
The Cathedral and the Bazaar

by Eric S. Raymond Date : 1997=09=1522 : 48 : 58

I anatomize a successful free-software project, fetchmail, that was run as a deliberate test of some surprising

theories about software engineering suggested by the history of Linux. I discuss these theories in terms of two

fundamentally di�erent development styles, the \cathedral" model of FSF and its imitators versus the \bazaar"

model of the Linux world. I show that these models derive from opposing assumptions about the nature of the

software-debugging task. I then make a sustained argument from the Linux experience for the proposition that

\Given enough eyeballs, all bugs are shallow", suggest productive analogies with other self-correcting systems of

sel�sh agents, and conclude with some exploration of the implications of this insight for the future of software.

Contents

1 The Cathedral and the Bazaar 2

2 The Mail Must Get Through 2

3 The Importance of Having Users 5

4 Release Early, Release Often 5

5 When Is A Rose Not A Rose? 8

6 Popclient becomes Fetchmail 9

7 Fetchmail Grows Up 11

8 A Few More Lessons From Fetchmail 12

9 Necessary Preconditions for the Bazaar Style 13

10 The Social Context of Free Software 14

11 Acknowledgements 17

12 For Further Reading 17

13 Version Id : cathedral � paper:sgml; v1:241997=09=1522 : 48 : 58esrExpesr 18



1. The Cathedral and the Bazaar 2

1 The Cathedral and the Bazaar

Linux is subversive. Who would have thought even �ve years ago that a world-class operating system could

coalesce as if by magic out of part-time hacking by several thousand developers scattered all over the

planet, connected only by the tenuous strands of the Internet?

Certainly not I. By the time Linux swam onto my radar screen in early 1993, I had already been involved

in Unix and free-software development for ten years. I was one of the �rst GNU contributors in the

mid-1980s. I had released a good deal of free software onto the net, developing or co-developing several

programs (nethack, Emacs VC and GUD modes, xlife, and others) that are still in wide use today. I

thought I knew how it was done.

Linux overturned much of what I thought I knew. I had been preaching the Unix gospel of small tools,

rapid prototyping and evolutionary programming for years. But I also believed there was a certain critical

complexity above which a more centralized, a priori approach was required. I believed that the most

important software (operating systems and really large tools like Emacs) needed to be built like cathedrals,

carefully crafted by individual wizards or small bands of mages working in splendid isolation, with no beta

to be released before its time.

Linus Torvalds's style of development - release early and often, delegate everything you can, be open to the

point of promiscuity - came as a surprise. No quiet, reverent cathedral-building here { rather, the Linux

community seemed to resemble a great babbling bazaar of di�ering agendas and approaches (aptly

symbolized by the Linux archive sites, who'd take submissions from anyone) out of which a coherent and

stable system could seemingly emerge only by a succession of miracles.

The fact that this bazaar style seemed to work, and work well, came as a distinct shock. As I learned my

way around, I worked hard not just at individual projects, but also at trying to understand why the Linux

world not only didn't 
y apart in confusion but seemed to go from strength to strength at a speed barely

imaginable to cathedral-builders.

By mid-1996 I thought I was beginning to understand. Chance handed me a perfect way to test my theory,

in the form of a free-software project which I could consciously try to run in the bazaar style. So I did {

and it was a signi�cant success.

In the rest of this article, I'll tell the story of that project, and I'll use it to propose some aphorisms about

e�ective free-software development. Not all of these are things I �rst learned in the Linux world, but we'll

see how the Linux world gives them particular point. If I'm correct, they'll help you understand exactly

what it is that makes the Linux community such a fountain of good software { and help you become more

productive yourself.

2 The Mail Must Get Through

Since 1993 I'd been running the technical side of a small free-access ISP called Chester County InterLink

(CCIL) in West Chester, Pennsylvania (I co-founded CCIL and wrote our unique multiuser BBS software {

you can check it out by telnetting to locke.ccil.org <telnet://locke.ccil.org>. Today it supports almost

three thousand users on nineteen lines.) The job allowed me 24-hour-a-day access to the net through

CCIL's 56K line { in fact, it practically demanded it!



2. The Mail Must Get Through 3

Accordingly, I had gotten quite used to instant Internet email. For complicated reasons, it was hard to get

SLIP to work between my home machine (snark.thyrsus.com) and CCIL. When I �nally succeeded, I found

having to periodically telnet to locke to check my mail annoying. What I wanted was for my mail to be

delivered on snark so that bi�(1) would notify me when it arrived.

Simple sendmail forwarding wouldn't work, because snark isn't always on the net and doesn't have a static

IP address. What I needed was a a program that would reach out over my SLIP connection and pull across

my mail to be delivered locally. I knew such things existed, and that most of them used a simple

application protocol called POP (Post O�ce Protocol). And sure enough, there was already a POP3 server

included with locke's BSD/OS operating system.

I needed a POP3 client. So I went out on the net and found one. Actually, I found three or four. I used

pop-perl for a while, but it was missing what seemed an obvious feature, the ability to hack the addresses

on fetched mail so replies would work properly.

The problem was this: suppose someone named `joe' on locke sent me mail. If I fetched the mail to snark

and then tried to reply to it, my mailer would cheerfully try to ship it to a nonexistent `joe' on snark.

Hand-editing reply addresses to tack on `@ccil.org' quickly got to be a serious pain.

This was clearly something the computer ought to be doing for me. (In fact, according to RFC1123 section

5.2.18, sendmail ought to be doing it.) But none of the existing POP clients knew how! And this brings us

to the �rst lesson:

1. Every good work of software starts by scratching a developer's personal itch.

Perhaps this should have been obvious (it's long been proverbial that \Necessity is the mother of

invention") but too often software developers spend their days grinding away for pay at programs they

neither need nor love. But not in the Linux world { which may explain why the average quality of software

originated in the Linux community is so high.

