
Department of Computer Science University of
Manchester
Manchester M13 9PL, England

Technical Report Series
UMCS–93–7–0

Ian K. Piumarta

Delayed Code Generation in a
Smalltalk-80 Compiler

Further copies of this technical report, and other technical reports, are available from Mrs. J. M. Fleet, Dept. of Computer
Science, University of Manchester, Oxford Road, Manchester M13 9PL, England. Please enclose any necessary payment with
your order. Payment should be made by sterling cheque made payable to ‘The University of Manchester.’

The following reports are available free of charge, unless otherwise stated:

UMCS-93-2-3 A Framework for Experimental Analysis of Parallel Computing
UMCS-93-3-2 Semi-analytic Tableaux for Propositional Modal Logics of Nonmonotonicity
UMCS-93-3-2 Knowledge-Based Applications = Knowledge Base + Mappings + Applications £10.00
UMCS-93-2-2 A Multimedia Information System with Automatic Content Retrieval £10.00
UMCS-93-1-6 Program and Data Transformations for Efficient Execution on Distributed Memory Architectures £10.00
UMCS-93-1-4 United Functions and Objects: an Overview
UMCS-93-1-2 How to Eliminate Predicate Variables
UMCS-92-12-3 idC: A Subset of Standard C for Initial Teaching
UMCS-92-12-2 Formal Methods - Selected Historical References
UMCS-92-12-1 An Object-Based Design Method for Concurrent Programs
UMCS-92-11-2 Towards a Formal Framework for Deductive Synthesis of Logic Programs
UMCS-92-11-1 Topic in Type Theory
UMCS-92-6-2 Declarative Integration of Object-Oriented Programming and Knowledge Representation £10.00
UMCS-92-6-1 Cobweb-3(m): A Declarative Instruction Set Multiprocessor Computer
UMCS-92-4-4 The Search for Tractable Ways of Reasoning about Programs
UMCS-92-4-3 UFO - United Functions and Objects Draft Language Description
UMCS-92-4-1 Exclusive Normal Form of Boolean Circuits
UMCS-92-2-1 Transformation and Synthesis in METATEM Part 1: Propositional METATEM
UMCS-92-1-1 Load Balancing of Parallel Affine Loops by Unimodular Transformations
UMCS-91-12-4 A Set Theoretic Semantics for first Order Temporal Logic: Definition and Application using Isabelle
UMCS-91-12-2 A Discrete Systematic Model for racing in an SR Latch
UMCS-91-11-2 Modularity in Model-Oriented Formal Specifications and its Interaction with Formal Reasoning £10.00
UMCS-91-11-1 System software on the Flagship parallel graph reduction machine
UMCS-91-7-2 Specifying Concurrent Object-based Systems using Combined Specification Notations
UMCS-91-7-1 An Attempt to Reason about Shared-State Concurrency in the Style of VDM
UMCS-91-6-2 Proposal for an Information Model for EDIF £10.00
UMCS-91-6-1 A Method for the Development of Totally Correct Shared-State Parallel Programs
UMCS-91-5-1 Interference Resumed
UMCS-91-4-3 The HDG-Machine: A Highly Distributed Graph-Reducer for a Transputer Network
UMCS-91-4-2 A Performance Assessment of the GSM Radio Link
UMCS-91-4-1 An Algorithm for Planning “Sensible” Routes
UMCS-91-3-3 Branching Time and Partial Order in Temporal Logics
UMCS-91-3-2 Distributed Algorithms for Detecting Distributed Deadlock
UMCS-91-3-1 A Distributed Termination Detection Scheme
UMCS-91-2-2 Operational Semantics for Hardware Design Languages
UMCS-91-2-1 Distributed Simulation Using “Relaxed Timing” £7.00
UMCS-91-1-1 Development of Parallel Programs on Shared Data-structures £7.00
UMCS-90-10-1 Indexed Categories for Program Development
UMCS-90-9-1 The Random Matrix Hashing Algorithm
UMCS-90-8-2 Distributed Binding Mechanisms in the Flagship System
UMCS-90-8-1 Distributed Relational Queries: Structures for Locking and Access
UMCS-90-3-1 On the usability of logics which handle partial functions
UMCS-90-2-1 The Flagship Declarative System £2.50
UMCS-90-1-1 Modularizing the Formal Description of a Database System
UMCS-89-3-1 The Heterogeneous Multi-Ring Dataflow Machine Simulator
UMCS-89-6-1 Distributed Deadlock Detection: Algorithms and Proofs
UMCS-89-8-2 Spatial Reasoning and Route Planning using Sinusoidal Transforms
UMCS-89-8-3 Categorical ML – Category-Theoretic Modular Programming
UMCS-89-9-2 Some Special Cases of Linear Approximation of Symmetric Matrices
UMCS-89-10-2 Fair SMG and Linear Time Model Checking
UMCS-89-10-4 MetateM: A Framework for Programming in Temporal Logic
UMCS-89-10-5 A Colour System for Smalltalk-80
UMCS-89-11-1 Manchester Dataflow Machine: Benchmark Test Evaluation Report
UMCS-89-12-1 Specifications are not (necessarily) Executable

Continued on the inside back cover…

DELAYED CODE GENERATION IN A
SMALLTALK-80 COMPILER

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE

October 1992

By
Ian K. Piumarta

Department of Computer Science

Contents

Abstract 9

Acknowledgements 12

1 Introduction 13
1.1 Scope of this Thesis . 14
1.2 Overview of this Thesis . 14
1.3 Prerequisites . 15

2 Fundamentals 17
2.1 Smalltalk-80 . 17

2.1.1 Objects, Classes, Messages and Inheritance 17
2.1.2 Deferred Execution: Blocks 20
2.1.3 Execution Flow Control . 21

2.2 Compilation . 21
2.2.1 Compiler Anatomy . 22
2.2.2 Target Languages . 22

2.3 Summary . 23

3 Related Work 24
3.1 A Proprietary Smalltalk: ParcPlace PS2.3 24

3.1.1 The Virtual Machine . 25
3.1.1.1 Dynamic Method Translation 26
3.1.1.2 Multiple Representation of Contexts 26
3.1.1.3 Caches . 27

3.1.2 The Compiler . 28
3.2 Orthogonal Code Generation . 29

3.2.1 Data Representation . 29
3.2.2 Operations on Data Descriptors 30
3.2.3 Data Descriptors . 30
3.2.4 Strengths and Weaknesses of Data Descriptor Techniques . . 32

3.3 Optimizing Compilers for Smalltalk-80 33
3.3.1 Typed Smalltalk . 33

3.4 Summary . 34

2

4 Benchmarks 35
4.1 Benchmarking Smalltalk-80 . 36

4.1.1 Benchmark Framework . 36
4.1.2 Micro-Benchmarks . 37
4.1.3 Macro-Benchmarks . 38

4.2 Benchmark Characteristics . 39
4.3 Fairness . 39
4.4 Summary . 40

5 68020 Native Code Smalltalk-80 42
5.1 Runtime Environment and Conventions 42

5.1.1 Object Memory and Object Format 43
5.1.2 Register Usage . 45
5.1.3 Stack Discipline . 46
5.1.4 Runtime Support . 47
5.1.5 Omissions in the Runtime System 49

5.2 Garbage Collection . 50
5.2.1 Garbage Collection and the Stack 50

5.3 The Compiler Front End . 51
5.3.1 Scanning and Parsing . 51
5.3.2 The Parse Tree . 51
5.3.3 Optimizing the Parse Tree 52

5.4 Code Generation . 53
5.4.1 Overview of Code Generation 53
5.4.2 Machine Objects: the M68000 54
5.4.3 Code for Leaf Nodes . 56
5.4.4 Assignment Statements . 58
5.4.5 Message Sends . 58
5.4.6 Method Entry and Exit . 60
5.4.7 Primitive Methods . 61
5.4.8 Code for Blocks . 62
5.4.9 Block Problems . 65

5.5 Optimizations . 67
5.5.1 Inlining Special Selectors 67
5.5.2 Inlining Control Selectors 70
5.5.3 Peephole Optimizations . 72

5.6 Summary . 73

6 Delayed Code Generation 74
6.1 Shortcomings of the Naı̈ve Code Generator 75
6.2 Classifying the Problem . 78
6.3 Operand Descriptors . 79

6.3.1 Representation of Operand Descriptors 80
6.4 Code Generation with Operand Descriptors 81

3

6.4.1 Operand Descriptors generated at Leaf Nodes 81
6.4.2 Assignment . 84
6.4.3 Message Sends . 86
6.4.4 Method Entry and Exit . 87
6.4.5 Primitives and Blocks . 88

6.5 Optimizations . 88
6.5.1 Inlined Special Selectors . 89

6.5.1.1 Arithmetic Operations 89
6.5.1.2 Relational Operations 93

6.5.2 Inlined Control Constructs 94
6.5.2.1 Control Flow Forking 94
6.5.2.2 Deferred Message Sends Revisited 95
6.5.2.3 Code for Conditionals 97
6.5.2.4 Code for Loops 99

6.5.3 Other Optimizations . 100
6.6 Code Generation for Other Languages 100

6.6.1 Operand Descriptors for Other Addressing Modes 100
6.6.2 Operand Sizing . 101
6.6.3 Logical Values . 101
6.6.4 Coercion of Operand Types 103
6.6.5 Operands with Side Effects 105
6.6.6 Argument Order . 105
6.6.7 Register Allocation . 106

6.6.7.1 Machine Models and Allocation Strategy 106
6.6.7.2 Register Allocator Performance 108

6.7 Summary . 110

7 Results 112
7.1 A Brief Note Concerning Definitions 113
7.2 Performance of Generated Code . 114
7.3 Compiler Efficiency . 114
7.4 Summary . 115

8 Conclusion 117
8.1 Future Work . 117

A Parse Tree Nodes 119
A.1 Leaf Nodes . 119
A.2 Message Nodes . 119
A.3 Special Action Nodes . 120
A.4 Method and Block Nodes . 120

4

B Raw Results 123
B.1 Unexpected Results . 132
B.2 Absolute Performance of the DCG Compiler 132

C Assembly Language Conventions 133

D Examples 134
D.1 Conditional Statement . 134
D.2 String Copy Loop . 134
D.3 Function Call . 135
D.4 Generated Code For nfib . 136

E Further Implementation Notes 139
E.1 Further Improvements in the Generated Code 139

E.1.1 Shared Deferred Sends . 139
E.1.2 Better Use of Class Information 140

E.2 Support for Debugging . 140
E.2.1 Failed Message Sends . 140

E.3 Inline Caches . 141
E.3.1 Inline Cache Design . 142
E.3.2 Example Inline Cache . 143
E.3.3 Interference with Deferred Sends 145
E.3.4 Cache Consistency . 145

Bibliography 147

5

List of Tables

7.1 Relative Performance of Naı̈ve and Delayed Code Generators 114
7.2 Compilation Times for Naı̈ve and Delayed Code Generation 115

B.1 Naı̈ve Code Execution Time. 125
B.2 DCG Code Execution Time. 126
B.3 PS2.3 Performance . 127
B.4 Benchmark Message Send Activity 128
B.5 Benchmark Primitive Call Activity 129
B.6 Naı̈ve Code Memory Utilization . 130
B.7 DCG Code Memory Utilization . 131
B.8 Comparison Between PS2.3 and Native Code Smalltalk-80 132

6

List of Figures

2.1 Structural and Functional Inheritance 19

3.1 Special Selectors . 28
3.2 Example Data Descriptors . 30
3.3 Addition Operations on Data Descriptors 31

4.1 Messages Sent from Benchmarks . 39

5.1 Object Table Format . 43
5.2 Address Register Assignments . 45
5.3 Format of Stack Frames . 47
5.4 Runtime Support Dispatch Table . 48
5.5 Compiler Structure . 52
5.6 Class Hierarchy for 68000 Operands 55
5.7 Hierarchy for 68000 Instructions . 55
5.8 The Primitive Call Mechanism . 62

6.1 Operand Descriptors Generated at Leaf Nodes 82
6.2 Parse Tree for Assignment . 86
6.3 Definition of ‘emitInlinedBinary:’ . 90
6.4 Definition of ‘emitInlinedOp’ . 92
6.5 Control Constructs via Forking . 94
6.6 Definition of ‘emitIfTrue’ . 98
6.7 Register Allocation and Deallocation 107
6.8 Graph Coloring Example . 109
6.9 Parse Tree for Graph Coloring Example 109
6.10 Generated Code for Graph Coloring Example 110

A.1 Structure of Leaf Nodes . 120
A.2 Structure of Message Nodes . 121
A.3 Structure of Return and Assignment Nodes 121
A.4 Structure of Block and Method Nodes 122

B.1 Key to Benchmark Class Names . 124
B.2 Key to Benchmark Optimization Names 124

D.1 If Statement Example . 135

7

D.2 String Copy Example . 136
D.3 Function Call Example . 137

8

Abstract

More than any other programming system, Smalltalk-80 stretches the object-oriented
paradigm to its limits. Representing all programmer-accessible data (input and output
facilities, contexts, processes, functions, and so on) as objects is the cause of many
implementation difficulties. Polymorphism, the dynamic binding of function names
to function bodies at runtime, and the transparent management of dynamic memory
allocation only aggravate the situation further.

Traditional implementations (in other words, all the commercially available imple-
mentations) try to narrow the semantic gap between the language and the platform upon
which it runs by compiling Smalltalk for an idealized virtual machine that uses simple
language-oriented instructions. This approach has advantages for both the compiler
writer (the target language is optimized for running programs written in the source
language) and for the runtime system (compiled code is small and easy to map back
to the source for debugging). Reducing the complexity of the compiler also speeds up
compilation, which is highly desirable in exploratory programming environments such
as Smalltalk-80. The down side is that reducing the complexity of the compiler and
target language causes a corresponding increase in complexity in the runtime system
which has to work much harder if it is to ensure efficient execution of code.

This thesis argues and demonstrates that it is possible to compile Smalltalk-80
directly into machine code for stock hardware, and to do this efficiently in terms of
both compiler performance (the compiler must be small and fast) and generated code
performance. The techniques developed for ‘delayed code generation’ in single-pass
recursive descent compilation (or code generation by walking a parse tree) are appli-
cable to almost any language, and some discussion of the application of delayed code
generation to the compilation of C is also presented.

Some investigation into the applicability and effectiveness of various compile- and
run-time optimizations is presented, quantified by benchmark results covering a wide
range of activities from critical operations (such as addition) to entire subsystems (such
as the text display interface).

9

For my parents.

10

DECLARATION

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institu-
tion of learning.

11

Acknowledgements

First and foremost I thank my supervisor Dr. T. P. Hopkins for introducing me to
object-oriented ideas, and providing the help and encouragement that made this work
possible.

For efforts in many orthogonal directions far above and beyond the call of duty,
Dr. Mario Wolczko deserves praise. He has conversed with me frequently on the
knottier problems of Smalltalk implementation, and more recently on the subtleties of
its compilation. He has kept the machines of the MUSHROOM group running smoothly
for the duration of the project, and responded quickly and efficiently to my relentless
queries on many mundane topics — in particular the constant battle to coerce LATEX
into serving me, rather than the reverse. I must also thank the other members of the
MUSHROOM group for a congenial atmosphere in which to work.

Thanks are due to Eliot Miranda for his many useful comments and suggestions
regarding changes and additions to the original thesis for this technical report.

Special thanks are due to the Medical Informatics Group at the University of
Manchester for the provision of computing facilities, office space and a salary while
putting the finishing touches to this thesis.

The work described in this thesis was supported, in part, by the U.K. Science and
Engineering Research Council.

Colophon
This thesis was typeset in 12pt Times Roman using the LATEX document preparation system,
and printed on a Sun SparcPrinter. All diagrams were prepared using FrameMaker.

12

Chapter 1

Introduction

The change which came with the scientific age was not, whatever some anthropologists may
say, the introduction of a new way of thinking, but the rigorous and exclusive use of an old
one. That this has meant enormous alterations in our attitudes and in our mythology no one
would deny; but in the broad sense the ‘scientific method’ has always existed. To collect
evidence by observation, to generalize from your information, and then to test your general
pattern by prediction and further observation, is not a procedure invented by Western Man
since the Renaissance; it is the activity which made all human civilization possible.

J. Austin Baker, The Foolishness of God, 1970.

Smalltalk-80 [GR83] is the archetypal object-oriented “Explorat-ory Programming En-
vironment” (EPE). It provides a graphical user interface based on multiple overlapping
windows in a bitmapped display for output, and a mouse/pointer and keyboard for
input. A complete graphical environment is provided that supports the system’s user
interface and provides facilities for the user to painlessly create new user interfaces for
applications. An interactive, incremental compiler is provided for altering or adding
behavior to the system, the effects of which are felt immediately; this kind of dynamic
behavior is essential in an EPE.

Most EPEs are Lisp-based, and code is usually interpreted whilest under devel-
opment. This is the case for several reasons. The frequent recompilation of single
functions by typically large compilers would slow down development work; leaving
the code interpreted removes any delay between entering the code and testing it. Di-
agnostics are usually better for interpreted code too, typically providing the user with
backtracking facilities and the ability to interrupt the program and inspect the code be-
ing executed at any time. The price paid for these features is the relatively inefficient
execution of code while it is under development. Compilation normally only takes
place when a fairly large block of definitions has stabilized, at which time the whole
block is compiled.

Smalltalk-80 takes a different approach. Code is never interpreted, but is always
recompiled if it is altered; compilation takes place as soon as a change is ‘accepted’.
This has several implications. First, code that is altered runs at full speed immediately

13

CHAPTER 1. INTRODUCTION 14

after the alteration is accepted. Second, the compiler must be small, otherwise there
would be annoying delays both during compilation while the user interface is paged
out and the compiler paged in, and after compilation while the compiler is paged
out and the interface paged back in. Third, the compiler must be fast. Smalltalk-80
applications are typically made of a large number of functions, or ‘methods’, each of
which is compiled independently of the others. Since compilation is an interactive
process in Smalltalk-80, the faster the compilation of each method the better.

The above considerations, plus the fact that the Smalltalk-80 language has a fairly
simple LL(1) grammar, means that top-down recursive descent is an ideal technique
for its compilation. Such compilers are small since they do not need the large parsing
tables found in compilers for the more complex LR grammars. This means they will
not have an unreasonable impact on the size of the Smalltalk-80 system. Recursive
descent compilers are also very fast, since they generally employ only one or two
passes to produce the final object code; they are therefore suited to an interactive
environment where any severe delays in the compilation of a method are unacceptable.

1.1 Scope of this Thesis

The work described in this thesis grew from an investigation into the compilation of
Smalltalk-80 into native code for the MUSHROOM [Wil89][HWW87] hardware. After a
few weeks struggling with a very slow simulator for this machine, I decided to produce
code for the MC68020-based Sun3 workstation instead, intending to slot a MUSHROOM

back end into the compiler at a later stage. Although these target architectures are very
different, the facets of compilation and code generation for Smalltalk-80 that I wished
to investigate were broadly the same.

The compiler evolved steadily from a very simple recursive descent approach that
performed no optimization and, as it grew, analyses on the performance gains made
from particular optimizations were undertaken as a matter of course. These results
are presented herein as part of the discussion of the effectiveness of the more usual
Smalltalk-80 optimizations, but applied in a native code environment.

