, 177
scrolledWidget, 214
scrollHorizontal:, 244, 256, 300, 322, 329,

337, 344, 353, 389, 400, 457, 474, 482

Index 575

scrollingPolicy:, 285
scrollVertical:, 300, 457, 482
Select, 99
Select All, 31, 32, 99
Select All In Same Class, 31, 32, 99
Select All In Same Hierarchy, 31, 32, 100
selectableColumns:, 389, 400
selectAll, 301, 482
selectAtEnd, 301, 482
Selected Widget Attributes, 125
selectedIndex, 222, 447, 474
selectedItem, 223, 301, 447, 474, 482
selectedItemCount, 256, 474
selectedItems, 223, 294, 447
selectedItems:, 244, 256, 322, 329, 337,

344, 353, 389, 400, 474
selectIndex:, 223, 447, 474
Selecting Groups of Widgets, 31
selection:, 315
selectionPolicy:, 244, 256, 322, 329, 337,

344, 353, 389, 400, 474
selectItem:, 223, 447, 474
selectItem:notify:, 245, 256, 294, 475
selectiveBorder:, 411
selectPos:notify:, 245, 257, 475
Send Backward, 118, 124
Send To Back, 118, 124
sendToBack, 214
sendToBackOf:, 214
sensitive, 414
sensitive:, 312, 412, 417, 419, 422, 424
separatorsToExtremes:, 389, 401
separatorType:, 288, 422
separatorWidth:, 312
Set Attachments, 46
Set Color, 43
Set Font, 42
Set Grid Size, 38, 123
Set Widget Position, 28, 119
Set Widget Size, 28, 121
Set Window Position, 27
Set Window Size, 27
set:, 305, 312, 424
setBottomItem:, 245, 257, 475
setBottomPos:, 245, 257, 475
setEditable:, 301, 457, 482
setGrayBackgroundColor, 500
setHighlight:mode:, 301, 457, 483
setInputFocus, 214
setInsertionPosition:, 301, 457, 483

setItem:, 245, 257, 475
setMenuNamed:labelString:, 500
setPos:, 245, 257, 475
setSelection:, 301, 457, 483
setSensitive:, 215
setState:notify:, 305
setString:, 223, 301, 447, 457, 483
setTopCharacter:, 301, 457, 483
setUpForm:, 492
setUpMainWindow:, 73, 492
setUpMainWindowCallbacks:, 73
setUpShell:, 73, 492
setUpShellCallbacks:, 73
setUpWindowCallbacks, 493
setValue:, 277
setValuesBlock:, 215
shadowType, 414
shadowType:, 238, 291, 368, 412, 417, 463
shadowWidth:, 368
shell, 215, 490
Shell Decorations, 175
Shell Widgets, 173
shellClass, 493
shellName, 493
Shift-Select, 33
shouldAutoScale, 493
shouldAutoScaleUsingDefaultFont, 493
shouldClearEventsOnExit, 493
shouldStore, 530
Show All Errors, 131
Show Attachment Palette, 132
Show Color Palette, 132
Show Nudge Palette, 132
Show Tab & Z-Order, 39, 41, 125
Show Tab & Z-Order Palette, 132
Show Widget Selection Palette, 132
Show Z-Order, 132
showAsDefault:, 263
showBusyCursorInAllWindowsWhile:, 500
showImages:, 318
showing:, 245
showInUse:, 383
showLines:, 318
showMiniHelpFor:, 502
showPanels:, 290
showPercentage:, 368, 417
showPlusMinus:, 318
showPosition:, 301, 457, 483
showRootLines:, 318
showSelection:, 315

576 Index

showTickBottom:, 315
showTickTop:, 315
showTips:, 294, 310
showValue:, 277
showWindow, 215
Simple Callback, 270, 468
Single Selection Callback, 224, 246, 258,

294, 311, 319, 324, 331, 339, 347, 355,
392, 404, 448, 476

Single Selection Lists, 200
Size Button, 27
Size By Pixel, 29, 120, 124
Size Menu, 120

Auto Size Selection, 120
Replicate Height, 120
Replicate Width, 120
Set Widget Size, 121
Size By Pixel, 120

sizePolicy:, 434
sleep, 542
sliderSize:, 281
Smalltalk Systems, 2, 7
snapToResolution:, 373
sourcePath:, 435
spacing:, 269, 411, 413, 468
Spawn, 93