So, did I immediately launch into a furious whirl of coding up a brand-new POP3 client to compete with

the existing ones? Not on your life! I looked carefully at the POP utilities I had in hand, asking myself

\which one is closest to what I want?". Because

2. Good programmers know what to write. Great ones know what to rewrite (and reuse).

While I don't claim to be a great programmer, I try to imitate one. An important trait of the great ones is

constructive laziness. They know that you get an A not for e�ort but for results, and that it's almost

always easier to start from a good partial solution than from nothing at all.

Linus, for example, didn't actually try to write Linux from scratch. Instead, he started by reusing code and

ideas from Minix, a tiny Unix-like OS for 386 machines. Eventually all the Minix code went away or was

completely rewritten { but while it was there, it provided sca�olding for the infant that would eventually

become Linux.

In the same spirit, I went looking for an existing POP utility that was reasonably well coded, to use as a

development base.

The source-sharing tradition of the Unix world has always been friendly to code reuse (this is why the

GNU project chose Unix as a base OS, in spite of serious reservations about the OS itself). The Linux

world has taken this tradition nearly to its technological limit; it has terabytes of open sources generally

available. So spending time looking for some else's almost-good-enough is more likely to give you good



2. The Mail Must Get Through 4

results in the Linux world than anywhere else.

And it did for me. With those I'd found earlier, my second search made up a total of nine candidates {

fetchpop, PopTart, get-mail, gwpop, pimp, pop-perl, popc, popmail and upop. The one I �rst settled on

was `fetchpop' by Seung-Hong Oh. I put my header-rewrite feature in it, and made various other

improvements which the author accepted into his 1.9 release.

A few weeks later, though, I stumbled across the code for `popclient' by Carl Harris, and found I had a

problem. Though fetchpop had some good original ideas in it (such as its daemon mode), it could only

handle POP3 and was rather amateurishly coded (Seung-Hong was a bright but inexperienced programmer,

and both traits showed). Carl's code was better, quite professional and solid, but his program lacked

several important and rather tricky-to-implement fetchpop features (including those I'd coded myself).

Stay or switch? If I switched, I'd be throwing away the coding I'd already done in exchange for a better

development base.

A practical motive to switch was the presence of multiple-protocol support. POP3 is the most commonly

used of the post-o�ce server protocols, but not the only one. Fetchpop and the other competition didn't

do POP2, RPOP, or APOP, and I was already having vague thoughts of perhaps adding IMAP (Internet

Message Access Protocol, the most recently designed and most powerful post-o�ce protocol) just for fun.

But I had a more theoretical reason to think switching might be as good an idea as well, something I

learned long before Linux.

3. \Plan to throw one away; you will, anyhow." (Fred Brooks, \The Mythical Man-Month", Chapter 11)

Or, to put it another way, you often don't really understand the problem until after the �rst time you

implement a solution. The second time, maybe you know enough to do it right. So if you want to get it

right, be ready to start over at least once.

Well (I told myself) the changes to fetchpop had been my �rst try. So I switched.

After I sent my �rst set of popclient patches to Carl Harris on 25 June 1996, I found out that he had

basically lost interest in popclient some time before. The code was a bit dusty, with minor bugs hanging

out. I had many changes to make, and we quickly agreed that the logical thing for me to do was take over

the program.

Without my actually noticing, the project had escalated. No longer was I just contemplating minor patches

to an existing POP client. I took on maintaining an entire one, and there were ideas bubbling in my head

that I knew would probably lead to major changes.

In a software culture that encourages code-sharing, this is a natural way for a project to evolve. I was

acting out this:

4. If you have the right attitude, interesting problems will �nd you.

But Carl Harris's attitude was even more important. He understood that

5. When you lose interest in a program, your last duty to it is to hand it o� to a competent successor.

Without ever having to discuss it, Carl and I knew we had a common goal of having the best solution out

there. The only question for either of us was whether I could establish that I was a safe pair of hands.

Once I did that, he acted with grace and dispatch. I hope I will act as well when it comes my turn.



3. The Importance of Having Users 5

3 The Importance of Having Users

And so I inherited popclient. Just as importantly, I inherited popclient's user base. Users are wonderful

things to have, and not just because they demonstrate that you're serving a need, that you've done

something right. Properly cultivated, they can become co-developers.

Another strength of the Unix tradition, and again one that Linux pushes to a happy extreme, is that a lot

of users are hackers too { and because source code is available, they can be e�ective hackers. This can be

tremendously useful for shortening debugging time. Given a bit of encouragement, your users will diagnose

problems, suggest �xes, and help improve the code far more quickly than you could unaided.

6. Treating your users as co-developers is your least-hassle route to rapid code improvement and e�ective

debugging.

The power of this e�ect is easy to underestimate. In fact, pretty well all of us in the free-software world

drastically underestimated how well it would scale up with number of users and against system complexity,

until Linus showed us di�erently.

In fact, I think Linus's cleverest and most consequential hack was not the construction of the Linux kernel

itself, but rather his invention of the Linux development model. When I expressed this opinion in his

presence once, he smiled and quietly repeated something he has often said: \I'm basically a very lazy

person who likes to get credit for things other people actually do." Lazy like a fox. Or, as Robert Heinlein

might have said, too lazy to fail.

In retrospect, one precedent for the methods and success of Linux can be seen in the development of the

GNU Emacs Lisp library and Lisp code archives. In contrast to the cathedral-building style of the Emacs

C core and most other FSF tools, the evolution of the Lisp code pool was 
uid and very user-driven. Ideas

and prototype modes were often rewritten three or four times before reaching a stable �nal form. And

loosely-coupled collaborations enabled by the Internet, a la Linux, were frequent.

Indeed, my own most successful single hack previous to fetchmail was probably Emacs VC mode, a

Linux-like collaboration by email with three other people, only one of whom (Richard Stallman) I have met

to this day. It was a front-end for SCCS, RCS and later CVS from within Emacs that o�ered \one-touch"

version control operations. It evolved from a tiny, crude sccs.el mode somebody else had written. And the

development of VC succeeded because, unlike Emacs itself, Emacs Lisp code could go through

release/test/improve generations very quickly.