The most novel aspect of the mature compiler is the code generation technique
which was developed in response to the poor quality of the code produced by the initial
rather naı̈ve code generator. While developing the novel code generator it became
obvious that the techniques used could be applied to languages other than Smalltalk-80.
Indeed, the techniques are applicable to any tree-walking code generator (or single-
pass recursive descent compiler) for almost any language. Some investigation of the
application of the techniques in the compilation of C was therefore undertaken.

1.2 Overview of this Thesis

The first part of this thesis presents some groundwork needed to tackle the later sec-
tions. I describe the features of Smalltalk-80 that set it apart from other languages,

CHAPTER 1. INTRODUCTION 15

and the implications that these features have for the compiler writer.
Chapter 3 describes the best commercial implementation that was available at the

time this work was started, namely ParcPlace Systems’ Smalltalk-80 version 2.3 (here-
after referred to as PS2.3). The historical influences on its design and the various ap-
proaches to improving its efficiency are discussed. It is this system which is used as
a performance model against which to test the efficiency of the native code system.
Some other related implementations of Smalltalk-80 and Smalltalk-80-like languages
that have novel features to improve efficiency are also briefly described. This chap-
ter also outlines the work that has been undertaken on the use of ‘data descriptors’
in compilers for languages such as PL/I and concurrent Euclid. The data-descriptor
based code generation techniques employed by compilers for these languages are sim-
ilar in some ways to the techniques developed for the novel Smalltalk-80 native code
generator.

Following this in chapter 4 is a discussion of benchmarking in general: what we
do and do not want benchmarks to do for us. I describe the benchmarks that I chose
to meter both the performance of PS2.3 and of the Native Code Smalltalk-80 sys-
tem. Several different types of benchmark are described, each of which has its own
advantages in measuring a particular aspect of the system’s performance.

The main part of the thesis begins with chapter 5, a description of the MC68020
native code implementation and the compiler developed for it. Some compilation
techniques that are independent of the code generator are presented before a discussion
of a typical ‘naı̈ve’ code generator.

Chapter 6 continues by firstly exposing the problems with this naı̈ve code generator,
and then developing a novel code generation technique to produce code which does
not suffer from these problems. Wider applications of the novel code generator are
then investigated and the compilation of C [KR78] (a language very different from
Smalltalk-80) which extends the technique to cover register allocation is discussed.

The final part of the thesis, chapters 7 and 8, presents the experimental results of
the work, draws some conclusions about the success of the novel code generator, and
presents ideas for future work.

1.3 Prerequisites

Throughout this thesis it is assumed that the reader has a basic knowledge of the
Smalltalk-80 language and its concepts. A minimum requirement for non-Smalltalk-
80 programmers would be familiarity with [GR83, part one].

Some knowledge of recursive descent compilation is also assumed; a suitable in-
troduction to this can be found in [Bor79] and [ASU86]. Aspects of Smalltalk-80 and
compilation techniques not covered in these works will be explained in the body of
the thesis where necessary.

Familiarity with 68020 assembly language is necessary for the reader to make any
sense of the chapters on compilation. The mnemonic instruction names and operand
notation used are those defined by Sun Microsystems; these are explained in detail

CHAPTER 1. INTRODUCTION 16

in [Sun88], and those already familiar with a dialect of 68020 assembly language
should have little difficulty in understanding the notation. A more thorough treatment
of the operations and addressing capabilities of the 68020 can be found in Motorola’s
own documentation [Mot85], which uses the ‘traditional’ Motorola mnemonics and
addressing mode notation. If in doubt, consult appendix C which summarizes the
addressing mode notation used in this thesis, in both Sun and Motorola formats.

Chapter 2

Fundamentals

Nor have we brought into this work any graces of rhetoric, any verbal ornateness, but have
aimed simply at treating knotty questions about which little is known in such a style and in
such terms as are needed to make what is said clearly intelligible. Therefore we sometimes
employ words new and unheard-of, not (as alchemists are wont to do) in order to veil things
with a pedantic terminology and to make them dark and obscure, but in order that hidden
things which have no name and that have never come into notice, may be plainly and fully
published…

William Gilbert, De Magnete, 1600.

This chapter describes very briefly the salient features of Small- talk-80, highlighting
the important differences between it and more conventional languages. Following this
is a short review of compilation techniques.

2.1 Smalltalk-80

The following should not be taken as a complete description of Smalltalk-80, but rather
as a concise and explicit declaration of the terminology that will be used to describe
the language features that are relevant to its compilation. In particular, little of the
concrete syntax of the language is presented — such details are explained in [GR83].

Some of Smalltalk-80’s features have a profound effect on its performance and the
techniques that can be applied in its compilation. Such relevant features are introduced
here also, although implementation-specific details are ignored; these will be dealt with
in a later chapter.

2.1.1 Objects, Classes, Messages and Inheritance

In Smalltalk-80 a unit of information is called an object. Everything from a simple
number, through 2-dimensional points and arrays, to the structure of a paragraph with

17

CHAPTER 2. FUNDAMENTALS 18

font changes are all represented as objects. Each object belongs to a class, which de-
scribes the physical structure of its objects and their functionality. Since functionality
is described by an object’s class, all objects of a given class behave identically. We
refer to an object of a particular class as an instance of that class.

Computation in Smalltalk-80 is effected by sending messages to objects. A mes-
sage is a request to an object to perform a particular task, however simple. A simple
message might request a 2-dimensional point (an instance of class Point1) to return its
abscissa. The instance of Point that receives the message is called the receiver, and the
name of the message is called the selector.

Classes contain a dictionary whose keys are the message selectors to which their
instances will respond. The values are pieces of executable code called methods. When
an object receives a message this method dictionary in the object’s class is searched
to find the method corresponding to the message selector, and the matching method
is then executed. The set of messages to which an object can respond is called the
protocol of the object.

Methods can refer to their receiver’s state by one of two mechanisms. The fields
of the object that contain its state are either instance variables which are referred to
in a method by name, or indexed variables which are referred to by an offset. The
instance variables of an object are called the fixed fields, and its indexed variables (if
any) are called the indexed fields. By writing the name of an instance variable in a
method, that variable of the receiver can be accessed.

Because instance variables can only be directly accessed by the methods of their
own class and not from methods outside their class, objects provide encapsulation and
information hiding. It is impossible (for example) for a method executing in class
Rectangle to alter the abscissa of the Point representing the rectangle’s origin without
explicitly sending the point a message; this feature allows objects absolute control over
the ways in which they can be manipulated. Indeed, in the case of Points, it also hides
their implementation: they are in fact held as rectangular co-ordinates and provide for
polar style access through more complicated methods that convert from the rectangular
representation. They could equally well be implemented in polar co-ordinates directly,
and have the normal rectangular accesses processed by more complicated methods that
convert from the polar representation, without affecting the operation of the system at
all.

Classes are arranged in a tree called the class hierarchy which provides both struc-
tural inheritance and functional inheritance. Given a class in this tree, the class im-
mediately above it (from which it inherits) is its superclass; any classes immediately
below it (which inherit from it) are its subclasses. Structural inheritance means that
a subclass B of a particular class A inherits the instance variables of A; any instance
variables defined in B are appended to the variables of A. Similarly, functional inheri-
tance means that messages defined for class A can also be understood by instances of
B. If B defines any methods with the selectors in common with methods defined in A,

1This thesis follows the standard convention of setting Smalltalk-80 class names, message selectors,
and pieces of Smalltalk-80 code itself in sans-serif type.

Figure 2.1: Structural and functional inheritance. Class A defines two
instance variables ‘a’ and ‘b’. These are inherited by class B which also
adds a third instance variable ‘c’.
Class A defines two methods, ‘printOn:’ and ‘storeOn:’. Instances of
A only respond to these two messages. Class B inherits these methods
from A, but adds an extra method ‘magnitude’ and overrides the ‘storeOn:’
method. Instances of B respond to these two new methods in addition to
the ‘printOn:’ method inherited from A.

Functional inheritance provides a simple and effective means of code reuse, an
important consideration in a system as large as Smalltalk-80. The method that finds
(for example) the maximum of a pair of Integers is exactly the same method as is
invoked for finding the maximum of a pair of Dates or Times. Since these different
classes of object are all kinds of Magnitude, they inherit the methods that rely solely
on the magnitude of an object from their common superclass, thus obviating the need
for duplicated code for finding maxima (and other operations based on some sort of
ordering) in each of the separate classes.

Classes such as Magnitude are not designed to be instantiated. They provide the
common functionality of a few distinct concrete subclasses that can be instantiated,
but in themselves do not provide enough state and/or functionality to be useful. Such
classes are called abstract superclasses. At the very top of the class hierarchy is an
abstract superclass called Object that provides the protocol common to every object in
the system.

When a message is sent to an object, the method dictionary in that object’s class is
interrogated to find the message selector. If the selector is found, the indicated method
is executed. If the selector is not found then the search is restarted in the object’s
superclass; this mechanism, called method lookup implements functional inheritance.
The process is continued in each class up the superclass chain until the relevant method

CHAPTER 2. FUNDAMENTALS 20

is found. If the method is not found in class Object, then the message is not understood
by that object, and an error is reported by the system.

Methods can refer to several pseudo variables that are associated with special val-
ues. Within a method, the variable ‘self’ refers to the receiver of the message that
caused the method to run. This allows messages to be sent to the receiver, or for the
receiver to be passed as an argument. The message send is perfectly normal, with the
method lookup beginning in the class of the receiver. The variable ‘super’ also refers
to the receiver, and messages sent to this pseudo variable have the current receiver as
the new receiver. However, this send differs from a send to ‘self’ in that the method
lookup does not begin in the class of the receiver, rather it begins in the superclass of
the class containing the method originating the send.2

Classes themselves are objects, and are therefore instances of a class. Each class
has a metaclass that describes the class and the messages to which the class can re-
spond. (Instantiating a metaclass yields a class, and there is only ever one instance of
a particular metaclass [GR83, pages 269-272].) Many of these messages will be con-
cerned with the creation of instances. To differentiate these methods from ‘normal’
methods, they are referred to as class methods; to reduce confusion further, ‘normal’
methods are sometimes called instance methods in situations where ambiguity could
arise. As far as the compiler is concerned, there is no difference between compiling
instance and class methods: instance methods are compiled ‘in the context of’ a class,
and class methods are compiled in the context of the corresponding metaclass.

2.1.2 Deferred Execution: Blocks

Blocks are Smalltalk-80’s version of closures, similar to Lisp’s lambdas [McC60]
[McC62]. They are first-class objects representing pieces of unevaluated code that
can be executed at an arbitrary time.

Blocks can appear in any place in which an expression is valid. They are fully
fledged objects, of class BlockContext, and can be the receivers of, or arguments to, mes-
sages. Syntactically they are a normal sequence of statements surrounded by square
brackets; for example, a block that adds one to the variable ‘a’ is written

[a ← a + 1]

and executes when it receives the message ‘value’.
Blocks can also have arguments. For example, a block to add an arbitrary value to

the variable ‘a’ is written

[:increment | a ← a + increment]

and executes when it receives a message like ‘value: 42’.
The Smalltalk-80 standard defines the arguments of a block as being shared with

the method in which the block originates. This means that a temporary variable ‘temp’

2Sends to ‘super’ are provided so that an overridden method can be called from within the overriding
method.

CHAPTER 2. FUNDAMENTALS 21

in a method can be set to the value 42 by sending the block ‘[:temp]’ the message ‘value:
42’ which is not as clean an implementation of closures as is found in languages such
as scheme [Dyb87], although this ‘feature’ has been used in proprietary code. This
problem has been fixed in versions 2.5 and later of the ParcPlace implementations,
where space for arguments is private to the block itself.

2.1.3 Execution Flow Control

Smalltalk-80 provides two types of flow control: conditional execution and looping.
Conditional execution is provided by complementary definitions in the two boolean
classes, and looping is provided by a combination of conditional execution and recur-
sion.

Conditional methods are defined in the two classes True and False which have
identical protocols. Such methods expect blocks as arguments, since these represent
deferred code that can be executed optionally. The definitions for a particular con-
ditional message are complementary in that a method in True that causes its block
argument to be executed has a corresponding method in False that returns ‘nil’ without
executing its block argument. For example, in class True we have

ifTrue: aBlock
"aBlock value

and in class False we have the complementary definition

ifTrue: aBlock
"nil

Looping is provided by conditional recursion in messages understood by blocks.
For example, a simple loop that executes ten times can be written

a ← 0.
[a < 10] whileTrue: [a ← a + 1]

using the method ‘whileTrue:’ which is implemented recursively in BlockContext as:

whileTrue: aBlock
"self value

ifTrue:
[aBlock value.
self whileTrue: aBlock].

2.2 Compilation

The task of a compiler is to translate a valid sentence of a source grammar into a
(usually) executable form, whilest rejecting incorrect source sentences. We can con-
sider a compiler as a program that recognizes correct sentences of its source grammar,
producing executable code as a side effect of recognition.

CHAPTER 2. FUNDAMENTALS 22

2.2.1 Compiler Anatomy

Compilers are usually constructed from several modules, each of which performs one
particular function. Modules are implemented as separate passes, with passes commu-
nicating through intermediate representations of the program, or as subroutines which
other modules can call when a particular action is required.

The lexical analyzer (or scanner) is responsible for converting the plain text version
of the program into discrete lexemes; these lexemes correspond to the terminal symbols
in the source grammar.

The syntax analyzer (or parser) is responsible for assembling lexemes into senten-
tial forms, and ultimately recognizing or rejecting (with suitable error reporting) the
source program. As a side effect, the parser either builds a structure such as a parse
tree which describes the syntactic form of the source, or makes calls on subroutines to
output code directly. Producing a parse tree has the advantage of enabling high level
(global) optimizations to be applied, as well as allowing the walk of the tree to be or-
dered by the Sethi-Ullman complexities [ASU86, page 561] of the subtrees at a node,
which helps the code generator make the most efficient use of machine resources in
the generated code.

The code generator (or translator) converts the (possibly optimized) parse tree rep-
resentation of the program into either an executable or intermediate code. Executable
output will be actual instructions for the target machine and are often produced in
the human-readable form of assembly language statements; these are processed by
an assembler to produce the final executable. Intermediate forms are sequences of
instructions for hypothetical machines supporting operations similar to those of the
target architecture. They are usually in the form of two-address or three-address code,
which is processed further to produce the final executable. Producing intermediate
code has the advantage of allowing low-level (local and peep-hole) optimizations to
be applied more easily (these are discussed further in section 5.5.3).

2.2.2 Target Languages

A compiler writer has two options when designing the back end of a compiler: either
to generate native code or virtual code.

If the source language can be mapped easily onto the architecture and resources
of the hardware on which it is to run then real machine code can be generated. This
machine code is called native code or n-code.

There is an alternative for languages that cannot be mapped easily onto real hard-
ware, or languages in which code size must be minimized at all costs. In these cases,
a hypothetical virtual machine (VM) is designed which implements an ‘ideal’ instruc-
tion set catering exactly for the requirements of the source language. The compiler
generates code for this virtual machine, and can be much simpler since the semantics
of the source and target languages are so closely matched. The VM is implemented
on a real machine in software, and the code generated for such a virtual machine is
called virtual code or v-code.

CHAPTER 2. FUNDAMENTALS 23

There are points both for and against each approach. In the case of n-code, a
large semantic gap between the source and target languages can cause many machine
instructions to be generated to perform a single source-level operation, which in turn
can result in a relatively large amount of object code for a given program. With v-
code, the compiled code size is usually minimal — the object code being a compact
and concise encoding of the semantics of the original source program. However, v-
code implementations usually suffer from overheads associated with the v-instruction
‘fetch-decode-dispatch’ loop which is written in software. A n-code compiler for the
same language that simply inlines the runtime actions of the v-instructions that a v-
code compiler would produce should be faster since this fetch-decode-dispatch is no
longer required. In practice, the performance gains made by removing this overhead
may be thwarted by the larger size of the object code which will cause increased paging
in a virtual memory environment.

2.3 Summary

The Smalltalk language has many novel features that create difficulties for both the
runtime system implementor and the compiler writer. Both the representation of data
as objects, and the performance of computation by message passing, have a profound
effect upon the design of the implementation. The situation is always a tradeoff, where
complexity in the runtime system can be traded for complexity in the compiler.

Many Smalltalk systems choose to push most of the complexity into the runtime
system, and have the compiler target to a virtual machine whose instruction set is
designed to follow the semantics of the source language as closely as possible. Efficient
implementation of the virtual instruction set can vastly increase the complexity of the
runtime system, as we shall see in the next chapter.

Chapter 3

Related Work

The dwarf sees further than the giant when he has the giant’s shoulder to mount on.

Samuel Taylor Coleridge, The Friend.

To stand still on the summit of reflection is difficult, and in the natural course of things, who
cannot go forward steps back.

Gaius Velleius Paterculus (20 B.C. to 30 A.D.).

This chapter introduces two areas of relevant related work. First is the proprietary
Smalltalk-80 system developed by the Software Concepts Group of the Xerox Palo
Alto Research Center, Smalltalk-80 version 2.3.1 After this, some related work on
code generation will be described.

3.1 A Proprietary Smalltalk: ParcPlace PS2.3

Several factors influenced the choice of implementation model in the Xerox versions of
Smalltalk-80. Early versions of the language were targeted to microcoded machines,
so the obvious choice was to generate code for an ideal virtual machine which would
be emulated either by microcode or a standard instruction set augmented with Small-
talk-80-specific microcoded instructions [Kra83, pages 114-117]. These machines had
small (64K) address spaces, so providing a virtual instruction set was desirable to keep
the size of the compiled methods to a minimum. Additionally, since runtime state

1The original work described in this thesis is based on version 2.3 of the ParcPlace Smalltalk-80
system which was the most up to date version available at the time the work was started. This version
has since been superseded by version 2.5 and Release 4 which introduced many changes to the system
and language, the impact of which were too great to be accommodated in the time available for this
work.

24

CHAPTER 3. RELATED WORK 25

could be represented as programmer-accessible Smalltalk-80 objects, debuggers and
other support software could be written entirely in the Smalltalk-80 language.

The implementation is therefore split into two separate parts: the virtual machine
which implements the machine-specific functionality, and the virtual image which con-
tains the Smalltalk-80 objects (data and compiled methods). This organization also
provides a high degree of portability: a virtual image containing compiled methods
and user data can be interpreted by a variety of virtual machines implemented on
different platforms. Smalltalk-80 virtual machine implementations that use identical
image formats are currently available on a number of hardware platforms provided by
different manufacturers.2

3.1.1 The Virtual Machine

The virtual machine provides several services: an evaluator for compiled methods,
support for primitive operations, and the memory management system.

The instruction set is stack-based (for ease of code generation) and virtual instruc-
tions (called bytecodes) are executed by the evaluator from compiled methods held in
the virtual image. The majority of bytecodes are associated with message sends and
returns, and transferring variable values and object fields to and from the stack [GR83,
page 596].

A set of primitive operations are provided by the VM to perform tasks that are
either beyond the capability of the Smalltalk-80 system (such as machine-specific in-
put/output), or that have a significant impact on execution speed (such as bitblt opera-
tions) [GR83, pages 612-615]. Many primitives supported for performance reasons are
optional and are allowed to ‘fail’, in which case recovery is attempted by Smalltalk-80
code in the virtual image.

There are no bytecodes that directly invoke a primitive operation, instead each
compiled method has a header which describes it. Primitives are invoked by normal
message sends that cause the execution of a compiled method whose header identifies
it as a primitive operation. If such a method has a body, then the body is invoked if
the primitive fails for some reason.