New, 93
Open, 94

SSN, 462
startTimer:period:, 500
Status Bar, 14, 27, 86
stopAllTimers, 500
stopTimer:, 500
storageClass, 531
stream, 531
Style Combo Box, 14
Styles, 45

Changing, 45
suspendExecutionUntilRemoved, 501
suspendSmalltalk, 543
syncExecInUI:, 546

—T—
Tab & Z-Order, 39, 42, 110, 124

Setting, 40, 41
Viewing, 39

Tab & Z-Order Button, 40
Tab & Z-Order Editor, 40, 110, 111
tabHeight:, 430

tabLabel:, 360
tabSpacing:, 301, 457, 483
tabsPerRow:, 430
tabType:, 360
tabWidthPolicy:, 364, 430
Target Is First, 33, 126, 132
Technical Support, 7
Template Editor, 30, 89, 128
Templates, 89, 128
Test Window, 22, 82, 88, 95
Text Widgets, 178
thickness:, 373
threeStateNotify:withText:, 495
tickFrequency:, 315
tipText:, 502
titleString:, 277
To Bottom Callback, 282
To Top Callback, 282
Toolbar, 14, 85
Tools, 123
toolTipText:, 295, 312
Top, 117
topCharacter:, 301, 458, 483
topItemPosition:, 245, 257, 323, 330, 345,

353, 389, 401, 475
topLevelShell, 490
topLimitWidget:, 274
topOrLeftScaleMax:, 373
topOrLeftScaleMin:, 373
topOrLeftScaleResolution:, 373
topOrLeftScaleShaftIncrement:, 373
topOrLeftScaleValue:, 373
Transcript Menu, 87

About, 91
Edit Window, 87
New Window, 87
Properties, 90
Register, 91
Runtime ICs, 90
Templates, 89
Test Window, 88

translateCoords:, 215
traversalOn:, 215
true, 501
turnOff, 305
turnOn, 305
twoDigitYear:, 458

Index 577

—U—
uncheck, 305
uncheckMenuNamed:, 501
Undo, 97
Undo/Redo List, 98
unmanageChild, 215
Unmap Callback, 270, 469
unmapWidget, 215
update, 245
Update Outboards, 127
updateDisplay, 216
updateItems, 246
updateWidget, 216
Use Add To Format, 132
Use Default Code Generation Style, 132
Use Fence, 126, 132
Use Generic Editors, 132
Use Grid, 122, 132
Use Long Callback Comments, 133
Use Scrolled Window Child, 133
Use Side Handles, 133
User Interface Process Model, 541–48
User Name, 133

—V—
Value Changed Callback, 224, 277, 282,

302, 306, 316, 374, 379, 425, 448, 459,
484

value:, 260, 277, 281, 302, 315, 458, 483
variableWidth:, 413, 414, 417, 419, 422,

424
verifyBell:, 223, 302, 447, 458, 483
verticalAlignment, 422
verticalAlignment:, 383, 415, 418, 420, 425
verticalMargin:, 373
verticalSeparatorThickness:, 383
verticalSpacing:, 235, 360
visible:, 216
visibleItemCount:, 223, 246, 257, 319, 447,

475
Visual Callback Definition, 55
Visual Info Callback, 332, 340, 347, 356,

393, 404
VisualAge, 1, 9, 18, 33, 46, 55, 67, 89, 107,

128, 137, 439, 533, 557–64, 558
Action Editor, 560
Attribute Editor, 559
Event Editor, 561

Preferred Connections, 563
visualPolicy:, 285
visualStyle:, 390, 401

—W—
WbAbstractAddInModule, 523
WbAbstractAttributeEditor, 516
wbAbstractClass, 506
WbApplication, 67, 80, 87, 88, 92, 107,

136, 487–504, 557
wbAttributeComments, 507
wbAttributeEditorClass, 506
wbAttributeList, 507
wbAttributeResourceValues, 508
wbCallbackAnnotations, 509
wbCallbackNames, 509
wbCanTab, 510
wbCloneSpecialAttributesFrom:, 510
WbCodeGenerator, 529
WbCodeModule, 529
wbColorAttributes, 510
WbComboBox, 445–50
wbDefaultParentScrollingPolicy, 512
wbDefaultValues, 512
wbDirectEditManager, 511
WbEnhancedText, 2, 451–62
wbFontAttributeList, 512
WbFrame, 31, 134, 140, 167, 463–65
wbImportantCallbacks, 512
wbImportantMessages, 513
wbIsomorphicClasses, 513
WbLabelledText, 535–40
wbMaxSize, 513
wbMinSize, 513
wbOverrideDefaultAttributes:, 514
wbProcessEditorEvent:, 515
WbRadioBox, 134, 167, 193, 466–71
wbRequiredPoolDictionaries, 515
WbScrolledList, 134, 139, 167, 199, 472–