(One unexpected side-e�ect of FSF's policy of trying to legally bind code into the GPL is that it becomes

procedurally harder for FSF to use the bazaar mode, since they believe they must get a copyright

assignment for every individual contribution of more than twenty lines in order to immunize GPLed code

from challenge under copyright law. Users of the BSD and MIT X Consortium licenses don't have this

problem, since they're not trying to reserve rights that anyone might have an incentive to challenge.)

4 Release Early, Release Often

Early and frequent releases are a critical part of the Linux development model. Most developers (including

me) used to believe this was bad policy for larger than trivial projects, because early versions are almost by



4. Release Early, Release Often 6

de�nition buggy versions and you don't want to wear out the patience of your users.

This belief reinforced the general commitment to a cathedral-building style of development. If the

overriding objective was for users to see as few bugs as possible, why then you'd only release one every six

months (or less often) and work like a dog on debugging between releases. The Emacs C core was

developed this way. The Lisp library, in e�ect, was not { because there were active Lisp archives outside

the FSF's control, where you could go to �nd new and development code versions independently of Emacs's

release cycle.

The most important of these, the Ohio State elisp archive, anticipated the spirit and many of the features

of today's big Linux archives. But few of us really thought very hard about what we were doing, or about

what the very existence of that archive suggested about problems in FSF's cathedral-building development

model. I made one serious attempt around 1992 to get a lot of the Ohio code formally merged into the

o�cial Emacs Lisp library. I ran into political trouble and was largely unsuccessful.

But by a year later, as Linux became widely visible, it was clear that something di�erent and much

healthier was going on there. Linus's open development policy was the very opposite of cathedral-building.

The sunsite and tsx-11 archives were burgeoning, multiple distributions were being 
oated. And all of this

was driven by an unheard-of frequency of core system releases.

Linus was treating his users as co-developers in the most e�ective possible way:

7. Release early. Release often. And listen to your customers.

Linus's innovation wasn't so much in doing this (something like it had been Unix-world tradition for a long

time), but in scaling it up to a level of intensity that matched the complexity of what he was developing.

In those early times it wasn't unknown for him to release a new kernel more than once a day! And,

because he cultivated his base of co-developers and leveraged the Internet for collaboration harder than

anyone else, it worked.

But how did it work? And was it something I could duplicate, or did it rely on some unique genius of

Linus's?

I didn't think so. Granted, Linus is a damn �ne hacker (how many of us could engineer an entire

production-quality operating system kernel?). But Linux didn't represent any awesome conceptual leap

forward. Linus is not (or at least, not yet) an innovative genius of design in the way that, say, Richard

Stallman or James Gosling are. Rather, Linus seems to me to be a genius of engineering, with a sixth sense

for avoiding bugs and development dead-ends and a true knack for �nding the minimum-e�ort path from

point A to point B. Indeed, the whole design of Linux breathes this quality and mirrors Linus's essentially

conservative and simplifying design approach.

So, if rapid releases and leveraging the Internet medium to the hilt were not accidents but integral parts of

Linus's engineering-genius insight into the minimum-e�ort path, what was he maximizing? What was he

cranking out of the machinery?

Put that way, the question answers itself. Linus was keeping his hacker/users constantly stimulated and

rewarded { stimulated by the prospect of having an ego-satisfying piece of the action, rewarded by the

sight of constant (even daily) improvement in their work.

Linus was directly aiming to maximize the number of person-hours thrown at debugging and development,

even at the possible cost of instability in the code and user-base burnout if any serious bug proved



4. Release Early, Release Often 7

intractable. Linus was behaving as though he believed something like this:

8. Given a large enough beta-tester and co-developer base, almost every problem will be characterized

quickly and the �x obvious to someone.

Or, less formally, \Given enough eyeballs, all bugs are shallow." I dub this: \Linus's Law".

My original formulation was that every problem \will be transparent to somebody". Linus demurred that

the person who understands and �xes the problem is not necessarily or even usually the person who �rst

characterizes it. \Somebody �nds the problem," he says, \and somebody else understands it. And I'll go

on record as saying that �nding it is the bigger challenge." But the point is that both things tend to

happen quickly.

Here, I think, is the core di�erence underlying the cathedral-builder and bazaar styles. In the

cathedral-builder view of programming, bugs and development problems are tricky, insidious, deep

phenomena. It takes months of scrutiny by a dedicated few to develop con�dence that you've winkled them

all out. Thus the long release intervals, and the inevitable disappointment when long-awaited releases are

not perfect.

In the bazaar view, on the other hand, you assume that bugs are generally shallow phenomena { or, at

least, that they turn shallow pretty quick when exposed to a thousand eager co-developers pounding on

every single new release. Accordingly you release often in order to get more corrections, and as a bene�cial

side e�ect you have less to lose if an occasional botch gets out the door.

And that's it. That's enough. If \Linus's Law" is false, then any system as complex as the Linux kernel,

being hacked over by as many hands as the Linux kernel, should at some point have collapsed under the

weight of unforseen bad interactions and undiscovered \deep" bugs. If it's true, on the other hand, it is

su�cient to explain Linux's relative lack of bugginess.

And maybe it shouldn't have been such a surprise, at that. Sociologists years ago discovered that the

averaged opinion of a mass of equally expert (or equally ignorant) observers is quite a bit more reliable a

predictor than that of a single randomly-chosen one of the observers. They called this the \Delphi e�ect".

It appears that what Linus has shown is that this applies even to debugging an operating system { that the

Delphi e�ect can tame development complexity even at the complexity level of an OS kernel.