Memory management is transparent to the virtual image. The VM maintains ref-
erence counts on all objects, and deallocates objects automatically when it can. A
separate garbage collector is provided which can be invoked from Smalltalk-80 and
is used to reclaim circular garbage which the reference counting system cannot cope
with. Deferred reference counting [DB76] is used during method execution and elim-
inates about 85% [DS83] of normal reference counting operations. The details of the
object allocation and reclamation strategies are not relevant here, but are described
in [GR83, chapter 30] and [DB76].

An important principle underlying much of the VM is dynamic change of repre-
sentation. The same information may be represented in two or more (structurally)

2Numerous UNIX platforms (Sun, HP, and so on), Apple Macintosh, and 386/486 PC to name just
three.

CHAPTER 3. RELATED WORK 26

different ways, being converted transparently to the most efficient representation on
demand. The two major types of information treated in this way are compiled methods
and their contexts.

3.1.1.1 Dynamic Method Translation

The bytecodes of a compiled method are a compact representation of the source pro-
gram’s semantics. This representation is compact but inefficient for a straightforward
evaluator to interpret. The ParcPlace Smalltalk-80 VM dynamically translates byte-
code methods into native machine code, method by method, on demand. Translated
methods are cached rather than paged; in other words, if the translated method cache
fills up, methods are rejected from it and regenerated later if necessary.

Naı̈ve method translation is similar to macro expansion: each bytecode expands
to a sequence of n-code instructions that perform the required operations. However,
during translation there is the opportunity to perform various peephole optimizations
and even to map stack references onto register references.

Translating bytecode methods into n-code methods removes some interpreter over-
heads. Specifically, the v-instruction fetch-decode-dispatch overhead is removed com-
pletely. Peephole optimization also removes some reference counting operations: the
overall reference count impact of a sequence of pushes and pops may be zero, and
reference counts can be ignored in such cases.

It is possible to reduce the level of polymorphism in translated methods, which can
be specialized on the class of the receiver. If a particular bytecode method is inherited,
different translated versions will exist (if demanded) for its execution in the defining
class and in each of the subclasses inheriting the method.

Translated n-code occupies about 5 times the space of v-code [DS83] and could
place severe stress on a virtual memory system; the bytecode representation of methods
has been retained for this reason, and for their usefulness in some debugging tasks.3

Some bookkeeping information must be kept at runtime to support access to a
method’s context and for determining the point of control during debugging. The
largest structure needed is a map from n-PC addresses to offsets within bytecode meth-
ods, used to determine the point of send for messages when debugging and also for
purging the inline cache (section 3.1.1.3) when a method is rejected from the n-code
cache.

3.1.1.2 Multiple Representation of Contexts

Contexts are Smalltalk-80’s version of activation records. A context contains infor-
mation about the caller (for returning), space for temporary variables and arguments,
and some stack space for the method to use during execution. Because a block ex-
ecutes in the context of its defining method, and blocks can outlive their defining
method, method contexts are conceptually allocated as a linked list in the heap. This

3The primary motivation for using dynamic translation is the possibility of using an inline cache in
the final n-code (see section 3.1.1.3).

CHAPTER 3. RELATED WORK 27

is clearly inefficient: a more conventional LIFO stack of activation records would be
better. About 85% of contexts are ‘well behaved’ [DS83], and act as normal LIFO
activations.

The ParcPlace VMs use three representations for contexts. A volatile context is
allocated on the stack, and deallocated from there by the normal n-code return sequence
when its method exits. Such contexts are optimized for execution, but contain some
spare slots so they can (if necessary) imitate an object in a restricted fashion.

A hybrid context is a volatile context in which the spare slots have been filled to
make it look partly like a real data object. A volatile context is converted to a hybrid
context whenever a pointer is generated to it, usually caused by pushing thisContext
onto the stack or exporting a reference to the context in a block context.

If a message is sent to a hybrid context, or if a hybrid context that may be referred
to from a block context tries to return, it is converted into a stable context and moved
from the stack to the heap. Stable contexts are fully-fledged data objects compliant
with the virtual machine specification. Stable contexts are always converted back to
hybrid contexts for execution.

Method contexts are born on the stack. Most of these remain volatile and will be
deallocated in a LIFO fashion. On the other hand, block contexts are born stable, since
they represent code that is arbitrarily deferred.

3.1.1.3 Caches

Two types of cache are popular in Smalltalk-80 implementations. A global method
cache retains <class, selector> pairs from message sends along with the address of the
associated method. If another send of the same selector to the same class of object
is encountered, the destination method is read from the cache without invoking a full
lookup.

Inline caches exploit the dynamic locality of type usage in Smalltalk-80: at any
given point of send, the class of the receiver tends to be the same as it was the previous
time the send was made. Initially, a message send consists of a call to the full lookup
routine. This routine determines the destination method and then patches the point
of send with a direct call to this method. The next time the point of send is reached,
the previously called method is invoked directly without a full lookup. Each method
begins by checking that the class of the receiver is the same as the class of the previous
receiver (stored at the point of send4), invoking a full lookup and repatching the send
if not.

ParcPlace report an 85-90% hit rate with their method cache which improves per-
formance by 20-30%, and a 95% hit rate with their inline cache which improves per-
formance by 10%, although it increases the size of the translated methods by a factor
of 5 [DS83].

4It is possible to store the previous receiver’s class at the start of the method instead, but since there
are more sends than methods a better hit rate can be achieved if classes are cached at the point of send.

CHAPTER 3. RELATED WORK 28

3.1.2 The Compiler

The compiler performs several optimizations to increase performance, some of which
compromise the object-oriented nature of the language in a controlled way.

A significant proportion of message sends are related to conditional execution and
looping. The compiler gives special treatment to sends of ifTrue:, whileTrue, and the
other similar control selectors; for such messages, the send is removed completely and
the message is macro-expanded inline. An example is given in [GR83, page 550].

† + † - † < † >
† <= † >= † = † =
† * † / † n @
† bitShift: † nn † bitAnd: † bitOr:

at: at:put: size next
nextPut: atEnd † == † class
blockCopy: † value † value: do:
new new: x y

Figure 3.1: The 32 special selectors. Those marked † are short-circuited
to the appropriate primitive in PS2.3. The others invoke a normal lookup,
but save space in the literal frame by having a “known” selector.

The compiler can generate ‘special’ sends for 32 frequently used selectors. Fig-
ure 3.1 shows these special sends, which are encoded in a single bytecode and include
the 15 arithmetic and comparison selectors plus 17 other frequently used selectors. In
the case of the arithmetic selectors the special send bytecode offers an improvement
in speed by invoking the primitive associated with the selector directly, assuming the
receiver to be of the most common class; if the primitive fails then a full send is per-
formed. Of the other 16 selectors ‘value’, ‘value:’, ‘class’ and ‘==’ are also treated
in this manner, to improve performance in time.5 The remaining 13 selectors are en-
coded as special sends with “known” selectors6 that need not be entered into the literal
frame for the method. Similarly, there are special bytecodes for pushing the seven
most frequently used constants onto the stack.

When a method starts up, there is a considerable amount of overhead caused by the
creation and initialization of the context in which it is to run. To reduce this overhead,
the compiler does not generate bodies for some methods and the VM ensures that

5Both the short-circuiting of special arithmetic selectors, and the macro expansion of control con-
structs, break the semantics of the language. This is only barely justifiable because of the performance
improvements that are possible, and by the observation that any changes to the behavior of these mes-
sages would damage the system beyond repair.

6The global array SpecialSelectors provides a means for Smalltalk to communicate to the runtime
system which selectors are associated with the special bytecodes. When executing a special send byte-
code, if the message is not short-circuited to a primitive then its selector is extracted from this array
rather than the literal array of the method itself.

CHAPTER 3. RELATED WORK 29

these methods are never started up in the usual fashion. Methods without arguments
that simply return the receiver or an instance variable of the receiver are identified by
their method header as a ‘primitive return’ method and when executed the evaluator
pushes the receiver or instance variable onto the stack as appropriate, without incurring
the overhead of a full entry to the compiled method.

3.2 Orthogonal Code Generation

Chapter 6 introduces a technique called delayed code generation (DCG). This tech-
nique is similar in some ways to one developed by Cordy, Holt and others [Hol87,
CH90] in which runtime data is represented at compile time by ‘data descriptors’.
Although the two techniques are rather different, they exhibit some similarities which
warrant a brief introduction to the work that has already been done on data descriptors.

Data descriptors were developed from the work of T. R. Wilcox [Wil71] on ‘value
descriptors’ in the PL/C compiler for PL/I [CW73]. The motivation behind their de-
velopment as a tool in code generation was the desire for small, highly retargetable
code generators for languages such as Euclid.

3.2.1 Data Representation

Most modern (CISC) computer architectures provide a wide range of operand address-
ing modes. The choice of modes available to the programmer hasn’t changed much
since the days of the PDP-11, and the majority of the extra modes available only ex-
tend long established features. For example the 68020 offers many more addressing
modes than the earlier members of the same family, but these additional modes simply
provide an extra level of indirection. Indeed, it is in the treatment of indirection that
data- and value-descriptors differ.

Data descriptors were designed to accommodate either the complete set of ad-
dressing modes available over a wide class of architectures, or at least the majority of
the important modes. The essential features of the machines in the architecture class
described by Holt are:

• a base address (normally the contents of a machine register) b,

• a displacement from the base (an integer constant) d,

• an index (a machine register) i, and finally

• an optional indirection level k >= 0.

A data descriptor can thus be written @kb.d.i with any null (zero) fields omitted for
clarity. The ‘value’ of a data descriptor is the sum of b, d and i, all taken k levels
indirect. Many types of high-level data can be represented using this notation, as is
shown in figure 3.2.

CHAPTER 3. RELATED WORK 30

value descriptor canonical form
literals zero @0null.0.0 0

constant N @0null.N.null N
address A @0null.A.null A

registers Ri @0Ri.0.null Ri

memory contents of A @1null.A.null @A
address of A[Ri] @0null.A.Ri A.Ri

contents of A[Ri] @1null.A.Ri @A.Ri

Figure 3.2: High-level values represented by data descriptors

3.2.2 Operations on Data Descriptors

A few commonly provided high-level language operations map directly onto oper-
ations on data descriptors. When processing these high-level operations a compiler
need not generate any code, but can simply modify the data descriptor representing
the data being operated upon.

For example, languages such as C and Pascal provide a pointer dereferencing op-
erator (‘*’ in C, ‘"’ in Pascal). When applied to a value, this operator causes an extra
indirection which can be seen to correspond with the @ operation on a data descriptor.
For a data descriptor D representing a value ‘p’, the result of ‘p"’ is @D. Similarly,
the ‘address of’ (‘&’) operator in C causes the operation @−1 to be applied to a data
descriptor.7

3.2.3 Data Descriptors

The work on data descriptors was extended by Cordy and Holt [CH90] into a complete
machine-independent code generator. The major goals of the work were clarity and
portability in the code generator.

In traditional compilers, ‘abstract operands’ (values of the source language such
as structure fields and array elements) are often represented by sequences of machine
operations using simple addressing modes. This is problematic for two reasons. First,
the domain of addresses may be different from the domain of integers for normal
arithmetic. Second, when generating the final machine code, sequences of arithmetic
instructions involved in address calculation must be removed when the same address
arithmetic can be performed by using the relevant addressing mode of the target archi-
tecture.

These problems were tackled by separating code generation into two independent

7In C only an ‘lvalue’ can have its address taken, and this check comes for free when using data
descriptors. Since an indirection level of k = −1 has no reasonable interpretation, only data descriptors
with k >= 1 can have their addresses taken.

CHAPTER 3. RELATED WORK 31

tasks (which introduces the required clarity into the code generator). The source pro-
gram is translated into a pseudo-code containing common generic operations (such as
“add” and “move”) with operands of arbitrary complexity represented by data descrip-
tors. A two-stage process then maps this pseudo-code to code suitable for the target
architecture. First operator mapping translates the abstract operations of the pseudo-
code onto operations supported by the target architecture, still assuming arbitrarily
complex abstract operands in any operand position. Next operand mapping translates
abstract operands into the addressing structures supported by the target machine, cor-
recting for the assumption made during operator mapping. Any operands that attempt
to use an addressing mode not supported for a particular instruction are expanded into
a minimal sequence of instructions, using legal addressing modes, having the desired
overall effect.

The choices made during the mapping of operators and operands are based on sets
of ‘decision trees’ which can be specified and generated for particular architectures
in a machine-independent manner. This introduces the required portability into the
technique.

Abstract operations can be generated using an elegant and general mechanism
based on the manipulation of the abstract operands (data descriptors) at compile time.
When a particular operation is required on one or more data descriptors (during the
generation of code for an addition operation, say), the code generator attempts to per-
form the operation directly on the data descriptors concerned. For example, if the
addition was between two data descriptors representing literals then the addition can
be performed at compile time without the need to generate any code; the “result” of
the addition simply being a data descriptor representing a literal whose value is the
sum of the two operands.

abstract operation input 1 + input 2 result
3+4 @0null.3.null + @0null.4.null @0null.7.null

Rb[5] @0Rb.0.null + @0null.5.null @0Rb.5.null

Figure 3.3: Abstract addition of data descriptors

This technique is abstracted by Holt into a set of “super” operations corresponding
to the abstract operations supported in the code generator. In the addition example,
when translating an addition in the source program, the code generator calls “super-
Add” with the two operands (represented by data descriptors) as the arguments. The
result is a data descriptor representing the location of the result. For non-trivial ar-
guments “superAdd” may generate some abstract operations leaving the result in a
memory location or register; in such cases “superAdd” returns a data descriptor rep-
resenting the whereabouts of the result. Figure 3.3 illustrates the technique.

This technique can be applied throughout the code generator not only for other

CHAPTER 3. RELATED WORK 32

types of arithmetic operation (including array element and record field address calcu-
lations), but also for ‘imperative’ operations such as assignment.

3.2.4 Strengths and Weaknesses of Data Descriptor Techniques

Code generators based on data descriptors and “orthogonal” techniques offer many
advantages over more traditional techniques, but suffer from some deficiencies due
to the (necessarily) limited number of assumptions made about the capabilities of the
target architecture. Data descriptor techniques are inherently portable across the class
of architectures for which they were developed, and allow rapid retargeting of the
code generator to other machines in the same architecture class. However, retargeting
to machines with significantly different addressing models (stack-based processors for
example) is much more difficult.

Generating operations as a side effect of performing “super” operations on data
descriptors provides the opportunity for certain local optimizations. The “superAdd”
example above illustrates that constant folding can be provided almost trivially.

Some serious deficiencies also arise from using data descriptors in the construc-
tion of code generators. Data descriptors were designed to accommodate the most
common features found in the addressing modes of a wide variety of CISC proces-
sors. It is no surprise then that many machines provide architectural features that
cannot be represented within a data descriptor. One important such feature is auto-
increment/decrement which is provided by machines such as the PDP/11 and M68000
family.

Data descriptors are little more than a means of representing the location of a
particular value. This is fine for concrete values (literals, variables, and so on) but
is not sufficient for the representation of ‘implicit’ values. An ‘implicit’ value is one
that does not actually exist in a concrete form, and may be something like the result
of a relational expression whose ‘value’ is some interpretation of the bits within the
processor’s condition codes register.

Code generators based on data descriptors initially make the assumption that an
arbitrarily complex data descriptor is legal as an operand in any position for any oper-
ation. This assumption is corrected during operand mapping where the code genera-
tor “forces addressability” by rewriting single operations involving illegal addressing
modes as short sequences of operations involving only legal addressing modes. This
rather narrow view, inspecting one instruction at a time, can lead to less than optimal
code where knowledge of previous or subsequent instructions could have influenced
the generation of better code.

Compilers using data-descriptor based code generators are invariably multi-pass.
Apart from anything else, the operator- and operand-mapping phases of the code gen-
erator are implemented as distinct passes over the generated code. This limits the
applicability of the orthogonal approach in recursive-descent compilers, which have
many appealing attributes particularly if the language to be compiled is relatively small
and compilation times must be kept to an absolute minimum.

CHAPTER 3. RELATED WORK 33

3.3 Optimizing Compilers for Smalltalk-80

In this thesis Smalltalk-80 was chosen as the ideal language for investigation primarily
for its simplicity, allowing the code generation technique described in chapter 6 to be
developed in the environment of a fully functional compiler for a complete language.
Nevertheless, it is worthwhile introducing some of the work that has been done in
order to illustrate the kinds of problems facing Smalltalk-80 compilers, and the sorts
of techniques that have to be adopted in order to overcome them.

A number of attempts have been made to produce optimizing compilers for Small-
talk that target native machine code, Hurricane [Atk86] and the SOAR compiler [CP83]
[LB83] being some of the most successful. One system in particular, Typed Small-
talk (TS) [JGZ88], adopts some novel techniques in order to provide opportunities for
optimization in the compiler.

3.3.1 Typed Smalltalk

Probably the most important feature of Smalltalk, as far as the implications for its
compilation are concerned, is that it lacks any form of compile-time type checking.
In the same way that many languages are described as “strongly typed”, Smalltalk-
80 could equally well be described as “strongly polymorphic”. The nearest it comes
to type checking is the failure of a message send at runtime, when a message is not
understood by the object to which it is sent.

TS is similar to some of the other compilers mentioned above in that it approaches
this problem by modifying the language to support type declarations. Armed with type
declarations, the compiler can attempt to infer the set of classes to which an object
belongs at compile time and then produce code optimized for receivers belonging to
those classes. Knowledge of the class of the receiver of a message allows the compiler
to uniquely identify which method will be invoked at runtime when the message is sent,
allowing the message send to be reduced to a simple procedure call — a mechanism
known as static binding.

If the set of possible classes of a receiver is sufficiently small, the parse tree rep-
resentation of the message send is rewritten in the form of a case analysis on the class
of the receiver. In conjunction with other optimizations such as the inlining of blocks
that are explicitly sent the ‘value’ message (beta reduction), and direct substitution of
statically-bound messages in the parse tree itself, the TS compiler can produce code
that is closer in efficiency to languages such as C than it is to untyped implementations
of Smalltalk-80.

The translation of the parse tree into executable code is accomplished by first gener-
ating a machine-independent intermediate representation expressed in a register trans-
fer language (RTL). Peephole optimizations that would normally be carried out on the
executable form are instead performed on the RTL, which has the advantage that the
optimizer is not tied to any particular target architecture. Once optimized, the RTL is
then translated into native code which requires no further optimization.

There are several problems with this approach. The introduction of explicit typing

CHAPTER 3. RELATED WORK 34

into the language places an extra burden on the programmer, and forces program de-
signers to predict the uses to which their code will be put. The designers of TS freely
admit that not every legal Smalltalk-80 method will be successfully type-checked by
their system. The additional overheads of the many passes of the TS compiler (pars-
ing, type inferencing and checking, parse-tree optimization, conversion to RTL, RTL
optimization, and final generation of native code) cause the compiler to run between 10
and 15 times more slowly than the compiler in systems such as PS2.3; this is disastrous
in an EPE.8

More subtle problems also arise. Since the compiler makes heavy use of inlining
based on both the functionality and the type signature of methods, if either of these is
modified by the programmer a potentially large number of methods may need to be re-
compiled due to the invalidated assumptions that were made during their compilation.
TS tackles this problem by maintaining dependency information between methods,
allowing the set of affected methods to be determined easily should the definition of
an inlined method change. To avoid long delays while methods are recompiled, fully
polymorphic versions of any methods affected in this way (that make no assumptions
about the types of their arguments) are used while the compiler rebuilds optimized
versions of them as a background task.