78, 551
WbScrolledText, 134, 139, 167, 178, 479–

85, 555
wbStyleAttribute, 515
wbSubStyleAttribute, 515
Widget Categories, 86
Widget Lifecycle, 144
Widget Palette, 14
Widget Resources and Functions, 147
Widget Selection, 31, 33, 125

578 Index

widgetNamed:, 490
width:, 216, 291, 383
window, 216
WindowBuilder Pro, 1, 13, 25, 67, 71, 79,

107, 487, 505, 511, 523, 557
Coding in, 71–77
Customizing, 505–31
Starting, 13
Support, 7

Windows 95, 3, 7, 135
Windows NT, 7, 135
windowTitle, 493
withAllChildren, 216
withAllMajorChildren, 216
wordWrap:, 302, 458, 483
wrap:, 378

Wrappered OLE/ActiveX Controls, 439

—X—
x:, 217

—Y—
y:, 217

—Z—
ZipCodeUS, 462
z-order, 33, 111, 118, 124, 125
Z-Order, 39

	Contents
	Acknowledgments

	Chapter 1 Introduction
	What is WindowBuilder Pro?
	What you should already know
	History of WindowBuilder Pro
	What’s New?
	How this manual is organized
	Typographic Conventions
	Technical Support

	Chapter 2 Installation
	Prerequisites
	Installation
	Installing WindowBuilder Pro into the VisualAge Image

	Chapter 3 Overview
	Starting WindowBuilder Pro
	Creating a window-based application
	Step 1. Design the User Interface
	Step 2. Attaching callbacks and event handlers to interface objects

	Chapter 4 Using WindowBuilder Pro
	Editing Windows
	Positioning and Sizing Windows
	Positioning and Sizing Widgets
	Operations on Multiple Widgets
	Using the Grid
	Setting the Tab Order for Widgets
	Changing Fonts
	Setting Colors
	Styles
	Reframing Widgets
	Widget Morphing
	Using Call Outs
	Using the Callback Editor
	Creating Callback Handlers Visually
	Managing Outboard Windows
	Using Popup Widget Menus

	Chapter 5 Menus
	Creating a Menubar
	Popup menus on widgets

	Chapter 6 Coding in WindowBuilder Pro
	WindowBuilder Pro and Smalltalk
	What WindowBuilder Pro Generates
	Passing Arguments to Windows
	Returning Values From a Dialog
	Naming Widgets
	Passing messages from one widget to another

	Chapter 7 Example Application
	Designing the Interface
	Attaching Callbacks and Event Handlers

	Chapter 8 Command Reference
	Main Toolbar
	Attribute Toolbar
	Status Bar
	Widget Categories
	Transcript
	New Window
	Edit Window...
	Test Window...
	Templates...
	Properties...
	Runtime ICs...
	Register...
	About...

	File
	New
	Open...
	Spawn
	New
	Open

	Revert...
	Save
	Save As...
	Test Window
	About...
	Exit

	Edit
	Undo
	Redo
	Undo/Redo List...
	Cut
	Copy
	Paste
	Duplicate
	Clear
	Select
	Select All
	Select All In Same Class
	Select All In Same Hierarchy

	Browse Class...
	Browse Widget Class...

	Attributes
	Font...
	Colors...
	Attachments...
	Menus...
	Callbacks...
	Selected Widgets...
	Window...
	Tab & Z-Order...
	Call Outs...
	Drag Drop...
	Help...
	NLS...
	Morph...

	Align
	Left
	Center
	Right
	Top
	Middle
	Bottom

	Position
	Bring To Front
	Send To Back
	Bring Forward
	Send Backward
	Distribute Horizontally
	Distribute Vertically
	Pack Horizontally
	Pack Vertically
	Move By Pixel
	Set Widget Position...

	Size
	Auto Size Selection
	Replicate Width
	Replicate Height
	Size By Pixel
	Set Widget Size...