I am indebted to Je� Dutky <dutky@wam.umd.edu> for pointing out that Linus's Law can be rephrased

as \Debugging is parallelizable". Je� observes that although debugging requires debuggers to communicate

with some coordinating developer, it doesn't require signi�cant coordination between debuggers. Thus it

doesn't fall prey to the same quadratic complexity and management costs that make adding developers

problematic.

In practice, the theoretical loss of e�ciency due to duplication of work by debuggers almost never seems to

be an issue in the Linux world. One e�ect of a \release early and often policy" is to minimize such

duplication by propagating fed-back �xes quickly.

Brooks even made an o�-hand observation related to Je�'s: \The total cost of maintaining a widely used

program is typically 40 percent or more of the cost of developing it. Surprisingly this cost is strongly

a�ected by the number of users. More users �nd more bugs ." (my emphasis).

More users �nd more bugs because adding more users adds more di�erent ways of stressing the program.

This e�ect is ampli�ed when the users are co-developers. Each one approaches the task of bug



5. When Is A Rose Not A Rose? 8

characterization with a slightly di�erent perceptual set and analytical toolkit, a di�erent angle on the

problem. The \Delphi e�ect" seems to work precisely because of this variation. In the speci�c context of

debugging, the variation also tends to reduce duplication of e�ort.

So adding more beta-testers may not reduce the complexity of the current \deepest" bug from the

developer's P.O.V., but it increases the probability that someone's toolkit will be matched to the problem

in such a way that the bug is shallow to that person.

Linus coppers his bets, too. In case there are serious bugs, Linux kernel version are numbered in such a

way that potential users can make a choice either to run the last version designated \stable" or to ride the

cutting edge and risk bugs in order to get new features. This tactic is not yet formally imitated by most

Linux hackers, but perhaps it should be; the fact that either choice are available makes both more

attractive.

5 When Is A Rose Not A Rose?

Having studied Linus's behavior and formed a theory about why it was successful, I made a conscious

decision to test this theory on my new (admittedly much less complex and ambitious) project.

But the �rst thing I did was reorganize and simplify popclient a lot. Carl Harris's implementation was very

sound, but exhibited a kind of unnecessary complexity common to many C programmers. He treated the

code as central and the data structures as support for the code. As a result, the code was beautiful but the

data structure design ad-hoc and rather ugly (at least by the high standards of this old LISP hacker).

I had another purpose for rewriting besides improving the code and the data structure design, however.

That was to evolve it into something I understood completely. It's no fun to be responsible for �xing bugs

in a program you don't understand.

For the �rst month or so, then, I was simply following out the implications of Carl's basic design. The �rst

serious change I made was to add IMAP support. I did this by reorganizing the protocol machines into a

generic driver and three method tables (for POP2, POP3, and IMAP). This and the previous changes

illustrate a general principle that's good for programmers to keep in mind, especially in languages like C

that don't naturally do dynamic typing:

9. Smart data structures and dumb code works a lot better than the other way around.

Fred Brooks, Chapter 11 again: \Show me your code and conceal your datastructures, and I shall continue

to be mysti�ed. Show me your datastructures, and I won't usually need your code; it'll be obvious."

Actually, he said \
owcharts" and \tables". But allowing for thirty years of terminological/cultural shift,

it's almost the same point.

At this point (early September 1996, about six weeks from zero) I started thinking that a name change

might be in order { after all, it wasn't just a POP client any more. But I hesitated, because there was as

yet nothing genuinely new in the design. My version of popclient had yet to develop an identity of its own.

That changed, radically, when fetchmail learned how to forward fetched mail to the SMTP port. I'll get to

that in a moment. But �rst: I said above that I'd decided to use this project to test my theory about what

Linus Torvalds had done right. How (you may well ask) did I do that? In these ways:



6. Popclient becomes Fetchmail 9

1. I released early and often (almost never less often than every ten days; during periods of intense

development, once a day).

2. I grew my beta list by adding to it everyone who contacted me about fetchmail.

3. I sent chatty announcements to the beta list whenever I released, encouraging people to participate.

4. And I listened to my beta testers, polling them about design decisions and stroking them whenever

they sent in patches and feedback.

The payo� from these simple measures was immediate. From the beginning of the project, I got bug

reports of a quality most developers would kill for, often with good �xes attached. I got thoughtful

criticism, I got fan mail, I got intelligent feature suggestions. Which leads to:

10. If you treat your beta-testers as if they're your most valuable resource, they will respond by becoming

your most valuable resource.

One interesting measure of fetchmail's success is the sheer size of the project beta list, fetchmail-friends. At

time of writing it has 249 members and is adding two or three a week.

Actually, as I revise in late May 1997 the list is beginning to lose members for an interesting reason.

Several people have asked me to unsubscribe them because fetchmail is working so well for them that they

no longer need to see the list tra�c! Perhaps this is part of the normal life-cycle of a mature bazaar-style

project.

6 Popclient becomes Fetchmail

The real turning point in the project was when Harry Hochheiser sent me his scratch code for forwarding

mail to the client machine's SMTP port. I realized almost immediately that a reliable implementation of

this feature would make all the other delivery modes next to obsolete.

For many weeks I had been tweaking fetchmail rather incrementally while feeling like the interface design

was serviceable but grubby { inelegant and with too many exiguous options hanging out all over. The

options to dump fetched mail to a mailbox �le or standard output particularly bothered me, but I couldn't

�gure out why.

What I saw when I thought about SMTP forwarding was that popclient had been trying to do too many

things. It had been designed to be both a mail transport agent (MTA) and a local delivery agent (MDA).

With SMTP forwarding, it could get out of the MDA business and be a pure MTA, handing o� mail to

other programs for local delivery just as sendmail does.

Why mess with all the complexity of con�guring a mail delivery agent or setting up lock-and-append on a

mailbox when port 25 is almost guaranteed to be there on any platform with TCP/IP support in the �rst

place? Especially when this means retrieved mail is guaranteed to look like normal sender-initiated SMTP

mail, which is really what we want anyway.