3.4 Summary

Bytecode-based implementations of Smalltalk-80 present an execution model which
makes compilation trivial but implementation of the runtime system very difficult. The
latter must incorporate several sophisticated techniques to achieve an acceptable level
of performance, including the dynamic (runtime) conversion of data between different
representations according to the usage of that data. The dynamic binding of message
sends to destination methods also adds significant overheads which are overcome using
caching techniques where the results of previous method lookups are retained for later
use.

Some previous work has investigated the possibilities of using compile-time repre-
sentations of runtime quantities to aid the process of code generation. The major goal
of the work was to produce code generators of modest complexity that were highly
retargetable between machines with similar instruction sets. Some of the segregation
between code generation phases implied by these goals, and the rich variety of ad-
dressing modes (some of which have side-effects on machine state), led to problems
in generating high quality code. These code generators tended to be multi-pass, work-
ing with several different intermediate representations. This limits their usefulness in
environments where small, fast compilers are essential.

8It is predicted that in a mature system using the TS compiler, the additional complexity of the
compiler should be offset by the increased efficiency of the generated code. When the compiler can
compile itself, it should be as efficient as compilers in commercially available systems such as PS2.3.

Chapter 4

Benchmarks

It seems to be gratuitously courting disaster to expose our theories to conditions in which any
slight weakness is likely to become magnified without limit. But that is just the principle of
testing.

Sir Arthur Eddington, The Expanding Universe.

A benchmark provides a meter for the absolute performance of a system, or the rel-
ative performance of several systems, for a selected task. The main reason for their
use is in making comparisons between different systems, or for evaluating the effect
of optimizations within a system. However, care must be taken to avoid benchmarks
that show vast improvements in performance simply because they concentrate on those
aspects of a system that are implemented efficiently. Benchmarks that concentrate on
a single part of a system are only really valuable for determining the effectiveness of
different implementation strategies affecting that particular part. In this thesis, bench-
marks that concentrate on small aspects of a system are called micro-benchmarks. In
Smalltalk-80, operations such as integer addition can benefit from alternative imple-
mentation strategies and so are legitimate subjects for micro-benchmarks.

More realistic measures of a system’s performance can be gathered from macro-
benchmarks, which aim to exercise large parts of a system, ideally those parts which
users regularly exercise. In Smalltalk-80, subsystems such as the compiler or the user
interface are good candidates for macro benchmarking. Macro benchmarks are more
likely to reflect the performance as perceived by the user than are micro benchmarks.

Benchmarks provide a measure of the time performance of a system, but this is not
always the only important factor to consider. The size of generated code can also be
significant, especially in Smalltalk-80 where a large proportion of the image consists
of compiled code.1

1For example, in the (PS2.3) image containing the Native Code Smalltalk-80 compiler there are
35980 objects, of which 16.5% are compiled methods. These account for 20% of the 1.43Mb total
space allocated for object bodies. Methods are slightly larger than the average object too, being just
over 48 bytes long compared to the average of just under 40 bytes per object.

35

CHAPTER 4. BENCHMARKS 36

This chapter presents briefly the benchmarks chosen to meter the performance
of the various optimizations performed by the compilers described in the following
chapters.

4.1 Benchmarking Smalltalk-80

The micro-benchmarks focus on several areas that impact the performance of most
Smalltalk-80 applications: variable (instance, argument and global) access, arithmetic
and comparison operations, conditional and looping operations, block context creation,
method and block activation, and storage allocation. For those micro-benchmarks that
are associated with a particular optimization in the compiler, only a single benchmark is
used. For example, the performance of arithmetic operations performed on SmallInteger
arguments can be improved by generating the code to perform them directly without
a full message send. Even though all simple arithmetic operations benefit from this
treatment, the performance gains will be comparable between them all. Therefore
a single arbitrarily chosen operation (in the case of inlined arithmetic selectors, the
operation is SmallInteger addition) is used as a representative for the entire group.

Larger areas of the system are also exercised. For example, much user activity
relies on Smalltalk-80’s text formatting, editing and display operations, so these ac-
tivities are included in the set of macro benchmarks used. The maintenance of the
Smalltalk programming environment relies heavily on the manipulation of complex
data structures (lists, dictionaries, and so on) so some macro benchmarks that perform
this kind of activity are also included.

4.1.1 Benchmark Framework

A total of 38 benchmarks were used to gather performance data. Some of these were
drawn directly from the benchmarks developed at the Xerox Palo Alto Research Cen-
ter [Kra83, chapter 9] for use in metering the performance of Smalltalk implementa-
tions. Others were developed either to fill in gaps left by the Xerox benchmarks, or to
provide coverage of areas not adequately explored by the former (such as those that
perform large amounts of numerical processing, implement highly recursive functions,
and exercise the ‘SystemTranscript’).

The benchmark suite used was identical in both Native Code Smalltalk-80 and
PS2.3. The timing information was gathered from within primitives rather than from
within Smalltalk itself, partly to increase the accuracy of the timings2 but also to gather
other information regarding resource utilization.

In addition to the timing information itself, the Native Code Smalltalk-80 runtime
system was instrumented in order to gather data about the behavior of the benchmarks

2Smalltalk can only provide a measure of elapsed “real” time, whereas a much more accurate mea-
sure of the amount of time a UNIX process spends doing a task can be determined by adding the “system”
and “user” times for that process.

CHAPTER 4. BENCHMARKS 37

themselves. This was used both to validate the choice of benchmarks (after all, a ben-
chmark meant to test addition would be worthless if it performed more comparisons
than additions) and also to measure the impact of various optimizations on the dynamic
behavior of the system — the most important consideration being the number of “ex-
pensive” runtime support operations, such as dynamic binding and object allocation,
performed.

4.1.2 Micro-Benchmarks

The micro-benchmarks chosen to measure the relative performances of Native Code
Smalltalk-80 and PS2.3 are mostly derived from the standard Xerox benchmarks, and
are useful mainly to determine the effectiveness of optimizations in the compiler and
runtime system. They can be divided into several categories according to the particular
aspect of the system’s implementation which they reflect:

• Arithmetic and Comparison
The common operations performed on numeric quantities, and the other kinds
of Magnitude in the case of comparisons. These are short-circuited to the ap-
propriate primitive in PS2.3, and performed inline in Native Code Smalltalk-80.
The associated selectors that are exercised are: ‘+’, ‘<’ (on SmallIntegers), ‘<’
(on Strings), and ‘==’.

• Conditional
Controlling conditional execution. These are macro-expanded inline in both
PS2.3 and Native Code Smalltalk-80. The associated selectors are: ‘ifTrue:’,
and ‘ifTrue:ifFalse:’.

• Looping
Controlling iterative execution. These are macro-expanded inline in both PS2.3
and Native Code Smalltalk-80. The associated selectors are: ‘whileTrue’, and
‘whileTrue:’.

• Variable and Literal Access
Both loading and storing temporary, receiver (instance), and global variables.
Loading a literal quantity.

• Activation
Rapid call to and return from methods and blocks.

• Point Operations
Creation and instance variable access. Creation is short-circuited to a primitive
in PS2.3, and performed inline in Native Code Smalltalk-80. Access to the fields
is also inlined in Native Code Smalltalk-80. The associated selectors are: ‘@’,
‘x’, and ‘y’.

CHAPTER 4. BENCHMARKS 38

• Memory Allocation
Rapid creation of an aggregate object, without initialization. The associated
selector is ‘new’.

• “No Lookup” Operations
The non-arithmetic operations that are short-circuited directly to primitives. The
messages ‘class’ and ‘value’ are short-circuited to a primitive in PS2.3. In Native
Code Smalltalk-80, ‘class’ is performed inline and ‘value’ is actually sent (by the
normal lookup mechanism). The associated selectors are: ‘at:’, ‘at:put:’, ‘class’,
‘perform:with:’, ‘size’ and ‘value’.

• Graphical Operations
Exercising the 16 combination rules of BitBlts. This benchmark is useful mainly
to determine the match between the bitblt performance of Native Code Small-
talk-80 and PS2.3. The associated selector is ‘copyBits’.

4.1.3 Macro-Benchmarks

These benchmarks exercise fairly large parts of the system, in both the user interface
and invisible ‘book-keeping’ activities. Some are drawn from the Xerox benchmark
suite, others were developed to exercise parts of the system otherwise ignored by the
Xerox benchmarks. Again, they fall into several categories:

• Data structure manipulation
Creating, initializing and walking a large binary tree. There is some crossover
here with the “interface” benchmarks, which perform a non-trivial amount of
data structure access.

• Numerical
Evaluating the doubly recursive ‘nfibs’ and triply recursive ‘Takeuchi’ functions.

• Interface
Writing messages on the Transcript, displaying plain text, parts of the class hi-
erarchy, and class definitions in a text window. Note that these also perform
a fair amount of data structure manipulation. Since much of the user interface
uses text manipulation facilities, these benchmarks also include both formatting
(inserting line breaks in) a long string and repeated selection, replacement, and
redisplay of a long string in a text window.

Conspicuous for their absence are benchmarks that exercise the input side of the
interface (keyboard and mouse) and external I/O (file access). These were omitted
because they have little value in the determination of the quality of the code produced
by the compiler. The output-oriented benchmarks were only included because it was
relatively easy to make the comparisons between Native Code Smalltalk-80 and PS2.3
largely independent of the performance of the graphics primitives; this will be dis-
cussed further in section 4.3.

Figure 4.1: Messages impacting the performance of each of the ben-
chmarks. Those marked with a solid circle are specifically targeted in
the benchmarks which they impact. Those marked with a hollow circle
are ‘noise’ in that their performance will have a significant effect on the
benchmark’s performance even though those selectors are not specifi-
cally targeted by that benchmark.
Note that this table does not include the macro benchmarks which, due
to their nature, spread themselves more thinly over a much larger set of
selectors.

4.3 Fairness

Much important functionality in Smalltalk is not directly attributable to compiled meth-
ods. The virtual machine (or its equivalent) must provide support for the primitives
invoked from compiled code, and also for ‘invisible’ operations such as dynamic bind-
ing, method cache mechanisms, and memory management. For reasons described be-
low, the runtime support for Native Code Smalltalk-80 could not realistically match
the performance of the PS2.3 virtual machine in several areas. In an attempt to make
comparisons between the two systems fairer, reflecting the quality of the compiled
code and its direct support (rather than the quality of the runtime features specifically
provided as performance enhancers), some modification of the PS2.3 image and virtual
machine was undertaken. Just what constitutes part of the implementation as opposed
to a performance feature is an area of possible debate. For the purposes of gathering
data for this thesis, the only parts of the runtime system deemed to be performance fea-
tures are the ‘optional’ (and ‘copyBits’) primitives. The justification for giving special
treatment to these parts of the runtime system are as follows…

CHAPTER 4. BENCHMARKS 40

PS2.3 specializes many operations for particular classes in order to improve perfor-
mance. This is usually done by providing some particular behavior written in Smalltalk
itself, and then overriding this behavior using ‘optional’ primitives in subclasses.

For example, many operations on the collection classes are written in Smalltalk
in an abstract superclass. The message ‘replaceFrom:to:with:startingAt:’ is defined (in
Smalltalk) in class OrderedCollection from where most subclasses inherit the relevant
behavior. For performance reasons alone, the same behavior for byte-oriented classes
(ByteArray and String) is defined as a primitive. These two classes override the ‘re-
placeFrom...’ message to invoke the primitive response instead. Optimizations such
as this pervade the system, and it would be a non-trivial task to write all the optional
primitives required by the set of benchmarks above. Apart from this consideration,
the real point of the benchmarks is to measure the performance of compiled code in
Native Code Smalltalk-80 against the performance of compiled code in PS2.3 and not
the performance of the underlying runtime support. For these two reasons the optional
primitives required for the benchmarks have been disabled in the PS2.3 image used to
generate the statistics.

A special case of this argument concerns the ‘copyBits’ primitive in class BitBlt.
The ‘copyBits’ primitive in Native Code Smalltalk-80 is based on a portable 16-bit
bitblt [Wol84] written in C.3 Contrast this with the implementation in PS2.3 which is
hand-written in assembler and most likely uses a self-modifying inner loop to squeeze
every last bit of performance out of the hardware. Implementing a bitblt operation
from scratch that has the performance of the latter is certainly a nontrivial task, and
far outside the scope of this thesis.

In order to make the comparison between the two systems fairer (by removing
as far as possible any imbalance in the performance of the primitives), it is desirable
to use bitblt operations of comparable performance in the two systems. Rather than
expend large amounts of effort in developing a ‘copyBits’ that was competitive with
the PS2.3 implementation, the indigenous ‘copyBits’ in the PS2.3 virtual machine was
replaced with the same 16-bit implementation used in Native Code Smalltalk-80.

4.4 Summary

Benchmarks tend to come in two flavors. Micro benchmarks target small parts of a
system and are useful in determining the effectiveness of changes to the implemen-
tation strategy for parts of a system. Macro benchmarks try to avoid concentrating
too closely on a single aspect of a system and exercise complete, or significant por-
tions of, typical nontrivial end-user activities. They are invaluable in determining the
performance of a system as it is likely to be perceived by an end user.

Smalltalk-80 offers several prime candidates for micro and macro benchmarking.

3Saying that the implementation is ‘16-bit’ means that the inner loop considers 16-bit words when
block-transferring data. In general, the larger the number of bits considered atomically in the inner
loop, the faster the transfer will be. A 32-bit implementation written in the same language should be
just about twice as fast for large transfers of data.

CHAPTER 4. BENCHMARKS 41

The object-oriented nature of Smalltalk-80 puts great demands on several low-level op-
erations, that must be implemented efficiently for the system to run with an acceptable
level of performance. These operations are prime candidates for micro benchmarking.
For more realistic assessment of the success of an implementation strategy, Smalltalk-
80 provides an unusual opportunity to draw macro benchmarks directly from its own
large subsystems, such as the user interface.

Some care has to be taken regarding optional primitives and the bitblt operation,
and the benchmarking environments in the different implementations must be made as
similar as possible for the results to be useful.

Chapter 5

68020 Native Code Smalltalk-80

Nothing will ever be attempted, if all possible objections must first be overcome.

Samuel Johnson.

Native Code Smalltalk-80 is an implementation of Smalltalk-80 on MC68020-based
workstations. The major difference between it and the ParcPlace implementation is
that it does not use bytecode methods. Instead, methods are compiled directly into
68020 machine code.

Before developing a compiler for any language, it is necessary to design the en-
vironment in which the compiled code will run, and decide on the conventions to
which the code will adhere. Consequently these two topics will be discussed before
describing the compiler in any detail.

5.1 Runtime Environment and Conventions

Native Code Smalltalk-80 retains the distinction between image and runtime system.
The image contains executable code, but in the form of 68020 instructions rather than
bytecodes. For this reason it will be referred to simply as an ‘image’ rather than a
‘virtual image’. Similarly, the runtime system contains some of the support provided
by a virtual machine (message lookup, a method cache, memory management, the
primitives, and so on), but does not include an interpreter for a virtual instruction set.
There are several benefits from following this approach. Firstly, incorporating the
runtime support in the image itself would have increased its size, so several different
images would all carry a large amount of common code; it is more desirable to have a
runtime system with interchangeable images. Secondly, different runtime systems can
be used to execute the same image. This was especially important in the benchmarking
work where several runtime systems with different instrumentation were used. Lastly,
incorporating the runtime system into the image itself means storing the primitives and
other supporting routines as proper objects which would have made garbage collection

42

Figure 5.1: An arbitrary object pointer (OOP) is an offset into the ob-
ject table. The object table contains an entry for each object giving the
offset in the object memory at which the header begins, the number of
indexable fields of the object, and some bits reserved for the garbage
collector. Objects have a two word header giving the object’s class and
size, followed by the fields. (This object table format is equivalent to
that used in PS2.3, but with minor changes to the locations of some of
the fields.)

Memory is divided into two disjoint sections, the object memory (containing the actual
object headers and bodies) and the object table (translating object pointers into object
memory locations). For reasons of efficiency, the object table contains two entries
per object giving the object memory location and the number of indexable fields of
the object. For objects that contain 16- or 8-bit fields, this number will be twice or
four times the number of object memory words used by the indexable fields. Keeping
this information in the object table improves efficiency since the indexing primitives
(‘at:put:’ for example) can perform a bounds check without having to follow the ob-
ject’s class pointer to obtain the format bits. The top byte is reserved for use during
garbage collection.1

1This is only one of many object table formats possible, but is convenient for both bounds checking
within primitives and for garbage collection. Superficially it may seem much more sensible to keep
the class of the object in the object table to reduce the overheads of message sending by one memory
reference, but considering the number of instructions and memory references executed as the result of a

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 44

This format has the disadvantage that every object access requires an extra indi-
rection through the object table. However, the use of an object table simplifies both
garbage collection and the process of saving and reloading an image. The ‘become:’
primitive is also much simpler when it merely swaps object table entries rather than
having to scan the entire object memory, or allocate forwarding objects.2 Apart from
any other consideration, the use of an object table is in line with the implementation
strategy of PS2.3.3

Objects allocated in the object memory have a two word header containing the
object’s class and its true size in bytes. Following these are the fixed and indexed
fields of the object.

In accordance with every other Smalltalk-80 implementation, SmallIntegers are not
allocated any space in the object table. Instead the value of a SmallInteger is encoded
in its object pointer in such a way that it is distinguishable from a valid object pointer.
Since true object pointers are zero-based byte offsets into the object table, they are all
multiples of eight. The most sensible scheme for encoding SmallIntegers is therefore
as twice their (signed) value with bit zero set, which causes SmallIntegers to have odd
pointers and real objects to have even pointers.4 The performance gains made from
this approach more than compensate for the non-negligible increase in the overall
complexity of the system.

Object pointers are indices into the object table rather than the actual address of the

message send this reorganization of the object table would have a negligible effect on performance (in-
deed, performance may even suffer due to extra overheads incurred during garbage collection). During
method execution, the ratio of class fetches to size fetches is just over 5:1, so swapping the locations
of the class and size fields would improve performance slightly. However, garbage collection accounts
for a much larger number of accesses to both of these fields with a preponderance of fetches on the size
field (the ratio is 1:4.7, class:size).

2One implementation strategy for ‘become:’ when direct pointers to objects are being used is to
make a copy of the primitive’s receiver and argument and insert references to these new objects in
the original bodies, with the identities swapped. These “proxies” can be cleaned up during garbage
collection (for example), but an additional overhead is incurred on each object access to check for the
presence of a forwarding pointer.

3The design of the object table and object pointer formats can have a considerable impact on the
performance of the system. In the absence of a processor data cache, indirections through an object
table may be unacceptably inefficient. Also, the position of the tag bits identifying “immediates” such
as SmallIntegers is important: in the absence of hardware support for tag bit checking and/or index
register scaling, placing tag bits at the least significant end of the object pointers will usually be more
efficient (because of sign-extension problems). A minor advantage of placing the tag bits at the most
significant end is that checks for immediates can be reduced in many cases to a single ‘bne’ instruction.

