APPENDIX B

THE LISP INTERPRETER

This appendix is written in mixed M-expressions and English. Its purpose is to
describe as closely as possible the actual working of the interpreter and PROG feature.
The functions evalquote, apply, eval, evlis, evcon, and the PROG feature are defined

by using a language that follows the M-expression notation as closely as possible and
contains some insertions in English.

evalquote[fn; args]:[get [fn; FEXPR] Vget [fn;FSUBR] -
eval[cons[fn;args LNIL]
T-apply[fn;args;NIL]]

This definition shows that evalquote is capable of handling special forms as a sort
of exception. Apply cannot handle special forms and will give error A2 if given one as
its first argument.

The following definition of apply is an enlargement of the one given in Section I. It
shows how functional arguments bound by FUNARG are processed, and describes the
way in which machine language subroutines are called.

In this description, spread can be regarded as a pseudo-function of one argument.
This argument is a list. spread puts the individual items of this list into the AC, MQ,
$ARG3, ... the standard cells for transmitting arguments to functions.

These M-expressions should not be taken too literally. In many cases, the actual

program is a store and transfer where a recursion is suggested by these definitions.

apply[fn;args;a]:[
—null[fn]-—NIL;
atom[fn]—-[get[fn;EXPR]-—apply[expr;largs;a];
spreéd[args];
get[fn;SUBR]~ { $ALIST:=a; ;
TSX subr1,4
T-apply[cdr[sassoc[fn;a;\[[];error[A2]]]];args;a];
eq[car[fn]; LABEL]~apply[caddr[fn];args;cons[cons[cadr[fn];caddr[fn]];a]];
eq[car[fn];FUNARG]-apply[cadr[fn];args;caddr[fn]];
eq[car[fn];LAMBDA]—-eval[caddr[fn];nconc[pair[cadr[fn];args];a]];
T-apply[eval[fn;a];args;a]]

1. The value of get is set aside. This is the meaning of the apparent free or unde-
fined variable:

70

g_\ﬁ_l[form; al={

nullff orm J-NIL;

numberp|f orm}~form;

atom[form]——[get[form;APVAL]-—car[apvall];

T—cdr[sassoc[form;a;\[[Jierror{As]l]]);

eqlcar [form];QUOTE]-—cadr[form]; 2

eq[car[form]; FUNCTION]-list[FUNARG;cadr[form]; al;?

eq[car[form]; COND]-—evcon[cdr[form]; al;

eq[car[form]; PROG]——prog[cdr[form];a];2

atom[car[form]] -[get[car[form];EXPR]-»apply[expr Yeviis[cdr[form];alia)s
get[car[t’orm];FEXPR]-apply[fexpr;1 list[cdr[form];a}ia];

spread[evlis[cdr[form];a]];
get[car[form];SUBR|={ $ALIST:=a; ;
TSX subr, 4
AC:=cdr[form];
get[car[form];FSUBR]- { MQ:= $ALIST:=a; § ;
TSX £ subr,l 4
T-—eval[cons[cdr[sas soc [car[form];a;X[[];error[A9]]]];
cdr[form]l;all;
T-oapply[car[form];evlis[cdr[form];a]; a]]
glc_o_r_l[c;a]=[nu11[c]-—error[A3 I
eval[caar[c];a]-—eval[cadar[a]; al;
T—evcon[cdr[c]ial]]

E‘IE_S[m;a]=maplist [msn[[3): evallcar[jlalll

The PROG Feature

The PROG feature is an FSUBR coded into the system. It can best be explained in
English, although it is possible to define it by using M-expressions.

1. As soon as the PROG feature is entered, the list of program variables is used
to make a new list in which each one is paired with NIL. This is then appended to the
current a-list. Thus each program variable is set to NIL at the entrance to the program.

2. The remainder of the program is searched for atomic symbols that are under-
stood to be location symbols. A go-list is formed in which each location symbol is
paired with a pointer into the remainder of the program.

3. When a set or a setq is encountered, the name of the variable is located on the
a-list. The value of the variable (or cdr of the pair) is actually replaced with the new
value.

1. The value of get is set aside. This is the meaning of the apparent free or unde -

fined variable.

2. In the actual system this is handled by an FSUBR rather than as the separate special
case as shown here.

71

If the variable is bound several times on the a-list, only the first or most recent
occurrence is changed. If the current binding of the variable is at a higher level than
the entrance to the DProg, then the change will remain in effect throughout the scope
of that binding, and the old value will be lost.

If the variable does not occur on the a-list, then error diagnostic A4 or A5 will
occur.

4. When a return is encountered at any point, its argument is evaluated and returned
as the value of the most recent prog that has been entered.

5. The form go may be used only in two ways.

a. (GO X) may occur on the top level of the prog. x must be a location symbol
of this prog and not another one on a higher or lower level.

TThis form may also occur as one of the value parts of a conditional expres-
sion, if this conditional expression occurs on the top level of the prog.

If a go is used incorrectly or refers to a nonexistent location,mor diagnostic A6
will occ;.

6. When the form cond occurs on the top level of a prog, it differs from other

conds in the following ways.
a. It is the only instance in which a go can occur inside a cond.
b. If the cond runs out of clauses, error diagnostic A3 will not occur. Instead,
the prog will continue with the next statement.
7. When a statement is executed, this has the following meaning, with the exception
of the special forms cond, go, return, setq and the pseudo-function set, all of which

are peculiar to prog.

The statement s is executed by performing eval[s;a], where a is the current a-list,
and then ignoring the value.

8. If a prog runs out of statements, its value is NIL.

When a ﬁ is compiled, it will have the same effect as when it is interpreted,
although the method of execution is much different; for example, a go is always com-
piled as a transfer. The following points should be noted concerning declared variables.l

1. Program variables follow the same rules as \ variables do.

a. If a variable is purely local, it need not be declared.

b. Special variables can be used as free variables in compiled functions. They
may be set at a lower level than that at which they are bound.

c. Common program variables maintain complete communication between com-
piled programs and the interpreter.

2. set as distinct from setq can only be used to set common variables.

1. See Appendix D for an explanation of variable declaration.

72