There are several lessons here. First, this SMTP-forwarding idea was the biggest single payo� I got from

consciously trying to emulate Linus's methods. A user gave me this terri�c idea { all I had to do was

understand the implications.



6. Popclient becomes Fetchmail 10

11. The next best thing to having good ideas is recognizing good ideas from your users. Sometimes the latter

is better.

Interestingly enough, you will quickly �nd that if you are completely and self-deprecatingly truthful about

how much you owe other people, the world at large will treat you like you did every bit of the invention

yourself and are just being becomingly modest about your innate genius. We can all see how well this

worked for Linus!

And after a very few weeks of running the project in the same spirit, I began to get similar praise not just

from my users but from other people to whom the word leaked out. I stashed away some of that email; I'll

look at it again sometime if I ever start wondering whether my life has been worthwhile :-).

But there are two more fundamental, non-political lessons here that are general to all kinds of design.

12. Often, the most striking and innovative solutions come from realizing that your concept of the problem

was wrong.

I had been trying to solve the wrong problem by continuing to develop popclient as a combined

MTA/MDA with all kinds of funky local delivery modes. Fetchmail's design needed to be rethought from

the ground up as a pure MTA, a part of the normal SMTP-speaking Internet mail path.

When you hit a wall in development { when you �nd yourself hard put to think past the next patch { it's

often time to ask not whether you've got the right answer, but whether you're asking the right question.

Perhaps the problem needs to be reframed.

Well, I had reframed my problem. Clearly, the right thing to do was (1) hack SMTP forwarding support

into the generic driver, (2) make it the default mode, and (3) eventually throw out all the other delivery

modes, especially the deliver-to-�le and deliver-to-standard-output options.

I hesitated over step 3 for some time, fearing to upset long-time popclient users dependent on the alternate

delivery mechanisms. In theory, they could immediately switch to .forward �les or their non-sendmail

equivalents to get the same e�ects. In practice the transition might have been messy.

But when I did it, the bene�ts proved huge. The cruftiest parts of the driver code vanished. Con�guration

got radically simpler { no more grovelling around for the system MDA and user's mailbox, no more worries

about whether the underlying OS supports �le locking.

Also, the only way to lose mail vanished. If you speci�ed delivery to a �le and the disk got full, your mail

got lost. This can't happen with SMTP forwarding because your SMTP listener won't return OK unless

the message can be delivered or at least spooled for later delivery.

Also, performance improved (though not so you'd notice it in a single run). Another not insigni�cant

bene�t of this change was that the manual page got a lot simpler.

Later, I had to bring delivery via a user-speci�ed local MDA back in order to allow handling of some

obscure situations involving dynamic SLIP. But I found a much simpler way to do it.

The moral? Don't hesitate to throw away superannuated features when you can do it without loss of

e�ectiveness. Antoine de Saint-Exupery (who was an aviator and aircraft designer when he wasn't being

the author of classic children's books) said:

13. \Perfection (in design) is achieved not when there is nothing more to add, but rather when there is

nothing more to take away."



7. Fetchmail Grows Up 11

When your code is getting both better and simpler, that is when you know it's right. And in the process,

the fetchmail design acquired an identity of its own, di�erent from the ancestral popclient.

It was time for the name change. The new design looked much more like a dual of sendmail than the old

popclient had; both are MTAs, but where sendmail pushes then delivers, the new popclient pulls then

delivers. So, two months o� the blocks, I renamed it fetchmail.

7 Fetchmail Grows Up

There I was with a neat and innovative design, code that I knew worked well because I used it every day,

and a burgeoning beta list. It gradually dawned on me that I was no longer engaged in a trivial personal

hack that might happen to be useful to few other people. I had my hands on a program every hacker with

a Unix box and a SLIP/PPP mail connection really needs.

With the SMTP forwarding feature, it pulled far enough in front of the competition to potentially become

a \category killer", one of those classic programs that �lls its niche so competently that the alternatives are

not just discarded but almost forgotten.

I think you can't really aim or plan for a result like this. You have to get pulled into it by design ideas so

powerful that afterward the results just seem inevitable, natural, even foreordained. The only way to try

for ideas like that is by having lots of ideas { or by having the engineering judgment to take other peoples'

good ideas beyond where the originators thought they could go.

Andrew Tanenbaum had the original idea to build a simple native Unix for the 386, for use as a teaching

tool. Linus Torvalds pushed the Minix concept further than Andrew probably thought it could go { and it

grew into something wonderful. In the same way (though on a smaller scale), I took some ideas by Carl

Harris and Harry Hochheiser and pushed them hard. Neither of us was `original' in the romantic way

people think is genius. But then, most science and engineering and software development isn't done by

original genius, hacker mythology to the contrary.

The results were pretty heady stu� all the same { in fact, just the kind of success every hacker lives for!

And they meant I would have to set my standards even higher. To make fetchmail as good as I now saw it

could be, I'd have to write not just for my own needs, but also include and support features necessary to

others but outside my orbit. And do that while keeping the program simple and robust.

The �rst and overwhelmingly most important feature I wrote after realizing this was multidrop support {

the ability to fetch mail from mailboxes that had accumulated all mail for a group of users, and then route

each piece of mail to its individual recipients.

I decided to add the multidrop support partly because some users were clamoring for it, but mostly

because I thought it would shake bugs out of the single-drop code by forcing me to deal with addressing in

full generality. And so it proved. Getting RFC822 parsing right took me a remarkably long time, not

because any individual piece of it is hard but because it involved a pile of interdependent and fussy details.

But multidrop addressing turned out to be an excellent design decision as well. Here's how I knew:

14. Any tool should be useful in the expected way, but a *great* tool lends itself to uses you never expected.

The unexpected use for multi-drop fetchmail is to run mailing lists with the list kept, and alias expansion



8. A Few More Lessons From Fetchmail 12

done, on the client side of the SLIP/PPP connection. This means someone running a personal machine

through an ISP account can manage a mailing list without continuing access to the ISP's alias �les.