4Since all OOPS are byte offsets into an object table, it would be possible to encode values for
four classes directly in an OOP. (It may seem that seven immediate classes could be encoded in three
tag bits, but one of these bits must be set for every immediate class if the inline checks are to remain
efficient. Encoding more than one class in these bits also has the effect of making SmallInteger arithmetic
more complex, and also reducing the range of SmallInteger values that can encoded in this way.) This
encoding was only done for SmallIntegers since operations on these are so frequent. Increasing the
number of directly encoded object types would increase the complexity of the compiler and runtime
system for relatively little performance gain. However, ParcPlace have deemed it worthwhile to encode
the value of Characters directly in their pointers in the more recent releases of Smalltalk-80 (2.4 and
later).

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 45

object table entry. Likewise, the object table contains the offset from the start of the
object memory at which the body can be found. By using offsets rather than absolute
addresses in the object table, there is no need to convert from relative to absolute
addresses and back again when saving or loading an image. The extra cost of adding
the base addresses of the object table and memory is negligible, since these addresses
are kept in two permanently assigned address registers and the calculation is performed
at no extra cost (in either space or time) during normal effective-address calculation.
The cost in terms of processor resources is also negligible, leaving sufficient registers
free for other uses (see the next section).

5.1.2 Register Usage

REGISTER NAME USE
a7 sp stack pointer
a6 frame frame pointer for contexts
a5 obtab base of object table
a4 obmem base of object memory
a3 home home context for blocks
a2 temp
a1 temp, or cached base of ‘self’
a0 temp, or object base after allocation

Figure 5.2: Address register usage and the mnemonic names of the five
permanently assigned address registers.

The MC68020 provides eight general-purpose data registers (specialized for arithmetic
and logical operations) known mnemonically as d0 to d7, and seven general purpose
address registers (optimized for use as base addresses and index registers) known as
a0 to a6.5 Of these, four out of the seven available address registers have permanently
assigned meanings in a Native Code Smalltalk environment, with two others being
assigned particular meanings at certain times.

To facilitate access to objects, the bases of the object table and object memory are
kept in address registers at all times. A frame pointer is used for access to temporary
variables and for cleaning up the stack when a context exits, and an additional frame
pointer is necessary which points to the home context during the execution of a block.
These four permanently assigned address registers are normally referred to by their
mnemonic names which are shown in figure 5.2.

The remaining three address registers are for general use, although some can con-
tain standard values in certain circumstances. When the object allocator is called it
returns the OOP of the allocated object in d0, and (for convenience) the object memory
address of the new object’s class field in a0. Finally, references to instance variables

5a7 is dedicated for use as a stack pointer in all call and return operations, although architectures
such as the PDP-11 have demonstrated the benefits of more flexibility in this respect.

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 46

require the method to calculate the base address of the receiver; this address is cached
in a1 whenever possible.

The data registers are mainly free for use as temporary registers. Compiled code
is at liberty to use d0 to d2 as temporary registers, the rest are reserved for use by the
runtime system.

By convention, the result of any operation is left in d0. This includes ‘out-of-line’
operations such as message sends, object allocation, and primitives, and also ‘inline’
operations such as generating a constant, or accessing a variable. This is, to some
extent, a similar approach to the common implementation strategy for languages such
as C where the location of the result of a function call is standardized.

When performing a message send, the receiver must be in d0 and the OOP of the
selector in d1. This is concomitant with the convention of d0 being the ‘result’ reg-
ister, since computation normally proceeds as a stream of message sends to variables,
constants, or the result of the previous message.

5.1.3 Stack Discipline

The maintenance of the stack is an important consideration in Smalltalk-80, since the
stack contains a mixture of OOPs and non-OOPs and yet must be garbage-collected
successfully. Not only are there mixed types of information in the stack, but some re-
turn addresses will be into primitives and others into compiled methods. This presents
further problems when collecting garbage since compiled methods will move during
compaction whereas primitives will not.

The stack is used mainly for the arguments (including the receiver) of a message,
space for temporary variables, and for the return and linkage information related to
method and block contexts; a typical stack frame is shown in figure 5.3.

To perform a message send, the receiver and arguments are pushed onto the stack,
the message selector is loaded into d1, and the dynamic binder is called. By conven-
tion, the cleaning up of the stack is not performed by the called method, and must be
done by the caller after the send returns.6

When a method starts up, the stack contains the receiver and arguments followed
by the return address for the call. To these are added the linkage information (the frame
and home pointers), the OOP of the method just begun, and as many references to ‘nil’
as necessary to form the space for temporary variables. The method’s own OOP is
pushed to simplify garbage collection, as will be explained in section 5.2.1.

6In languages such as C, the cleaning up of the stack is very difficult to perform inside the called
function (just prior to returning) due to complications involving support for functions which accept
variable numbers of arguments. In Smalltalk, the number of arguments accepted by a method is fixed
and so the called method could clean up the stack before returning. The code would be smaller, since
there are many more message sends in an image than there are methods. The code would be much
slower, though, due to the position of the return address in the stack frame (it is above the arguments).
It would be necessary to pop the return address, save it somewhere safe, modify the stack pointer to
remove the arguments and then jump through the saved return address.

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 47

higher memory
...

caller’s context
first argument (receiver)

...
last argument
return address

home link
frame link

method oop
first temporary

...
last temporary

intermediate results
arguments out
called context

lower memory
...

Figure 5.3: A typical stack frame. The non-pointer fields are in italic
type.

The treatment of the stack is more critical in Smalltalk than in many other lan-
guages because not all contexts behave in a LIFO fashion. An interesting stack man-
agement technique for Smalltalk, where LIFO contexts are handled as efficiently as
they would be if pushed on a stack and yet non-LIFO contexts can also be accommo-
dated without having to copy them into the heap, is described in [Mos87].

5.1.4 Runtime Support

The image is no longer ‘virtual’ in the traditional sense, since it contains compiled
methods in native machine code. These methods make calls on various parts of the
runtime support for dynamic binding, object allocation, primitive dispatch, and so
on. This means that some flexible but efficient mechanism for interfacing the runtime
support to the compiled methods is required. The mechanism employed here uses the
first entry in the object table (which is never allocated, corresponding to OOP 0) to hold
the addresses of two dispatch tables containing the entry points to the required support
routines, and the entry points to the primitive routines respectively. The code generator
and the runtime system need only agree on the indices for the various routines in these
tables. This organization allows different versions of the runtime system to be used
with the same image without modifying the image in any way.

When the runtime system starts up an image, the first two words in the object table
are filled with the addresses of the two tables. The first table (figure 5.4) contains

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 48

ROUTINE NAME INDEX FUNCTION
Alloc 0 Object allocator
Send 4 Dynamic bind (normal)
Super 8 Dynamic bind (super)
VALERR 12 Value error
NONBOOL 16 Non-boolean receiver

Figure 5.4: Jump table entries for runtime support.

dispatch addresses for the object allocator, the message binder, a routine that deals
with value errors from block activations (by failing the ‘value’ primitive), and a routine
that deals with non-Boolean receivers encountered in control constructs. The second
table contains dispatch addresses for the primitives (indexed by primitive number).
All requests on the runtime system are made by calling through one of these dispatch
tables:7

jbsr obtab@(0)@(0..16) for Alloc, Send, Super, etc.
jbsr obtab@(4)@(N*4) for primitive number N.

For convenience, the operands corresponding to Alloc, Send, Super, VALERR and
NONBOOL are defined using these names, which are replaced during a preprocessing
pass immediately prior to assembly.8 Similarly, the appropriate operand for a primitive
dispatch can be specified using the PRIM(N) macro.

The jump tables themselves are in the runtime system, and the only action required
when Native Code Smalltalk-80 starts up is to place the relevant two base addresses
in the first two words of the object table.

On calling Alloc, d0 must contain the number of (long) words required for the new
object. Alloc exits with d0 containing the OOP of the empty object and a0 containing
the address of the first field of the object in the memory (this will be the class field).9

Some care must be taken since the garbage collector may be invoked as a result of a
call to Alloc, so any cached absolute addresses must be invalidated after calling it.

Send expects d0 to contain the OOP of the receiver and d1 to contain the selector.
A dynamic bind is performed and the destination method started up. By convention,
the called method leaves its result in d0.

7All example sequences of 68020 code are written using the mnemonics and operand notation defined
by Sun Microsystems in [Sun88], rather than those defined by Motorola in [Mot85].

8The assembler source is piped through cpp before assembly, which allows constants and macros to
be defined in included files. This makes the assembler form of the compiled image both more digestible
to humans (important during debugging) and more compact (many complex operands, for dispatch to
runtime support for example, are defined as much shorter mnemonics or macros).

9The fact that a0 contains a pointer to the first word in the body of the newly allocated object was
originally merely a coincidence of the design of the object allocator, but turns out to be quite convenient
(and is indeed used during BlockContext and Point creation).

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 49

Super is almost identical to Send, except that the method lookup begins in a class
other than the class of the receiver. For this reason calls to Super must also specify
in a0 the class in which to start searching for the method. Since both selector and
initial class for the method lookup are known at compile time, it should be possible
to statically bind sends to ‘super’. However, doing this requires a large amount of
support in the image to keep track of dependencies due to the possibility of statically
bound methods being overridden at a later time. The performance gains are not likely
to be great either, since the method cache is very effective (a dynamic bind that hits
the cache will be only a few cycles less efficient than a statically-bound send). The
frequency of ‘supered’ sends is fairly low too, accounting for only 1.6% (statically)
and an insignificant 0.075% (dynamically) of sends, averaged over all the benchmarks
(a total of 8.2 million message sends).

VALERR is called from within a block if the number of actual arguments does not
match the number of expected arguments. It is explained as part of the discussion of
blocks in general, in section 5.4.8. NONBOOL is called from within any inlined control
constructs (‘ifTrue:’, ‘whileFalse’, and their relatives) if the receiver of a conditional is
anything other than ‘true’ or ‘false’. The runtime system recovers from this situation
by invisibly sending a ‘mustBeBoolean’ message to the errant value.

5.1.5 Omissions in the Runtime System

Several nontrivial pieces of runtime support have not been implemented since they
were unnecessary for an investigation into the efficiency of the code produced by the
compiler. They would, however, be vital in a production system.

The two largest topics ignored by the runtime system are support for Processes and
support for some infrequently encountered situations involving blocks. Both of these
involve the promotion of contexts held in the machine’s hardware stack into full objects
held in the object memory, and vice-versa. This becomes necessary when processes
are suspended and resumed, a reference to ‘thisContext’ is encountered, or when a
block misbehaves by attempting to return to (or access variables in) a deallocated
context. The process-related problems have been ignored completely (although they
are the easier of the two to cope with, involving mainly the wholesale conversion of
the stack into a linked list of objects, and back again later). Some, but by no means
all, of the problems related to blocks have been addressed (section 5.4.9). A thorough
treatment of blocks involves the handling of some relatively subtle situations which
are described, with some suggestions for solutions, in section 5.4.9. The solutions
adopted by ParcPlace in their implementation are described in [DS83].

Many of the essential primitives are not implemented. Since the benchmarks make
no use of the keyboard (to choose an arbitrary example), the primitives associated with
it are not implemented. Other areas that have been neglected, yet would require run-
time support in a full implementation, include Semaphores (which are used heavily by
the input event handling mechanism), and operating system interfaces (to the filesys-
tem, for example).

One final area that has been ignored is the very important rôle of the compiler

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 50

in debugging. The debugger and compiler have a very close relationship, with the
compiler providing the debugger with access to context information and ‘reverse maps’
of program counter values onto source-level constructs.

5.2 Garbage Collection

The garbage collector is of the “standard” compacting mark-sweep type, with nothing
particularly remarkable about it at all. The collector is triggered either by executing
the ‘primGarbageCollect’ primitive, or from within Alloc if either the object memory
or object table overflow; in either case a full mark-sweep-compact cycle is performed.
In an attempt to make garbage collection as effective as possible, the allocation ratio of
object pointers to object memory words was determined by instrumenting the runtime
system and exercising the allocator with a wide variety of activities. This ratio (about
1:4) was used to determine the best split of available memory between the object table
and object memory, so that a garbage collection triggered by either object table or
object memory overflow occurs very near to an overflow of the other.

The only aspect of garbage collection worthy of further discussion is the treatment
of objects referenced from the stack, and the manipulation of absolute addresses within
the stack.

5.2.1 Garbage Collection and the Stack

The stack presents several problems regarding the collection of garbage. First, many
objects, such as temporary variables and arguments to blocks or methods, will be ref-
erenced only from within the stack. It is therefore vital to include all object references
from within the stack during the marking phase of garbage collection. Second, the
stack contains a mixture of object pointers and absolute addresses, which must be
treated separately. Since the format of a stack frame is well known (figure 5.3) it is
relatively easy to mark the real object references within the stack, ignoring the other in-
formation contained in the frames. Third, the stack contains real addresses for linkage
between stack frames, and also for return addresses into both methods and primitives.
This last point merits further consideration.

Return addresses into primitives can be ignored, since primitives reside in the text
segment along with the rest of the runtime system. The type (primitive or compiled
method) of any return address can be found easily, since UNIX data segment addresses
are guaranteed to be larger than text segment addresses. Comparing a return address
against the start address of the object memory gives an indication as to the type of the
address.

Return addresses into compiled methods are more problematic since the methods
themselves reside in the object memory, and so will move when the memory is com-
pacted at the end of the garbage collection cycle. The solution to this problem is as
follows. During the marking phase, whilest object references from within the stack
are being considered, the return address in each frame is inspected. Recall that the

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 51

OOP of the method forms part of the stack frame (section 5.1.3). Knowing the OOP
of the method allows the method’s object memory offset to be found. The start ad-
dress of the method is subtracted from the return address into that method, and this
offset stored in place of the original address. When reverse-mapping these addresses,
it must be possible to differentiate between offsets into compiled methods and prim-
itive return addresses, so bit zero is set to indicate an offset (the offset is guaranteed
to be even since all 68020 instructions must start at an even address). Later, after the
object memory has been swept and compacted, the stack frames are inspected once
more and the offsets into methods turned back into real return addresses using the new
start addresses of the corresponding methods in the object table.

5.3 The Compiler Front End

Having fixed the runtime environment and conventions that compiled methods are
subject to, we can discuss the compiler itself.

5.3.1 Scanning and Parsing

Smalltalk-80 is a fairly simple language to parse. Only 5 token types are needed for
scanning, and parse trees are made up of 15 different types of node.10 The entire
scanner and parser for Native Code Smalltalk-80 is fewer than 600 lines of Smalltalk-
80 code.

The overall structure of the compiler front-end is shown in figure 5.5. A scanner
breaks the input into a stream of tokens that are in turn used by the parser to construct
a parse tree. During parsing, a symbol table is created and maintained by a Mapper,
the main function of which is to translate variable identifiers into parse tree nodes
representing the type and location of the variable.11 The mapper is also required to
keep a set of independent parse trees for the block bodies in a method so that code
for these can easily be generated out-of-line,12 as will be discussed in sections 5.4.6
and 5.4.8.

5.3.2 The Parse Tree

The result of parsing a method is a parse tree. The root of the tree is a MethodNode
which describes many aspects of the method. Each MethodNode contains an array of
arbitrary nodes (the roots of subtrees) representing the statements of the method. In

10This is more than the number of types of node used in the ParcPlace bytecode compiler since
separate nodes are used, for example, for different types of message send.

11Mappers have a similar function in Native Code Smalltalk-80 to that of Encoders in PS2.3.
12The ParcPlace compilers generate the code for block bodies inline in the method at a point corre-

sponding to the location of the block in the source. They must therefore generate a jump instruction in
the body of the method to skip over this code. By saving the parse trees for block bodies separately,
and generating code for them at the end of the method, this extra jump instruction is avoided. Versions
2.4 and later of the ParcPlace implementations treat blocks similarly.

Figure 5.5: The scanner, parser and mapper. The mapper maintains a
symbol table which it uses with a knowledge of the compilation context
to map variable identifiers onto parse tree nodes representing their type
and location. The mapper also keeps track of the nesting of blocks, and
retains the bodies of out-of-line blocks to be appended to the method
during code generation.

addition to these, the method node retains a reference to the Mapper that was used
during parsing, so that the information about temporary variables and arguments that
was gathered during parsing can be used during code generation. The partial parse
trees generated for the bodies of blocks that are not expanded inline are not (logically)
part of the main parse tree; instead, these partial trees are kept by the Mapper, and are
retrieved from there during code generation.

A detailed description of the structure of parse tree nodes can be found in ap-
pendix A.

5.3.3 Optimizing the Parse Tree

Very little can be done to optimize a Smalltalk parse tree: the popular parse tree opti-
mizations such as common subexpression elimination cannot be safely applied. About

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 53

the only thing that can be done is constant folding, where a node for a simple arithmetic
operator with both arguments kinds of Number is replaced by a LiteralNode representing
the result of evaluating the expression at compile time.13 This can only be justified
by the fact that the operation would have been inlined in the final generated code, so
any changes made by the user in the definitions of the arithmetic selectors would not
have had any effect anyway.14 In the next chapter we will see how even optimizations
on the parse tree such as constant folding can be performed implicitly during code
generation.

5.4 Code Generation

We are now in a position to develop a naı̈ve code generator which will produce correct
code for any Smalltalk-80 construct. It should be stressed that the code generator will
initially be as simple as possible, with some optimizations and enhancements added
later. The main purpose of this simple code generator is to provide a reference point
for the development of a more sophisticated code generator which will be the subject
of chapter 6.

5.4.1 Overview of Code Generation

Each parse tree node responds to the message ‘generate’. Leaf nodes will respond by
placing code to generate the quantity they represent on a ‘code stream’. Non-leaf nodes
will respond similarly, but will also propagate the ‘generate’ to their descendants at the
appropriate time. Code generation for the whole method is thus initiated by sending a
single ‘generate’ message to the root of the tree (a MethodNode).

Parse tree nodes do not explicitly place instructions on the code stream, but send
‘emit’ messages to an object representing the machine for which code is to be gen-
erated. By standardizing the interface between the parse tree nodes and the machine
object, different back ends can be used with the same front end to generate code for
different architectures. This means that optimizations performed on the parse tree
itself are independent of the final target architecture. The interface is designed to fol-
low closely the operations supported by most CISC architectures. For example, the
message ‘emitMove: source to: dest’ causes an instance of M68000 to append a ‘movl
source, dest’ to its instruction stream.

Just as the parse tree in a recursive descent compiler can be implicit in the call
graph of the compiler itself, so the sequence of ‘emit’ messages sent from the parse

13Since the expression is evaluated using exactly the same semantics as are in force at run time, any
overflow results in a LiteralNode containing a LargeInteger. Operations such as division could equally
well result in a literal Fraction or Float.

Constant expressions are fairly uncommon in typical Smalltalk images. Out of all methods in the
image used to cross-compile the benchmarks, only seven constant expressions were folded into literals.

14Just as in the ParcPlace compiler, it is possible to change the set of selectors that are subject to
inlining to cater for the rare cases where non-standard behavior is required. In the native code Smalltalk
compiler, the set of operations that are considered during constant folding can also be modified easily.

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 54

tree to the machine object represents an implicit intermediate representation of the
compiled code.

For convenience we will discuss the critical code fragments generated by the com-
piler for each node type in turn starting with leaf nodes for constants and variables,
then moving on to assignment and messages sends. Last, the required method entry
and exit sequences generated by MethodNodes, along with the treatment of block bod-
ies, are explained. Each node type sends a handful of different ‘emit’ messages to the
machine, most of these being specific to a particular type of node. Only a few very
common operations (emitting a label or loading ‘nil’, for example) are sent from more
than one node type.