	Options
	Use Grid
	Draw Grid
	Set Grid Size...
	Tools
	Color
	Attachments
	Nudge
	Tab & Z-Order
	Widget Selection

	Drag Outlines
	Show Tab & Z-Order
	Target Is First
	Use Fence
	Allow Reparenting
	Nested Direct Manipulation
	Use Scrolled Window Child
	Always Add Forms To Frames
	Mini Help
	Update Outboards
	Auto Save
	Templates...
	Properties...
	Redraw

	Add
	Text
	Button
	List
	Composite
	Slider
	Notebook
	Container
	Other
	Windows 95
	OLE/ActiveX
	New Widget...
	Nested Application...

	Chapter 9 Common Widgets Overview
	OSF/Motif Compatibility
	Common Widgets Class Hierarchy
	Overview of Common Widgets User Interface Concepts
	The Parent-Child Widget Tree
	The Widget Lifecycle
	Mapping and Unmapping Widgets
	Managing and Unmanaging Widgets
	Widget Resources and Functions
	CwConstants Pool Dictionary

	Widget Event Handling and Callbacks
	Fonts
	Using the System Browser Font
	Colors
	Drag Drop Support
	The Players
	Sequence of Events
	System Configuration
	Minimal Drag Drop
	Drag Drop on Base Widgets

	Chapter 10 Callbacks and Event Handlers
	Callbacks
	Event Handlers

	Chapter 11 Common Widget Classes
	Shell Widgets
	Top-Level Shell Widgets

	Main Window Widgets
	Main Windows and Geometry Management

	Scrolled Window Widgets
	Text Widgets
	Drawing Area Widgets
	Adding an Event Handler to a Drawing Area

	Layout Widgets
	Form Widgets
	Row-Column Widgets

	Button and Label Widgets
	Static Label Widgets
	Push Button Widgets
	Toggle Button Widgets
	Radio Button Groups
	Check Boxes
	Icon and Pixmap Label and Button Widgets
	Application-Drawn Buttons

	List Widgets
	Single Selection Lists
	Multiple Selection Lists

	Combo Box Widgets

	Chapter 12 Widget Encyclopedia
	All Widgets
	CwArrowButton
	CwComboBox
	CwDrawingArea
	CwDrawnButton
	CwForm
	CwFrame
	CwHierarchyList
	CwLabel
	CwObjectList
	CwProgressBar
	CwPushButton
	CwRowColumn
	CwSash
	CwScale
	CwScrollBar
	CwScrolledWindow
	CwSeparator
	CwStatusBar
	CwPanel

	CwTabStrip
	CwTab

	CwText
	CwToggleButton
	CwToolBar
	CwToolButton

	CwTrackBar
	CwTreeView
	EwDrawnList
	EwFlowedIconList
	EwIconArea
	EwIconList
	EwIconTree
	EwPage
	EwPMNotebook
	EwProgressBar
	EwSlider
	EwSpinButton
	EwTableColumn
	EwTableList
	EwTableTree
	EwToolBar
	EwGroupTool
	EwLabelTool
	EwProgressBarTool
	EwPushButtonTool
	EwSeparatorTool
	EwToggleButtonTool

	EwWINNotebook
	OleClient
	OleControl
	WbComboBox
	WbEnhancedText
	WbFrame
	WbRadioBox
	WbScrolledList
	WbScrolledText

	Chapter 13 WbApplication Protocol
	Opening and Closing
	Accessing
	Subclass Overrides
	Prompting
	Utility
	Mini Help Support
	Creating

	Appendix A Customizing WindowBuilder Pro
	Adding Support for New Widgets
	Building a Custom Attribute Editor
	Using Add-In Modules
	Adding Code Generation

	Appendix B Extended Widgets
	Writing an Extended Widget
	Defining the Extended Widget Class
	Initialization
	Resources
	Callbacks
	Widget-Specific Methods

	Using an Extended Widget
	Example: A Primitive Extended Widget
	Using the WbLabelledText Primitive Extended Widget

	Appendix C User Interface Process Model
	The System View
	The Application Programmer’s View
	Examples of Applications with Long-Running Operations
	Example 1: A Simple Text Editor
	Example 2: A Program Development Environment
	Example 3: A Complex Drawing Editor

	Appendix D Common Widgets Platform Differences
	Windows and OS/2 Platform Differences

	Appendix E VisualAge Integration
	Prerequisites
	Using WindowBuilder Pro Created Parts In VisualAge
	Defining VisualAge Connection Features In WindowBuilder Pro
	Attribute Editor
	Action Editor
	Event Editor
	Integration Examples Using WindowBuilder Pro And VisualAge
	Preferred Connections

	Index