Another important change demanded by my beta testers was support for 8-bit MIME operation. This was

pretty easy to do, because I had been careful to keep the code 8-bit clean. Not because I anticipated the

demand for this feature, but rather in obedience to another rule:

15. When writing gateway software of any kind, take pains to disturb the data stream as little as possible {

and *never* throw away information unless the recipient forces you to!

Had I not obeyed this rule, 8-bit MIME support would have been di�cult and buggy. As it was, all I had

to do is read RFC 1652 and add a trivial bit of header-generation logic.

Some European users bugged me into adding an option to limit the number of messages retrieved per

session (so they can control costs from their expensive phone networks). I resisted this for a long time, and

I'm still not entirely happy about it. But if you're writing for the world, you have to listen to your

customers { this doesn't change just because they're not paying you in money.

8 A Few More Lessons From Fetchmail

Before we go back to general software-engineering issues, there are a couple more speci�c lessons from the

fetchmail experience to ponder.

The rc �le syntax includes optional `noise' keywords that are entirely ignored by the parser. The

English-like syntax they allow is considerably more readable than the traditional terse keyword-value pairs

you get when you strip them all out.

These started out as a late-night experiment when I noticed how much the rc �le declarations were

beginning to resemble an imperative minilanguage. (This is also why I changed the original popclient

`server' keyword to `poll').

It seemed to me that trying to make that imperative minilanguage more like English might make it easier

to use. Now, although I'm a convinced partisan of the \make it a language" school of design as exempli�ed

by Emacs and HTML and many database engines, I am not normally a big fan of \English-like" syntaxes.

Traditionally programmers have tended to favor control syntaxes that are very precise and compact and

have no redundancy at all. This is a cultural legacy from when computing resources were expensive, so

parsing stages had to be as cheap and simple as possible. English, with about 50% redundancy, looked like

a very inappropriate model then.

This is not my reason for �ghting shy of English-like syntaxes; I mention it here only to demolish it. With

cheap cycles and core, terseness should not be an end in itself. Nowadays it's more important for a

language to be convenient for humans than to be cheap for the computer.

There are, however, good reasons to be wary. One is the complexity cost of the parsing stage { you don't

want to raise that to the point where it's a signi�cant source of bugs and user confusion in itself. Another

is that trying to make a language syntax English-like often demands that the \English" it speaks be bent

seriously out of shape, so much so that the super�cial resemblance to natural language is as confusing as a

traditional syntax would have been. (You see this in a lot of 4GLs and commercial database-query



9. Necessary Preconditions for the Bazaar Style 13

languages.)

The fetchmail control syntax seems to avoid these problems because the language domain is extremely

restricted. It's nowhere near a general-purpose language; the things it says simply are not very

complicated, so there's little potential for confusion in moving mentally between a tiny subset of English

and the actual control language. I think there may be a wider lesson here:

16. When your language is nowhere near Turing-complete, syntactic sugar can be your friend.

Another lesson is about security by obscurity. Some fetchmail users asked me to change the software to

store passwords encrypted in the rc �le, so snoopers wouldn't be able to casually see them.

I didn't do it, because this doesn't actually add protection. Anyone who's acquired permissions to read

your rc �le will be able to run fetchmail as you anyway { and if it's your password they're after, they'd be

able to rip the necessary decoder out of the fetchmail code itself to get it.

All .fetchmailrc password encryption would have done is give a false sense of security to people who don't

think very hard. The general rule here is:

17. A security system is only as secure as its secret. Beware of pseudo-secrets.

9 Necessary Preconditions for the Bazaar Style

Early reviewers and test audiences for this paper consistently raised questions about the preconditions for

successful bazaar-style development, including both the quali�cations of the project leader and the state of

code at the time one goes public and starts to try to build a co-developer community.

It's fairly clear that one cannot code from the ground up in bazaar style. One can test, debug and improve

in bazaar style, but it would be very hard to originate a project in bazaar mode. Linus didn't try it. I

didn't either. Your nascent developer community needs to have something runnable and testable to play

with.

When you start community-building, what you need to be able to present is a plausible promise. Your

program doesn't have to work particularly well. It can be crude, buggy, incomplete, and poorly

documented. What it must not fail to do is convince potential co-developers that it can be evolved into

something really neat in the foreseeable future.

Linux and fetchmail both went public with strong, attractive basic designs. Many people thinking about

the bazaar model as I have presented it have correctly considered this critical, then jumped from it to the

conclusion that a high degree of design intuition and cleverness in the project leader is indispensable.

But Linus got his design from Unix. I got mine initially from the ancestral popmail (though it would later

change a great deal, much more proportionately speaking than has Linux). So does the leader/coordinator

for a bazaar-style e�ort really have to have exceptional design talent, or can he get by on leveraging the

design talent of others?

I think it is not critical that the coordinator be able to originate designs of exceptional brilliance, but it is

absolutely critical that he/she be able to recognize good design ideas from others .

Both the Linux and fetchmail projects show evidence of this. Linus, while not (as previously discussed) a



10. The Social Context of Free Software 14

spectacularly original designer, has displayed a powerful knack for recognizing good design and integrating

it into the Linux kernel. And I have already described how the single most powerful design idea in

fetchmail (SMTP forwarding) came from somebody else.

Early audiences of this paper complimented me by suggesting that I am prone to undervalue design

originality in bazaar projects because I have a lot of it myself, and therefore take it for granted. There may

be some truth to this; design (as opposed to coding or debugging) is certainly my strongest skill.

But the problem with being clever and original in software design is that it gets to be a habit { you start

re
exively making things cute and complicated when you should be keeping them robust and simple. I

have had projects crash on me because I made this mistake, but I managed not to with fetchmail.