Most of the complexity is associated with code fragments generated for optimized
constructs such as inlined control structures. These will be dealt with later, as each
optimization is introduced. First though, a brief description of the workings of the
‘machine’ object to which the parse nodes send the ‘emit’ messages.

5.4.2 Machine Objects: the M68000

Machine objects encapsulate all of the machine-dependent information required for
code generation. Parse tree nodes do not generate code directly, but instruct an instance
of a particular class of machine to generate the code on their behalf. By standardizing
the interface to machine objects it is possible to plug different back ends into the same
compiler front end, for example

aParseTree generate: aMachineClass

causes ‘aParseTree’ to send a stream of ‘emit’ messages to the instance of ‘aMa-
chineClass’, thereby translating the tree into code suitable for that machine. The ma-
chine class of interest in the present discussion is the M68000 which responds to ‘emit’
messages by generating instructions for the 68020.15

A M68000 machine object has three main tasks. It must create and maintain a
M68000CodeStream which is similar to an InstructionStream but specialized for 68020
instructions and operations thereon. It must also keep track of certain state information
such as the number of items on the stack below the frame pointer for the last instruction
generated (information such as this is used, for example, during the calculation of a
stack-pointer relative address when retrieving the receiver from further up the stack
during a message send), and the identity of the next temporary label to generate (for
use as branch destinations in loops and conditionals). Finally, it must implement all
the ‘emit’ messages that can be sent from parse tree nodes to append representations
of 68020 instructions to the instruction stream.

In addition to these responsibilities, the machine object in a naı̈ve compiler is
responsible for implementing any peephole optimizations that may be required.

15A machine class called ‘VM’ also exists which responds to ‘emit’ messages by generating bytecoded
methods suitable for interpretation by a Blue Book virtual machine.

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 55

Object ()
M68000Operand ()

M68000CMRValue (’label’)
M68000IndirectValue (’base’ ’offset’ ’index’)
M68000Literal (’value’)

M68000LiteralOop ()
M68000Oop (’value’)

Figure 5.6: The class hierarchy for 68000 operands. See text for details.

Object ()
M68000Instruction (’comment’)

M68000DyadicInstruction (’source’ ’dest’)
M68000add ()
M68000cmp ()
M68000dbra ()
M68000lea ()
M68000link ()
M68000move ()
M68000sub ()

M68000MonadicInstruction (’value’)
M68000data ()
M68000label ()
M68000methodBegin ()
M68000methodEnd ()
M68000pea ()
M68000pop ()
M68000push ()
M68000unlk ()

M68000branch (’condition’ ’dest’)
M68000btst (’bit’ ’arg’)
M68000jsr (’dest’)
M68000rts ()

Figure 5.7: Class hierarchy for 68000 operations. See text for details.

The 68020 instructions themselves are contained in two small hierarchies, one
formed from classes representing instructions, rooted at M68000Instruction, and the

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 56

other formed from classes representing operands, rooted at M68000Operand. These
hierarchies are shown in figures 5.6 and 5.7, and explained below.

CMRValues represent offests relative to the start of a compiled method, so they are
associated with a particular ‘label’. They are used mainly to represent the start of a
block body within a method. IndirectValues represent memory locations whose address
is in some ‘base’ register, with optional ‘index’ register and integer ‘offset’. These
represent variable locations within the stack, where the ‘base’ would be the frame
pointer with ‘offset’ corresponding to the required field within the stack frame, and
locations within the object table or object memory (global variables, for example).
LiteralValues represent ‘immediate’ integer values corresponding mainly to integer lit-
erals in the Smalltalk program. LiteralOops represent ‘immediate’ object pointer values,
being used mainly to identify classes and selectors where necessary. Oops represent
non-immediate object pointers and usually occur as the ‘offset’ field of an IndirectValue
during an operation on a global variable.

M68000Instruction is the root for all instructions, providing default behavior for
messages such as ‘isBranch’ in the same manner that Object does for messages like
‘isNil’ in the image as a whole. It also provides support for comments which are
included in the assembler representation when present. (Instructions that refer to a
selector or variable usually place the associated identifier in the ‘comment’ field to
make the compiled version more comprehensible to human readers.) Its subclasses
are more or less self-explanatory and most fields in the computational and data move-
ment instructions can be any kind of M68000Operand. M68000data represents literal
data in the instruction stream (used to insert the method OOP into a compiled method).
M68000label represents a label: its ‘value’ is an integer identifying the label (labels are
local to each compiled method, so the label allocator can start anew for each method).
M68000methodBegin and M68000methodEnd are pseudo-instructions used simply as a
shorthand notation for the method entry and exit sequences; their ‘value’ is the selector
of the method. M68000branch represents both conditional and unconditional branches:
if the ‘condition’ field contains a symbol representing a condition code (‘#eq’ for exam-
ple) then the branch is conditional, otherwise it is unconditional. M68000btst tests a
single bit in a value. The ‘bit’ field specifies the bit (zero is the least significant), with
‘arg’ being any M68000Operand.

5.4.3 Code for Leaf Nodes

Leaf nodes represent either literal constants or variables. Constants are encoded in
an instance of LiteralNode, which contains the constant itself. When a M68000 is sent
an ‘emitLiteral:’ message, with the relevant literal as the argument, it will generate a
‘move’ instruction to set d0 (the result register) to the value of the literal. Two types of
literal are differentiated by the code generator, SmallInteger constants and other (object
pointer) constants:16

16The use of the ‘I()’ and ‘O()’ macros allows changes to be made to the representation of SmallInte-
gers and object pointers trivially. In the 68020 implementation, ‘I(N)’ expands to ‘(N*2+1)’ (Small-
Integers are twice their value with the bottom bit set) and ‘O(P)’ to ‘(8*P)’ (object pointers are byte

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 57

movl #I(INT), d0 | for SmallIntegers
movl #O(OOP), d0 | for object numbers

Arguments and temporaries are represented by instances of ArgumentNode and Tem-
poraryNode. Each of these contain an index identifying the variable. By convention,
the receiver has index 0, the first argument has index 1 and so on. Similarly, the
first temporary has index 1, the second 2, and so forth. These indices are used as
offsets from the frame pointer to address a word in the stack, either above the frame
pointer (for arguments) or below the frame pointer (for temporaries) (stack frames
are explained in section 5.1.3). Nodes for arguments and temporaries respond to the
‘generate’ message by sending an ‘emitArgument:’ or ‘emitTemporary:’ message to the
machine, with the argument or temporary node itself as the argument. An M68000
responds to these by placing one of

movl frame@(8+4N), d0 | for argument N
movl frame@(-4-4N), d0 | for temporary N

on the instruction stream, as appropriate. Nodes representing ‘self’ and ‘super’ are
treated as if they were ArgumentNodes with index zero (argument zero is always the
receiver).

In the case of instance variables, InstVarNodes carry an index (as for arguments and
temporaries), which specifies which ‘field’ of the object is occupied by that variable.
When asked to ‘generate’ code, InstVarNodes send an ‘emitInstVar:’ to the machine
(with the node as the argument, as before) which then generates instructions to load
the variable into the result register.

When accessing an instance variable it is first necessary to load the OOP of the
receiver into a register, use this to fetch the object memory offset of the receiver into
another register, and finally to use this offset as the base from which to access the
required field of the receiver. For example, Points have two instance variables, ‘x’ and
‘y’. Allowing for the two word object header, we can fetch ‘x’ from a Point as follows:

movl frame@(16), d1 | receiver
movl obtab@(d1:l), a1 | start of receiver in memory
movl obmem@(8,a1:l), d0 | ‘x’ is first inst. var, offset 8

When generating the code for the body of a block, the frame pointer can no longer
be used to access the arguments (including the receiver) and temporaries of the home
context since it will have been set to point to the start of the active block context by
the ‘value’ primitive to allow access to the arguments of the block itself. The compiler
must instead generate sequences that use the home pointer, which will be a copy of the
frame pointer that was in effect at the time the block was created. The Mapper (which
is responsible for maintaining the ‘context’ in which the method is compiled) keeps
track of whether the compiler is currently generating code for the body of a method or
block, the code generator checking with the Mapper when generating code to access

offsets into the object table, so must be multiples of 8).

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 58

temporary or argument variables. This is explained in full in section 5.4.8. Apart from
this one exception, the sequences generated for leaf nodes within blocks are the same
as those generated within methods.

Nodes for global variables contain a pointer to the Association corresponding to
the variable; as might be expected, they generate code for themselves by sending
the machine an ‘emitGlobal:’ message which generates a short instruction sequence
to extract the value field of the association. This is done in two instructions: the
object memory offset of the association is first loaded into a0, then the second instance
variable of the association (the ‘value’ field, offset 12 from the start of the association)
can be loaded into d0:

movl obtab@(O(1622)), a0 | assoc. for Rectangle, OOP 1622
movl obmem@(12,a0:l), d0 | fetch value field

5.4.4 Assignment Statements

Having seen how code generation works for simple exterior nodes, it is time to tackle
the simplest complete statement in Smalltalk – assignment.

AssignmentNodes contain two subtrees: one each for the left- and right-hand sides
of the assignment (destination and source, respectively). The right hand side is first
asked to ‘generate’ code for itself. The result will be left in d0 irrespective of the
type or complexity of the expression involved. The machine is then asked to ‘emitAs-
signTo:’ with the destination as the argument. Since the destination must be a kind of
VariableNode, code very similar to that given above for leaf nodes can be produced,
except that the last line

movl someLocation, d0

must be reversed to

movl d0, someLocation

(Note that the code fragments for variable access do not use d0 as a temporary
‘scratch’ register; its contents will consequently be preserved during an assignment to
any type of variable, remaining available as the result of the assignment.)

5.4.5 Message Sends

A message send is effected by pushing the receiver followed by the arguments (if
any) onto the stack, calling Send or Super, and cleaning up the stack by popping the
arguments (section 5.1.3 includes a diagram of a typical stack frame due to a message
send). The three types of message node (UnaryNode, BinaryNode and KeywordNode)
respond to ‘generate’ messages by asking the machine to ‘emitUnary:’, ‘emitBinary:’ or
‘emitKeyword:’ as appropriate. As usual, the argument is the node sending the ‘emit’
which gives the machine complete control over any optimizations that may be applied
to specific selectors.

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 59

Ignoring optimizations for the moment, the machine responds to these ‘emit’ mes-
sages by sending a ‘generate’ message to the receiver, and each of the arguments in
turn, pushing each result (which the reader will have noticed by now is always returned
in d0) onto the stack in preparation for the impending dynamic bind. Once receiver
and arguments are pushed on the stack, the OOP of the selector is extracted from the
message node, loaded into d1, and a dynamic bind performed by calling ‘Send’ or
‘Super’ as appropriate.17 If the message is a send to ‘super’, implying that the binder
to be used is Super, then one extra instruction is emitted to load the OOP of the initial
class for the method lookup into a0. The only thing left to do after returning from the
called method is to pop the arguments off the stack by adding a constant to the stack
pointer.

The only difference in the code generated between the three different types of
message node is the number of arguments pushed onto the stack. In general a message
send looks like:18

generate receiver in d0
movl d0, sp@-

generate argument in d0 | repeated for
movl d0, sp@- | each argument

movl sp@(4*nArgs), d0 | recover receiver

movl #classOop, a0 | if sending to Super only!

jbsr Send | or Super
addw #4*nArgs, sp | pop args
result in d0

All types of message node (UnaryNode, BinaryNode and KeywordNode) use a common
method within the code generator to effect a message send, one parameter of which
is the number of arguments in the message send. For unary and binary nodes, the
number of arguments is implicit in the type of the node (zero and one respectively).
KeywordNodes keep an (ordered) collection of subtrees representing their arguments.
The size of this collection is passed to the code generator to indicate the required
number of arguments in the message send.

Cascaded message sends are very similar to normal sends. The code produced
to generate the receiver, initial arguments and first message send is identical to that
just given. The first difference appears in the tidying up of the stack after the initial
send, which pops one fewer words than normal, leaving the receiver on the stack as

17The correct binder is determined by inspecting the receiver: if it is a reference to ‘self’, and the
‘supered’ flag is true, then the bind is performed through ‘Super’, otherwise through ‘Send’. These
are two entry points to the same routine that simply pick a different class in which to start the method
lookup.

18This scheme does not make the number of arguments in the message send explicit, which could
cause problems if the receiver does not understand the message. See appendix E for a more detailed
discussion of this problem.

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 60

the recipient of the subsequent messages in the cascade. The arguments to the second
send in the cascade are then pushed, the receiver retrieved from further up the stack,
and a dynamic bind performed again. This pattern is repeated until the last message
has been sent, at which time its arguments and the receiver are popped of the stack.19

This is so straightforward that an example should not be necessary.

5.4.6 Method Entry and Exit

Several operations are required at the entry and exit points of methods in order to
maintain the execution environment introduced in section 5.1. MethodNodes commu-
nicate the required actions to the machine object via four ‘emit’ messages. The first is
concerned with the method entry sequence:

emitMethod: aClass selector: aSymbol
generates the method entry sequence, including linkage for the frame, home and
stack pointers, and initialization (to ‘nil’) of the temporary local variables on the
stack.20

As described earlier, to send a message a method must push the receiver followed by
the arguments, load d0 with the receiver, load d1 with the selector, and then call Send
(or Super). This leaves the arguments followed by a return address on the stack when
the destination method is entered. It is the responsibility of the called method to build
and initialize a new stack frame, and update the frame and stack pointers appropriately.

Regardless of any requirements for temporary variables, all methods must save
the two frame pointers (frame and home) before they are changed to refer to the new
context. The garbage collector expects the next word on the stack to contain the OOP
of the method (section 5.2.1), so this is pushed next. After this the method must reserve
space in the stack for any temporary variables that it requires. This can be done neatly
in parallel with the initialization of these variables by simply pushing the required
number of pointers to ‘nil’ on the stack. The method entry sequence therefore consists
of:

pea home@ | save home pointer
pea frame@ | save frame pointer
movl sp, frame | new frame pointer
pea O(36265) | method OOP
pea O(1) | zero or more pushes of NIL

| to reserve temporaries

Using this scheme, arguments are accessed by positive offsets from the frame pointer,
and temporaries by negative offsets.

19The receiver is protected while on the stack since assignments to ‘self’ are outlawed during syntax
analysis.

20The Mapper keeps track of the number of temporary variables required.

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 61

The body of a method is represented as an ordered collection of nodes, one per
statement. Sending each node a ‘generate’ message causes code for the body of the
method to be generated.

Having generated code for the body of the method, it may be necessary to supply
an exit sequence (this will be the case if no explicit return statement was present):

emitLocalReturn
generates a code sequence to perform the implicit ‘local’ return at the end of a
block or method.

The exit sequence for a method, whether the return is requested explicitly with a re-
turn statement or an implicit return of ‘self’, is generated by sending the machine an
‘emitLocalReturn’ which restores the previous stack frame and resumes execution of
the previously active method (this will be done by sending the ‘generate’ message to
the return node if an explicit return statement ended the method). This is done by un-
linking the frame pointer in the usual way, and then popping the home pointer. After
this a normal ‘rts’ will return control to the caller. The sequence is therefore:

unlk frame | deallocate stack frame
movl sp@+, home | recover home pointer
rts | return to caller

In section 5.3.1 it was mentioned that the bodies of blocks are not compiled inline,
but added to the end of the method. One more message is used by MethodNodes during
the generation of code for these blocks:

emitBlockPrelude: aBlockNode
generates the code to check the number of arguments sent to a block, copy the
arguments into the home context, and then rebind ‘self’ and ‘home’ to the values
they had in the home context.

Code for blocks is generated by sending the machine an ‘emitBlockPrelude:’ message
to generate code for argument checking and context binding, sending the BlockNode
a ‘generateBody’ message to generate the code for the block’s statements, and then
sending the machine an ‘emitLocalReturn’ to terminate the block if no explicit return
was provided.21 Blocks will be discussed in much more detail in section 5.4.8.

5.4.7 Primitive Methods

PrimitiveNodes make just one request to the code generator:

emitPrimitive: primIndex
generates the primitive dispatch code described earlier in section 5.1.4

21The generation of code for block bodies is split in this way for the benefit of the macro selectors
that inline their block arguments: the natural response of a BlockNode to a ‘generateBody’ message must
be to generate code for the statements of the block, and nothing more.

Figure 5.8: A primitive method begins with a call through the primitive
dispatch table. Primitive failure is indicated by a normal return that con-
tinues with the fail case code, whereas a successful primitive pops the
topmost stack frame and returns to the sender of the primitive message.

5.4.8 Code for Blocks

Some blocks that appear in the source (as arguments to the control selectors for ex-
ample) are optimized into inline statements; these will be discussed along with other
optimizations a little later (section 5.5.2). Of more immediate concern is the code
generated within the body of a method corresponding to a block in the source, and
(completely separately) the code generated around the statements that form the body
of the block. These block bodies are kept separate from the main body of the method,
and are appended to the generated code when the compilation of the method itself has
finished. Efficiency is the only motivation for this, since the normal jump around the
body of a block (necessary in bytecoded methods) is no longer required.

When a BlockNode is encountered, during the parse tree walk for the generation of
code for a method, it will be sent a ‘generate’ message just like any other kind of node.

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 63

In response to this the BlockNode must ask the machine to generate code to create a
BlockContext inline in the method:

emitBlock: aBlockNode
generates code to create a BlockContext inline and initialize the home context,
parent method, and initial-offset fields of the new BlockContext.

Having done this the BlockNode enters itself into the Mapper’s block set, and in doing
so ensures that it will eventually be asked to generate code for its body (by being
sent a ‘generateBody’ message) to be appended to the method (see the discussion of
MethodNodes, section 5.4.6).

Before discussing the actual code generated to implement blocks, a short digression
is necessary to explain the mechanism used for accessing the arguments passed to a
block. In section 2.1.2 it was explained that the arguments to a block, as well as any
temporaries named inside the block, are held in the block’s home context (recall the
example of setting the value of a method temporary by invoking a single-argument
block with no body). Since a block can be activated at an arbitrary time in an arbitrary
context, the usual mechanism for accessing temporaries using the frame pointer will
not produce the correct results. It is therefore necessary for a BlockContext (the object
that represents the block, and which responds to the ‘value’ messages) to keep a copy
of the frame pointer that was active at the moment the block was created. When the
block is later activated, this value is used to initialize the home pointer, through which
the arguments and temporaries within the block are accessed.22

In addition to a copy of the active frame pointer, a block context must retain two
other pieces of information: the OOP of the method in which the block originated
(since this method contains the code for the block’s body), and the offset into this
method at which the body begins.

The sequence generated to create a BlockContext thus creates a new object (by
calling Alloc with d0 containing the size of a block context), and then initializes the
class of the object and the three ‘instance variable’ fields with the active frame pointer,
the originating method, and the offset into the method (‘initial PC’) at which the body
of the block begins:

movl #24, d0 | size of BlockContext
jbsr Alloc | create a new BlockContext
movl #BlockContext, a0(4) | class field
movl frame, a0@(8) | home context
movl #methodOop, a0@(12) | originating method
movl #bodyOffset, a0@(16) | initial PC
OOP of block context left in d0

22It is entirely possible that the context to which the home pointer refers has already been deallocated
when the block is started up (section 5.4.9). The runtime system makes no attempt to detect and cope
with this situation (section 5.1.5), although the remedies are well known and thoroughly documented
([Mir87] and [DS83] for example). Such remedies do however complicate accesses to state within
non-LIFO contexts, which might have to be performed using an out-of-line routine with considerable
performance overheads. See appendix E for a more detailed discussion of this problem.