So I believe the fetchmail project succeeded partly because I restrained my tendency to be clever; this

argues (at least) against design originality being essential for successful bazaar projects. And consider

Linux. Suppose Linus Torvalds had been trying to pull o� fundamental innovations in operating system

design during the development; does it seem at all likely that the resulting kernel would be as stable and

successful as what we have?

A certain base level of design and coding skill is required, of course, but I expect almost anybody seriously

thinking of launching a bazaar e�ort will already be above that minimum. The free-software community's

internal market in reputation exerts subtle pressure on people not to launch development e�orts they're

not competent to follow through on. So far this seems to have worked pretty well.

There is another kind of skill not normally associated with software development which I think is as

important as design cleverness to bazaar projects { and it may be more important. A bazaar project

coordinator or leader must have good people and communications skills.

This should be obvious. In order to build a development community, you need to attract people, interest

them in what you're doing, and keep them happy about the amount of work they're doing. Technical sizzle

will go a long way towards accomplishing this, but it's far from the whole story. The personality you

project matters, too.

It is not a coincidence that Linus is a nice guy who makes people like him and want to help him. It's not a

coincidence that I'm an energetic extrovert who enjoys working a crowd and has some of the delivery and

instincts of a stand-up comic. To make the bazaar model work, it helps enormously if you have at least a

little skill at charming people.

10 The Social Context of Free Software

It is truly written: the best hacks start out as personal solutions to the author's everyday problems, and

spread because the problem turns out to be typical for a large class of users. This takes us back to the

matter of rule 1, restated in a perhaps more useful way:

18. To solve an interesting problem, start by �nding a problem that is interesting to you.

So it was with Carl Harris and the ancestral popclient, and so with me and fetchmail. But this has been

understood for a long time. The interesting point, the point that the histories of Linux and fetchmail seem

to demand we focus on, is the next stage { the evolution of software in the presence of a large and active

community of users and co-developers.



10. The Social Context of Free Software 15

In \The Mythical Man-Month", Fred Brooks observed that programmer time is not fungible; adding

developers to a late software project makes it later. He argued that the complexity and communication

costs of a project rise with the square of the number of developers, while work done only rises linearly.

This claim has since become known as \Brook's Law" and is widely regarded as a truism. But if Brooks's

Law were the whole picture, Linux would be impossible.

A few years later Gerald Weinberg's classic \The Psychology Of Computer Programming" supplied what,

in hindsight, we can see as a vital correction to Brooks. In his discussion of \egoless programming",

Weinberg observed that in shops where developers are not territorial about their code, and encourage other

people to look for bugs and potential improvements in it, improvement happens dramatically faster than

elsewhere.

Weinberg's choice of terminology has perhaps prevented his analysis from gaining the acceptance it

deserved { one has to smile at the thought of describing Internet hackers as \egoless". But I think his

argument looks more compelling today than ever.

The history of Unix should have prepared us for what we're learning from Linux (and what I've veri�ed

experimentally on a smaller scale by deliberately copying Linus's methods). That is, that while coding

remains an essentially solitary activity, the really great hacks come from harnessing the attention and

brainpower of entire communities. The developer who uses only his or her own brain in a closed project is

going to fall behind the developer who knows how to create an open, evolutionary context in which

bug-spotting and improvements get done by hundreds of people.

But the traditional Unix world was prevented from pushing this approach to the ultimate by several

factors. One was the legal contraints of various licenses, trade secrets, and commercial interests. Another

(in hindsight) was that the Internet wasn't yet good enough.

Before cheap Internet, there were some geographically compact communities where the culture encouraged

Weinberg's \egoless" programming, and a developer could easily attract a lot of skilled kibitzers and

co-developers. Bell Labs, the MIT AI Lab, UC Berkeley { these became the home of innovations that are

legendary and still potent.

Linux was the �rst project to make a conscious and successful e�ort to use the entire world as its talent

pool. I don't think it's a coincidence that the gestation period of Linux coincided with the birth of the

World Wide Web, and that Linux left its infancy during the same period in 1993-1994 that saw the takeo�

of the ISP industry and the explosion of mainstream interest in the Internet. Linus was the �rst person

who learned how to play by the new rules that pervasive Internet made possible.

While cheap Internet was a necessary condition for the Linux model to evolve, I think it was not by itself a

su�cient condition. Another vital factor was the development of a leadership style and set of cooperative

customs that could allow developers to attract co-developers and get maximum leverage out of the medium.

But what is this leadership style and what are these customs? They cannot be based on power

relationships { and even if they could be, leadership by coercion would not produce the results we see.

Weinberg quotes the autobiography of the 19th-century Russian anarchist Kropotkin's \Memoirs of a

Revolutionist") to good e�ect on this subject:

\Having been brought up in a serf-owner's family, I entered active life, like all young men of my time, with

a great deal of con�dence in the necessity of commanding, ordering, scolding, punishing and the like. But

when, at an early stage, I had to manage serious enterprises and to deal with free men, and when each



10. The Social Context of Free Software 16

mistake would lead at once to heavy consequences, I began to appreciate the di�erence between acting on

the principle of command and discipline and acting on the principle of common understanding. The former

works admirably in a military parade, but it is worth nothing where real life is concerned, and the aim can

be achieved only through the severe e�ort of many converging wills."

The \severe e�ort of many converging wills" is precisely what a project like Linux requires { and the

\principle of command" is e�ectively impossible to apply among volunteers in the anarchist's paradise we

call the Internet. To operate and compete e�ectively, hackers who want to lead collaborative projects have

to learn how to recruit and energize e�ective communities of interest in the mode vaguely suggested by

Kropotkin's \principle of understanding". They must learn to use Linus's Law.

Earlier I referred to the \Delphi e�ect" as a possible explanation for Linus's Law. But more powerful

analogies to adaptive systems in biology and economics also irresistably suggest themselves. The Linux

world behaves in many respects like a free market or an ecology, a collection of sel�sh agents attempting to

maximize utility which in the process produces a self-correcting spontaneous order more elaborate and

e�cient than any amount of central planning could achieve. Here, then, is the place to seek the \principle

of understanding".

The \utility function" Linux hackers are maximizing is not classically economic, but is the intangible of

their own ego satisfaction and reputation among other hackers. (One may call their motivation \altruistic",

but this ignores the fact that altruism is itself a form of ego satisfaction for the altruist). Voluntary

cultures that work this way are not actually uncommon; one other in which I have long participated is

science �ction fandom, which unlike hackerdom explicitly recognizes \egoboo" (the enhancement of one's

reputation among other fans) as the basic drive behind volunteer activity.

Linus, by successfully positioning himself as the gatekeeper of a project in which the development is mostly

done by others, and nurturing interest in the project until it became self-sustaining, has shown an acute

grasp of Kropotkin's \principle of shared understanding". This quasi-economic view of the Linux world

enables us to see how that understanding is applied.

We may view Linus's method as an way to create an e�cient market in \egoboo" { to connect the

sel�shness of individual hackers as �rmly as possible to di�cult ends that can only be achieved by

sustained cooperation. With the fetchmail project I have shown (albeit on a smaller scale) that his

methods can be duplicated with good results. Perhaps I have even done it a bit more consciously and

systematically than he.

Many people (especially those who politically distrust free markets) would expect a culture of self-directed

egoists to be fragmented, territorial, wasteful, secretive, and hostile. But this expectation is clearly falsi�ed

by (to give just one example) the stunning variety, quality and depth of Linux documentation. It is a

hallowed given that programmers hate documenting; how is it, then, that Linux hackers generate so much

of it? Evidently Linux's free market in egoboo works better to produce virtuous, other-directed behavior

than the massively-funded documentation shops of commercial software producers.

Both the fetchmail and Linux kernel projects show that by properly rewarding the egos of many other

hackers, a strong developer/coordinator can use the Internet to capture the bene�ts of having lots of

co-developers without having a project collapse into a chaotic gang-bang. So to Brooks's Law I

counter-propose the following:

19: Provided the development coordinator has a medium at least as good as the Internet, and knows how to



11. Acknowledgements 17

lead without coercion, many heads are inevitably better than one.

I think the future of free software will increasingly belong to people who know how to play Linus's game,

people who leave behind the cathedral and embrace the bazaar. This is not to say that individual vision

and brilliance will no longer matter; rather, I think that the cutting edge of free software will belong to

people who start from individual vision and brilliance, then amplify it through the e�ective construction of

voluntary communities of interest.

And perhaps not only the future of free software. No commercial developer can match the pool of talent

the Linux community can bring to bear on a problem. Very few could a�ord even to hire the more than

two hundred people who have contributed to fetchmail!

Perhaps in the end the free-software culture will triumph not because cooperation is morally right or

software \hoarding" is morally wrong (assuming you believe the latter, which neither Linus nor I do), but

simply because the commercial world cannot win an evolutionary arms race with free-software communities

that can put orders of magnitude more skilled time into a problem.

11 Acknowledgements

This paper was improved by conversations with a large number of people who helped debug it. Particular

thanks to Je� Dutky <dutky@wam.umd.edu>, who suggested the \debugging is parallelizable"

formulation and helped developed the analysis that proceeds from it. Also to Nancy Lebovitz

<nancyl@universe.digex.net> for her suggestion that I emulate Weinberg by quoting Kropotkin.

Perceptive criticisms also came from Joan Eslinger <wombat@kilimanjaro.engr.sgi.com> and Marty Franz

<marty@net-link.net> of the General Technics list. Paul Eggert <eggert@twinsun.com> noticed the

con
ict between GPL and the bazaar model. I'm grateful to the members of PLUG, the Philadelphia

Linux User's group, for providing the �rst test audience for the �rst public version of this paper. Finally,

Linus Torvalds's comments were helpful and his early endorsement very encouraging.

12 For Further Reading

I quoted several bits from Frederick P. Brooks's classic The Mythical Man-Month because, in many

respects, his insights have yet to be improved upon. I heartily recommend the 25th Anniversary addition

from Addison-Wesley (ISBN 0-201-83595-9), which adds his 1986 \No Silver Bullet" paper.

The new edition is wrapped up by an invaluable 20-years-later retrospective in which Brooks forthrightly

admits to the few judgements in the original text which have not stood the test of time. I �rst read the

retrospective after this paper was substantially complete, and was surprised to discover that Brooks

attributes bazaar-like practices to Microsoft!

Gerald P. Weinberg's The Psychology Of Computer Programming (New York, Van Nostrand Reinhold

1971) introduced the rather unfortunately-labeled concept of \egoless programming". While he was

nowhere near the �rst person to realize the futility of the \principle of command", he was probably the

�rst to recognize and argue the point in particular connection with software development.



13. Version Id : cathedral � paper:sgml; v1:241997=09=1522 : 48 : 58esrExpesr 18

Richard P. Gabriel, contemplating the Unix culture of the pre-Linux era, argued for the superiority of a

primitive bazaar-like model in his 1989 paper Lisp: Good News, Bad News, and How To Win Big . Though

dated in some respects, this essay is still rightly celebrated among Lisp fans (including me). A

correspondent reminded me that the section titled \Worse Is Better" reads almost as an anticipation of

Linux. The paper is accessible on the World Wide Web at .

De Marco and Lister's Peopleware: Productive Projects and Teams (New York; Dorset House, 1987; ISBN

0-932633-05-6) is an underappreciated gem which I was delighted to see Fred Brooks cite in his

retrospective. While little of what the authors have to say is directly applicable to the Linux or

free-software communities, the authors' insight into the conditions necessary for creative work is acute and

worthwhile for anyone attempting to import some of the bazaar model's virtues into a more commercial

context.

13 Version

Id : cathedral � paper:sgml; v1:241997=09=1522 : 48 : 58esrExpesr