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 64

Note that for nested blocks, the home context for a new inner block is not the ac-
tive context, but the home context of the outer originating block. Therefore, in these
situations the home context is initialized slightly differently:

movl home, a0@(8) | home context

(the code generator can easily determine which sequence to generate by asking the
Mapper whether the code being generated is within a method or a block, just as it does
when deciding which frame pointer to use for temporary variable access – see below).

Each method is bound to a unique selector which implicitly determines the num-
ber of arguments expected, so it is impossible to invoke any method with the wrong
number of arguments. This is not true in the case of blocks, since they are essentially
‘anonymous’ methods with no selector to imply the number of arguments expected. It
is therefore necessary to explicitly check the number of arguments passed to a block
before the body can be executed. The number of actual arguments passed to a block
is determined by the message used to activate it (a block activated with ‘value’ must
have no arguments, a block activated with ‘value:value:’ must have two, and so on).
These (primitive) ‘value’ methods load d1 with the number of actual arguments, which
is checked during the prelude to the block body.23 If the number of actual arguments
does not match the expected number of arguments, then the ‘value’ primitive that in-
voked the block is failed (it simply returns without unlinking the topmost stack frame)
by transferring control to the VALERR routine.24

The last action that must be performed by these primitives is to load the home
pointer from the saved frame pointer in the BlockContext.

One last detail must be taken care of before code for the statements of the block
body can be generated. Since the arguments will reside in the context of the method
from which the block was activated, these must be copied back into the space allo-
cated for them in the home context (the context of the method in which the block was
created).

After this block body prelude, the BlockNode can be sent a ‘generateBody’ message
which will cause it to generate code for the statements that make up its body. Argu-
ment and temporary variable accesses must be performed through the home pointer
rather than the frame pointer, since these variables reside in the context of the defin-
ing method rather than the context of the block’s activation. The machine determines
which is appropriate by checking with the Mapper whether the current statement was
located in a method or block body.

Blocks exit by one of two mechanisms: they either provide an implicit return (of
the value of the last statement executed within them) to the context in which they were
activated (a ‘local’ return), or an explicit return to the parent of the context in which
they were created (the notorious ‘non-local’ return).

23Another approach would be to store the expected number of arguments in the BlockContext itself,
and have the ‘value’ primitives check this before activating the block.

24This is more efficient in both space and time than branching over an inline ‘rts’ if the argument
count is correct.

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 65

The code generated for a local return is identical to that generated for a return at the
end of a method (section 5.4.6). For non-local returns, the situation is slightly more
complex. The home pointer will contain the frame pointer for the context in which the
block was defined, so a return can be accomplished by moving the home pointer into
the frame pointer and performing a normal return sequence. This effectively extends
the current stack frame down to the one in which the block was defined. The non-local
return sequence is as follows:

movl home, frame | extend stack frame to defining method
unlk frame | unlink and return as normal...
movl sp@+, home
rts

So, the code for the body of a block follows this pattern:

cmpw #numArgs, d1
jne VALERR | fail if value error
movl sp@(8), home@(Arg1) | copy first arg
. | copy
. | intermediate
. | args
movl sp@(4+4N), home@(ArgN) | copy last arg
block body
movl home, frame | for non-local returns ONLY!
unlk frame
movl sp@+, home
rts

5.4.9 Block Problems

In both PS2.3 and Native Code Smalltalk-80, block contexts do not retain their creation-
time environment but rely on their home context (the context of the method in which
they were created) for this. However, since blocks are first-class objects they can be
stored for activation at an arbitrary time, possibly even after the nominal demise of
their home context. This is not a problem in implementations based faithfully on the
Blue Book, since all contexts (for both methods and blocks) are created as fully-fledged
objects which are reference-counted in the normal fashion. A method context will not
be garbage collected while one or more block contexts continue to exist which have it
as their home.

This is all well and good in theory, but most processors are designed to work well
with contexts held on a strictly LIFO stack, suffering crippling losses in performance
if they are forced to work with contexts held in a heap (such as an object memory).

Although a few very early experimental Smalltalk implementations followed the
Blue Book virtual machine definition faithfully (such as [Wol84] and the implemen-
tations described in [Kra83]), the performance losses associated with heap-based con-
texts quickly influenced the development of schemes that kept contexts on the real

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 66

hardware stack, where they rightfully belong [Mir87] [DS83].25 These machine-
friendly contexts are then promoted into full objects only when absolutely necessary.
Section 3.1.1.2 describes the ParcPlace approach in some detail.

Although far from insurmountable, these block problems were not addressed in
Native Code Smalltalk-80 which always keeps contexts in an execution-oriented form
on the hardware stack. Since none of the benchmarks used suffer from unsavory be-
havior by blocks, there was little point in implementing any mechanisms for coping
with object-based representations of contexts.26 Cures for this problem invariably rely
on the use of multiple representations for contexts, the representation at any time de-
pending on the manner of use of that context at that time. The usual conversion would
be to promote contexts from an execution-oriented form into a full object for retention
in the object memory. The mechanisms required are well understood and are tedious
rather than difficult to implement. For this reason, their implementation was consid-
ered beyond the scope of the work undertaken for this thesis. Most of the information
required about the behavior of an arbitrary BlockContext is available at compile time,
so arranging for contexts to be promoted into full objects when they exit is simply a
matter of augmenting the return sequences when relevant.

Another problem with blocks is related to non-local returns, which (for any given
block) always return control to the same context (the ‘sender’ context of the context in
which the block was created). If this context has already been returned from (which
will be the case if the block is stored and executed more than once, or even if it is exe-
cuted just once after the sender has exited through a normal series of method returns),
there will be no context for the block to return to. In Blue Book implementations this
condition is detected by storing ‘nil’ in the instruction pointer of the active context
during a return, and then checking for a ‘nil’ instruction pointer in any context being
returned to. Since it is not at all clear how this situation should be recovered from,
Smalltalk simply raises a ‘cannotReturn’ error and leaves the user to sort out the mess.

This problem would be a little more tricky to sort out in Native Code Smalltalk-80
since it is impossible to predict at compile time which contexts will be on the receiving
end of these badly behaved non-local returns. A simple but effective solution would
be to arrange for any methods that export blocks which perform non-local returns to
mark their ‘sender’ contexts at runtime, promoting these to full objects (and marking
them as having already been returned from) when they exit.

25The Blue Book implementation described in [Wol84] only ever keeps contexts in the heap, and
approximately 25% of the virtual machine’s time is spent solely in reference counting these contexts.
This may seem quite high to begin with, but this figure ignores the considerable memory-management
overheads associated with the immense rate of creation and destruction of these objects.

26This is not strictly true. An obscure problem can occur with SortedCollectionswhich keep a reference
to a ‘sortBlock’ for use in ordering the contents of the collection. Due to the nature of BlockContexts,
simply creating such a block and storing it for later use will result in a circular chain of contexts, which
in some cases could be quite large. These will not be garbage collected by the normal reference counting
mechanism, being discarded only during a full mark-sweep garbage collection. For this (and a few other
similar cases) the BlockContext is sent the ‘fixTemps’ message which makes a copy of the block’s ‘home’
context (thereby ‘fixing’ the values of any shared temporaries and arguments, hence the name) and then
‘nil’s out its ‘sender’ field, breaking the circularity.

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 67

The solutions to both of these problems require contexts to exist in two distinct
forms: in a machine-oriented form on the hardware stack for use during execution,
and in the form of a fully-fledged object in the object memory for use when a deviation
from strictly LIFO behavior is required. Various mechanisms have been developed to
cope with this duality (triplicity in the case of PS2.3, which uses three representations
for contexts) and any of them could be adopted by Native Code Smalltalk-80. Again,
the details are tedious rather than novel and so were considered beyond the scope of
the work undertaken for this thesis.

A more radical attack on these problems is probably relevant in this enlightened
era. Blocks should be implemented as full closures (this has been done in versions
2.4 and later of ParcPlace distributions, and a few notable independent implementa-
tions such as BrouHaHa [Mir87]). This brings other benefits including the separation
of block and method temporaries and arguments that happen to share names, and the
ability to provide block temporaries that obey lexical scoping rules. The problem of
multiple returns to the same context can (and should) be tackled by applying continua-
tion semantics to non-local returns, with enough runtime state being preserved to allow
these returns to be activated an unlimited number of times.27 The use of continuation
semantics in association with non-local block returns in a Smalltalk-based language is
currently being investigated; some conclusions can be found in [Wol88].

5.5 Optimizations

Apart from the usual trivial optimizations performed on the parse tree, the impor-
tant optimizations in Smalltalk are the inlining of the ‘special selectors’, the macro-
expansion of control selectors with the consequent inlining of their block arguments
(which is performed during code generation), and peephole optimizations performed
on the code after it has been generated.

5.5.1 Inlining Special Selectors

Some gains are made in bytecoded Blue Book implementations of Smalltalk by the
special treatment of 32 messages that have a large impact on overall system perfor-
mance (section 3.1.2). These 32 ‘special selectors’ include 16 arithmetic operations,
testing for equivalence (‘==’), fetching the class of an object, the ‘blockCopy:’ mes-
sage, two of the block activation messages ‘value’ and ‘value:’, and eleven commonly
sent messages (collection accessing messages, Point creation and accessing, and so
on). The default set of special selectors is shown in figure 3.1.

27Since contexts are first-class objects in Smalltalk, it is a trivial matter to implement explicitly-
managed continuations (created and invoked in a manner similar to that used in Scheme [Dyb87]) by
manually copying each context in the ‘sender’ chain on the stack. By making further copies of this
chain as necessary, the topmost context can be restarted as many times as required. This can all be
implemented directly in Smalltalk, in a handful of very short methods.

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 68

In PS2.3 these messages are not sent using the normal send bytecodes. Instead the
compiler emits one of 32 ‘special send’ bytecodes which the virtual machine recog-
nizes as a send of one of the special selectors. When the virtual machine encounters
a special send of one of the 16 arithmetic selectors it invokes the relevant primitive
in class SmallInteger directly (thus avoiding the overhead of a normal method lookup)
assuming the common case which is that the arguments are SmallIntegers. If this as-
sumption is incorrect then the primitive fails and a normal lookup is performed to
complete the send. Literature on Smalltalk commonly refers to sends of this type as
being ‘short-circuited’ to a primitive.

Five out of the remaining 16 selectors are treated in a similar fashion, causing the
appropriate primitive to be invoked after a few checks on the class of the receiver
(these checks are fairly straightforward, and are shown in the definition of ‘commonS-
electorPrimitive’ on page 619 of [GR83]).

The remaining eleven special sends cause a normal message lookup and serve only
to save space in the method’s literal frame, and to reduce the size of the method by one
byte per special send. Consequently they are used for the eleven most commonly sent
messages. Since these sends serve only to specify the selector implicitly, it is trivial
to change the set of common selectors treated in this way.28

A similar optimization can be applied in a native-code Smalltalk implementation,
where the back-end is at liberty to produce whatever code it sees fit in order to im-
plement the operation requested when it receives an ‘emit’ message.29 The code to
perform the action associated with a special selector is compiled inline, with some
suitable class check on the receiver and arguments (if any). The selectors chosen for
this treatment in native-code Smalltalk are the arithmetic operations and comparisons
on SmallInteger quantities. The code produced for all arithmetic operations follows the
same pattern:

receiver on stack, argument in d0
btst #0, d0 | SmallInteger receiver?
jne fullSend
btst #0, sp@(3) | SmallInteger argument?
jne fullSend
perform operation, popping stack, result in d0
jra continue

fullSend: movl d0, sp@-
movl sp@(4), d0
movl #O(selector), d1
jbsr Send
addql #8, sp

continue:

28The compiler and runtime system communicate through an array with a well-known OOP (the
class variable ‘SpecialSelectors’ in SystemDictionary) which holds pairs of Symbols and SmallIntegers
representing the special selectors themselves and the number of arguments they require.

29The code generator is the correct place to choose implementation strategies for any particular op-
eration, including the inlining of special selectors, since it is the code generator that has the intimate
knowledge of the target architecture’s capabilities necessary for this choice.

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 69

Bit zero of receiver and argument will be set if they are SmallIntegers. If either argument
is not a SmallInteger, then the inlined version is abandoned and a full send performed. If
both argument and receiver are SmallIntegers, then the relevant operation is performed
inline.30

The code produced for the comparisons is similar, but the inlined operation itself
must result in ‘true’ or ‘false’ being left in d0:

receiver on stack, argument in d0
btst #0, d0
jeq fullSend
btst #0, sp@(3)
jeq fullSend
cmpl sp@+, d0
s?? d0 | see section 6.5.1.2
andw #8, d0
addw #TRUE, d0
extl d0
jra continue

fullSend: perform full send as before, result comes back in d0
continue:

The only other selectors considered for inlining are those for the creation of Points,
and the two accessing messages ‘x’ and ‘y’.31 Point creation is straightforward:

abscissa second on stack, ordinate on top of stack
movl #16, d0 | size of a Point
jbsr Alloc | allocate object
movl #POINT, a0@(4) | class field
movl sp@+, a0@(12) | ordinate
movl sp@+, a0@(8) | abscissa
new point in d0

The class of the receiver should first be checked, since ‘@’ is only defined for Numbers.
However, this check is not performed by the ParcPlace virtual machine which will quite
happily construct a Point with arbitrary objects as the abscissa and ordinate, so Native
Code Smalltalk-80 does not perform the check either.32

30Although this may appear to break the semantics of the language, in that redefining the behavior of
a special arithmetic operation in class SmallInteger will have no effect at all at runtime, it is completely
commensurate with the language definition: any true Blue Book implementation would behave this
way, due to the short-circuiting of the special arithmetic selectors.

Note that the inline code shown in the text does not check for overflow; this could be done in software
(a branch to the full send) or in hardware (the 68000 series supports an overflow trap triggered by the
‘trapv’ instruction).

31These three selectors were targeted in both the ParcPlace implementations and in Native Code
Smalltalk-80 due to the importance of Points in the system. Points pervade the entire user interface and
are used heavily during any graphic, character scanning, or bit block-transfer operation.

32This has been corrected in more recent versions of Smalltalk-80.

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 70

Simulating a send of ‘x’ or ‘y’ to a Point requires a check on the class of the
receiver with the relevant field being extracted explicitly if the check succeeds. As
with all other inlined operations and comparisons, if the the class check fails then a
full send is performed:

point in d0, perform ‘aPoint x’
btst #0, d0 | SmallInteger receiver?
jne fullSend
movl obtab@(d0:l), a0 | memory offset
cmpl #POINT, obmem@(4,a0:l) | class == Point?
jne fullSend | no, do full send
movl obmem@(8,a0:l), d0 | yes, get abscissa
jra continue

fullSend: movl d0, sp@-
movl #O(selector), d1 | ‘x’
jbsr Send
addql #4, sp

continue:

5.5.2 Inlining Control Selectors

The special treatment of the control selectors is motivated by two considerations.
Firstly, the ‘pure’ implementation of the looping constructs (‘whileTrue’ and related
selectors) uses recursion as a means of iteration. While conceptually very clean, this
approach is inefficient due to both the unnecessary overhead of a message send (of the
control selector itself) on each iteration of the loop, and the unnecessary use of stack
space which increases linearly with the number of iterations performed. This last point
is especially important in the parts of the system (such as the ControlManager) which
rely on infinitely repeating loops.

The second consideration is the frequency with which the conditional constructs
(‘ifTrue:’ and similar selectors) are used. Not only is conditional execution common
in its own right, but it is also used to terminate the recursion of the looping constructs.
While the latter point may seem to be obviated by the macro-expansion of loops, this
is not always the case since control selectors (both looping and conditionals) can only
be inlined safely when their arguments are literal blocks; the use of control constructs
with variable arguments will thwart the macro-expansion mechanism, causing loops
to be executed recursively and conditionals to execute methods in True or False.33

The code fragments produced for all the control selectors are obvious, but are
included here for completeness. Sending the ‘whileTrue’ message to a block causes
that block to be executed until its value is ‘false’:

33In a standard image (with none of the macro selectors disabled in the compiler) this recursion will
never happen, regardless of the nature of the arguments. This is achieved by resisting any temptation
to pass block variables directly as arguments to a control selector. Instead the block is explicitly sent
a ‘value’ message from inside a literal block argument, triggering the macro expansion mechanism.
Inspecting a standard image for all senders of ‘whileTrue:’ will convince even the most skeptical reader
of this fact.

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 71

start: code for body of literal block
cmpl #TRUE, d0
jeq start | repeat while result ‘true’
cmpl #FALSE, d0
jne NONBOOL | non-boolean receiver!
moveq #NIL, d0 | result is always nil

Similarly for ‘whileTrue:’, which executes its block argument until its receiver evaluates
to ‘false’:

start: code for body of receiver block
cmpl #TRUE, d0
jne done
cmpl #FALSE, d0
jne NONBOOL
code for body of argument block
jra start

done: moveq #NIL, d0 | result is always nil

The code for ‘whileFalse’ and ‘whileFalse:’ is similar, with the TRUE changed to FALSE
in the comparison.

Sending the ‘ifTrue:’ message to a Boolean causes the block argument to execute
if the receiver is ‘true’, returning the value of the block as the result. Otherwise the
block is not executed and the result is ‘nil’:

generate receiver in d0
cmpl #TRUE, d0
jne fail
cmpl #FALSE, d0
jne NONBOOL
code for body of argument
jra done

fail: moveq #NIL, d0
done:

The code for ‘ifTrue:ifFalse:’ is similar, with the loading of ‘nil’ into d0 replaced by the
code to execute the second argument:

generate receiver in d0
cmpl #TRUE, d0
jne fail
cmpl #FALSE, d0
jne NONBOOL
code for body of first argument
jra done

fail: code for body of second argument
done:

Again, for the inverted cases (‘ifFalse:’ and ‘ifFalse:ifTrue:’), the comparisons are made
against FALSE instead.

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 72

5.5.3 Peephole Optimizations

Once code has been generated for the entire method (including any appended block
bodies), a pass is made over the code to remove several unpleasant relics of the rather
naı̈ve convention of leaving the results of all expressions (no matter how trivial) in a
standard place. There are two such cases to be dealt with: move chains occur where a
value (a variable, for example) is moved into the ‘result’ register d0, only to be moved
immediately to another location (perhaps during an assignment). The raw generated
code fragment is

movl fromLocation, d0
movl d0, toLocation

The second case is similar, but arises when the second of the instructions is a ‘push’.
This case is common (for example) when pushing simple values (literals or variables)
onto the stack as arguments for a message send. The raw generated code is

movl fromLocation, d0
movl d0, sp@-

Since the second situation is just a special case of the first, both cases can be dealt with
simultaneously by transforming the general case

movl fromLocation, d0
movl d0, toLocation

into the equivalent

movl fromLocation, toLocation

There is one more frequent inefficiency which arises, most often in unary message
sends within the code that sets up the receiver in both the topmost stack location and
the register d0. Idle moves (moves that overwrite a value with itself)

movl aLocation, aLocation

are removed entirely from the generated code.
These three cases account for all of the inefficiencies in the generated code that can

be dealt with easily by peephole optimization. More global ‘long-range’ optimizations
are possible to improve the code further, but these were felt to be outside the scope of
a code generator that was purposefully kept as simple as (reasonably) possible.

CHAPTER 5. 68020 NATIVE CODE SMALLTALK-80 73

5.6 Summary

Smalltalk-80 is a fairly simple language to compile. Parse trees consist of only a
(relatively) few types of node, and a naı̈ve code generator can be constructed with
little difficulty.

Due to the message passing semantics of the Smalltalk-80 language, many of the
standard parse tree optimization tricks cannot be applied. For example, it is almost
impossible to apply common subexpression elimination in Smalltalk-80 due to the
possibility that the types (classes) of the variables in each of the subexpressions may
change unpredictably.34

This places much of the responsibility for producing efficient code on the code
generator, which cannot rely on the usual high-level optimizations for help. The naı̈ve
code generator described in this chapter pays little attention to this requirement beyond
trying to cache a couple of useful pointers in registers when possible. Even this is of
limited use due to the dynamically allocated object memory used by Smalltalk-80; the
code generator must make the pessimistic assumption that the address of every object
could change each time a new object is allocated or a message sent.

The naı̈ve generator of this chapter also makes use of a peephole optimization pass
to remove the usual types of redundancies found in code generated by simple one-
or two-pass recursive-descent compilers. This optimization accounts for a surprising
proportion of the average compilation time for a method (section 7.3), and while im-
proving the quality of the code substantially it still leaves the code far from that which
should be achievable.

34Some work has been done on producing type inference systems for Smalltalk-80 [JGZ88] [ST84]
and Smalltalk-like languages [CU89] [CUL89] that allow this kind of optimization to be used, but a
practical and mature system has yet to emerge. Type inferencing is beyond the scope of this thesis and
will not be considered further.

Chapter 6

Delayed Code Generation

I have a great subject to write upon, but feel keenly my literary incapacity to make it easily
intelligible without sacrificing accuracy and thoroughness.

Sir Francis Galton.

The previous chapter described a compiler and runtime environment for a Smalltalk
implementation in which methods are compiled into 68020 machine code for direct
execution on stock hardware, rather than into bytecodes for interpretation by a vir-
tual machine. Two purposes were served in the process: a runtime environment was
described which will continue to be used (unmodified) in this chapter, and a simple
compiler and code generator were described, illustrating (rather naı̈vely) the compila-
tion of Smalltalk for that environment.

In this chapter we will develop a more sophisticated ‘delayed’ code generator for
Smalltalk. Smalltalk is an ideal vehicle for the introduction of delayed code generation
since it is such a small language, making it feasible to describe the workings of an
entire code generator in the space available, yet the compiled code produced by a
naı̈ve approach exhibits many inefficiencies that are common to many languages.

This chapter begins with a review of the flaws inherent in the raw code produced
by the naı̈ve code generator, followed by a short analysis of the primum mobile of these
deficiencies in order to throw some light on possible methods with which to counter
them. The strengths and weaknesses of these solutions are considered to identify the
most promising, which will be developed into a code generator in the major central
portion of the chapter.

This code generator will present an interface to the parse tree nodes which is very
similar to that described in the previous chapter, the major difference being that an
‘emit’ message sent to the machine object will return a value which affects the future
course of code generation. Although the parse tree nodes will still determine the or-
der and behavior of the operations performed by the generated code, by sending the
appropriate ‘emit’ messages to a machine object in the necessary sequence, they will
never directly manipulate or have any knowledge of the content or structure of these

74

CHAPTER 6. DELAYED CODE GENERATION 75

values.1 The nodes themselves need only have contact with them in a capacity as
‘value holders’ on behalf of the code generator, which alone will be responsible for
interpreting and manipulating them. The ‘generate’ messages in the parse tree nodes
will need slight modification before they can be used with a delayed code generator,
but the changes are in the fine details rather than in the overall logical structure. This
organization provides a very clean split between the front-end (in effect, the parse tree
itself) and the back-end (the machine object) of the compiler, allowing back ends for
various architectures to be plugged into the same front end with immense ease.2

The main part of this chapter begins with a discussion of these mysterious values,
and what they represent, in the context of code generation for Smalltalk-80 targeted
to the M68020. Following the format of the previous chapter, the generation of code
for values represented by leaf nodes will be explained before moving on to operations
performed on these values which are the province of the interior nodes of the tree. The
last of the sections dealing exclusively with Smalltalk explains the generation of code
for the optimized messages: the arithmetic and other special selectors, and the control
constructs.

After a thorough treatment of delayed code generation for Smalltalk, the scope of
the discussion will be expanded for a brief introduction to the use of the technique
in the compilation of C. C will provide a vehicle for the discussion of delayed code
generation in the context of a much wider class of languages, permitting a discussion
of its relationship to language features and resource management tasks that are not
inherent in the compilation of a language as simple as Smalltalk.

6.1 Shortcomings of the Naı̈ve Code Generator

The ‘naı̈ve’ code generator of the previous chapter performs poorly in many circum-
stances for a variety of reasons. Peephole optimization is necessary to eliminate ineffi-
ciencies such as move chains and redundant moves, during an assignment for example:

a ← 42

movl #42, d0 | generated for ‘42’
movl d0, frame@(-16) | generated for ‘a ←’

The generated code also contains many other inefficiencies (due to the committal of
values to physical locations, usually a register, at the time of parsing the values) which
are not realistically removable by peephole optimization. Not only is the code still
far from ideal, but the process of peephole optimization itself slows the compiler
considerably.3

1This kind of value is often referred to as a ‘cookie’.
2To generate code for different architectures from the same parse tree, all that needs to be changed

is the (machine object) argument to the initial ‘generate’ message sent to the MethodNode.
3On average, 61% of the total compilation time (of which 71% is taken by code generation) is

devoted to peephole optimization in the naı̈ve compiler (see chapter 7).

CHAPTER 6. DELAYED CODE GENERATION 76

The code fragments for inlined arithmetic and comparison operations can also be
improved. These take their inputs from the top of stack and a register, leaving the result
in the register. Even if one operand is a SmallInteger literal, a test is still generated on
its class since information regarding the class of the value will be lost before code for
the operation itself is generated.

Even where the value of a comparison is not used as a real object (in the case of
a loop iteration test, for example) a proper object is generated, tested against ‘true’
or ‘false’, and then immediately discarded. It is not possible to plant a ‘compare and
branch’ sequence since the code generator has no knowledge of the final use for a
value (even a logical one), so must plant code to construct a real object regardless of
its use:

(a == b) ifTrue: [doSomething]

movl frame@(-8), d0 | ‘a’
movl d0, sp@-
movl frame@(-12), d0 | ‘b’
cmpl d0, sp@+ | ‘==’ (inlined)
seq d0 | [-1B 0B] if [== ∼=]
andw #8, d0 | [8W 0W] if [== ∼=]
addw #TRUE, d0 | [16W 8W] if [== ∼=]
extl d0 | [TRUE FALSE] if [== ∼=]
end of comparison, start of ‘ifTrue:’
cmpl #FALSE, d0
jeq FAIL
cmpl #TRUE, d0
jne NONBOOL
doSomething
jra CONT

FAIL: movl #NIL, d0
CONT: end of ‘ifTrue:’

Even after peephole optimization, assuming that the value of the ‘ifTrue:’ is unused,
and that the contents of d0 are not required beyond the test, and that the peephole
optimizer is capable of dealing with this situation, the best that a naı̈ve code generator
could produce is:

CHAPTER 6. DELAYED CODE GENERATION 77

movl frame@(-8), sp@-
movl frame@(-12), d0
cmpl d0, sp@+
seq d0
andw #8, d0
addw #TRUE, d0
extl d0
cmpl #TRUE, d0
jeq FAIL
cmpl #FALSE, d0
jne NONBOOL
doSomething
jra CONT

FAIL: movl #NIL, d0
CONT: end of ‘ifTrue:’

Over half of this code is redundant! If it were possible to generate a ‘compare and
branch’ sequence, then the eight instructions between the ‘seq’ and the ‘jne NONBOOL’
could be replaced by a single ‘jne FAIL’ instruction. The resulting code is

movl frame@(-8), sp@-
movl frame@(-12), d0
cmpl d0, sp@+
jne FAIL
doSomething
jra CONT

FAIL: movl #NIL, d0
CONT: end of ‘ifTrue:’

which is only one instruction away from being acceptable (the three instruction com-
pare sequence could be reduced to two).

The delayed code generator described in this chapter addresses and solves these,
and similar, problems using a general technique that improves all generated code,
rather than attempting to special-case a handful of situations in a peephole optimizer;
in fact, the need for peephole optimization on the generated code is removed entirely.
Code fragments can also be generated to take advantage of the final use of a value.
For example, a comparison will only create a reference to a real object if the actual
physical value of the comparison is needed later. Inlined operations benefit greatly
from the technique described here since information regarding the class of a value is
preserved for use in the generation of any code that refers to it (this has an enormous
impact on the efficiency of the special arithmetic selectors). It must be stressed that
the obviation of peephole optimization is by no means the only important benefit of
the technique.

CHAPTER 6. DELAYED CODE GENERATION 78

6.2 Classifying the Problem

The problems described above can be viewed in several different ways; each way of
viewing the problem suggests a different solution.

In many of the cases described, the generated code was less than ideal because
the future uses of a value were not known at the time the node representing the value
was visited during code generation. Since code generation proceeds as a side-effect
of visiting the node, and must be completed before leaving the node, the most general
case has to be accommodated every time. This means that even for literals we must
generate a move instruction to place them in the ‘expression result’ register.

The solution in this case is to pass information from a particular node down the
parse tree to inform its children of the intended future use of their values. This in-
formation could be passed either by decorating the tree with inherited attributes, or
in a more object-oriented style by generating code in the children by sending them
different messages depending on the desired use of the generated values. This is not
an ideal solution for several reasons. In the case of literals which could be used as
immediate operands, it would still be necessary to ask a child to place the value of
the literal in some particular physical location, such as a register. Also, a child might
have no choice but to generate code to place a value in a location which differs from
the one requested, and in doing so cause extra instructions to be generated to move the
value into the requested location even though the original location for that value may
have been just as useful a place to leave it.

An alternative view of the problem is that the code associated with a value is
generated before the ‘optimal time’, thereby committing that value to a register or stack
location where it may never be required to reside. The ‘optimal time’ for committing
a value to a location will be the first use of that value, when information regarding
the manner of its use is available. In contrast to the approach above, information
regarding the values associated with child nodes is passed up the parse tree in the
form of synthesized attributes describing the location (if any) and other attributes of
the values. Nodes higher up in the tree receive this information and can modify the
instructions they generate accordingly. For example, by deferring the code to move a
literal value into the expression result register, it may be possible to use the value of the
literal directly as an immediate operand in a generated instruction without ever moving
it into a register or onto the stack. Also, since most machine-level instructions can
accommodate a variety of operand locations, the children can be left to produce their
results in the most ‘natural’ place. In some situations there are artificial constraints
placed on the range of locations in which a value can be generated.4 These valid
locations will more than likely be suitable operand locations for operations generated
by nodes higher up in the parse tree, so the choice of which location to use should be
left to the children rather than the parents.

4When performing a division on the PDP-11 the quotient can only be generated in a register with
an even number (r0, r2, r4 or r6). Non-orthogonalities in the instruction set of the MC68020 also
constrain some operands to be in registers rather than in a memory location.

CHAPTER 6. DELAYED CODE GENERATION 79

The code generator developed in this chapter follows the second of these alterna-
tives, and this technique alone should be sufficient for many languages. In the case of
Smalltalk, however, where logical values (the results of relational expressions) may be
used either as values in their own right or merely as a condition for a test in a control
constructs, it is necessary to use a small amount of inherited information regarding the
future use of a logical value.5 If recovery from inlined relational operations on non-
SmallIntegers (by performing a full message send for non-numeric Magnitudes) were
not necessary, the use of synthesized attributes alone would suffice.6

6.3 Operand Descriptors

The rather poor quality of the code generated using the straightforward techniques of
the previous chapter necessitated peephole optimization to remove inefficiencies such
as move chains and dead code. These deficiencies were introduced because the code
generator had no choice but to generate code to place the ‘result’ from each node into a
known physical location before code generation could continue in that node’s parent.7

In the case of the naı̈ve code generator described in the previous chapter, this known
location was the register d0.

The time at which code is generated in a single-pass compiler is usually the time at
which a node is visited in a parse-tree walk, or the time at which a procedure associated
with the parsing of a particular terminal or non-terminal symbol is executed in single
pass recursive descent compiler. What is required is a technique for delaying the
generation of code associated with fetching a value until that value is actually used
in some way, at which time we can match the location of the value to an operand
addressing mode. This mechanism is implemented by passing operand descriptors up
the tree from leaf nodes, each operand descriptor representing a particular value or
location for an operand. This can be thought of as partial code generation, where the
code associated with a single operand (rather than a whole instruction) is generated
as an operand descriptor, and passed up the tree as a synthesized attribute to a parent
node which will use the operand when generating code for an entire instruction.

So, an operand descriptor is a compile-time representation for some particular legal
machine operand. These operands may be addressable quantities such as memory or
register locations, literal quantities such as integers, or even abstract quantities such
as the representation for truth values within the processor’s condition codes (flags, or

5The ParcPlace compilers make a similar distinction between expressions whose value will be re-
quired later and statements whose value is not required; parse nodes are sent either ‘emitForValue’ or
‘emitForEffect’ accordingly. This is normally only used to generate bytecodes that implicitly ‘pop’ the
stack after performing some operation such as a message send.

6To compile languages such as C as efficiently as is possible with a single-pass recursive descent
compiler or tree-walking code generator, inherited information is not needed at all, as will be seen in
section 6.6.

7This is true for both interior and exterior (leaf) nodes of the tree, although it is mostly the code
generated at leaf nodes which is the cause of move chains and other artifacts which require removal by
peephole optimization.

CHAPTER 6. DELAYED CODE GENERATION 80

status) register.8 Typically, operand descriptors will be created at leaf nodes and passed
up the parse tree (whether it be explicit or implicit) to interior nodes that will use them
as operands; these nodes in turn will pass an operand descriptor up the parse tree as
their result. The operand descriptors returned from interior nodes will be either one
of their original ‘synthesized’ operand descriptors returned by a child (for example
the right- or left-hand operand of an assignment), a newly created operand descriptor
(maybe one representing the register destination of an operation), or (as we shall see
later) an operand from a child node modified in some suitable way. In the simple case
of exterior nodes, the operand descriptors returned as a result of code generation in
these nodes are simply representations of the operands that would have been moved
into d0 as the last step in code generation at those nodes in the naı̈ve code generator.

In some circumstances it may be necessary to decide between two possible operand
descriptors which represent the same value. Such ‘aliasing’ situations can occur, for
example, after an assignment when both the left- and right-hand operand descriptors
represent the same value. Since the operand descriptor representing the result of this
assignment may be used in the generation of another instruction later on, it makes
sense to ensure that the one chosen to be returned to the parent node corresponds to
the operand with the lowest overhead when used in an instruction.9 A ‘cost’ is therefore
associated with each particular type of operand descriptor. In situations where a choice
must be made between several aliased operand descriptors, the one with the lowest cost
wins. For example, the cost of using a literal or register is usually lower than the cost
of using a memory location, and the cost of using an absolute location is lower than
using one with an indexed or indirect addressing mode. A ‘league table’ of operand
costs is easy to construct based on information supplied by manufacturers for their
microprocessors.

6.3.1 Representation of Operand Descriptors

The naı̈ve code generator of the previous chapter made use of two hierarchies, classes
from one representing the instructions available in the target architecture and the other
representing operands within those instructions. Since operand descriptors represent
legal machine operands, the classes in the hierarchy rooted at M68Operand will serve
perfectly well as operand descriptors for the purposes of code generation in a Small-
talk compiler. A corollary to this is that operand descriptors can be used directly to
represent the operands of instructions in the internal representation of the generated
code.

Since operand descriptors always represent a legal machine operand, they will be

8Some languages, C in particular, associate logical meaning to physical values and vice versa. Rather
than complicating the situation, this dual interpretation of each and every value simplifies delayed code
generation, as will be discussed in section 6.6.3.

9In both Smalltalk and C, statements are merely expressions whose result is discarded. An assign-
ment can therefore form part of larger enclosing expression, and so must have an overall value. In both
of these languages the value of an assignment is the value of either the right- or left-hand sides after
the assignment has taken place.

CHAPTER 6. DELAYED CODE GENERATION 81

written simply as the operand itself enclosed in square brackets. A valid operand
descriptor could thus be written:

[a1@(16,d1:l)]

6.4 Code Generation with Operand Descriptors

In the development of the delayed code generator, we will proceed in a manner similar
to that adopted for the naı̈ve code generator of the previous chapter, by considering
the abstractions provided by the machine object for the parse nodes for each of the
operations supported in Smalltalk. Code generation at leaf nodes, which will be pre-
sented first, is trivial since these nodes have no descendents and are consequently only
sources of operand descriptors; it is not until interior nodes are considered, which need
to manipulate ‘synthesized’ operand descriptors passed up from their descendants, that
the technique becomes interesting.

Interior nodes are associated with assignment, message sending, BlockContext cre-
ation, and returns from either methods or blocks. These will be dealt with in that order,
ignoring inlined and macro-expanded selectors. The last section that deals exclusively
with Smalltalk will discuss code generation for inlined special selectors and control
constructs, for which very efficient code can be produced with relatively little effort.

6.4.1 Operand Descriptors generated at Leaf Nodes

We defer the generation of code for operands wherever possible by encoding values as
operand descriptors, which represent either the value itself (in the case of literals) or
the physical location (register number, memory address, etc.) in which the value can
be found. Following this convention, figure 6.1 shows the output for leaf nodes from
the naı̈ve code generator of the previous chapter and from the delayed code generator.
Each entry in this table is explained in a little more detail below.

At a leaf node representing a literal, code is generated by sending the machine
object an ‘emitLiteral:’ message with the literal itself as the argument. In the naı̈ve
code generator, code was generated on the instruction stream to load the literal into
the expression result register. Rather than appending an entire instruction to the code
stream, the delayed code generator returns the appropriate operand descriptor to the
parse tree node which sent the ‘emitLiteral’ message:

M68000>>emitLiteral: aLiteral
"M68LiteralOop value: aLiteral

The generated code will be an empty sequence of instructions returning an operand
descriptor that encodes the value of the literal itself:

[#literal]

CHAPTER 6. DELAYED CODE GENERATION 82

Code Generator
Node Naı̈ve Delayed

Literal movl #literal, d0 [#literal]

Argument movl frame@(8+4N), d0 [frame@(8+4N)]

Temporary movl frame@(-4-4N), d0 [frame@(-4-4N)]

Instance movl frame@(16), d1 movl frame@(16), d1
movl obtab@(d1:l), a1 movl obtab@(d1:l), a1
movl obmem@(8,a1:l), d0 [obmem@(8,a1:l)]

Global movl obtab@(O(1622)), a0 movl obtab@(O(1622)), a0
movl obmem@(12,a0:l), d0 [obmem@(12,a0:l)]

Figure 6.1: Result of generating code at leaf nodes for both the naı̈ve
code generator of the previous chapter, and the delayed code generator
of this chapter.

Similarly, at a leaf node representing a temporary (or argument) variable it is not
necessary to generate code to load the value of the variable into the result register,
instead an operand descriptor is created representing the location of the variable and
returned to the parent node:

M68000>>emitTemporary: index
"M68IndirectValue

base: (mapper inBlock ifTrue: [HomePointer] ifFalse: [FramePointer])
offset: index + 1 * -4

The argument to the ‘emitTemporary:’ message is the index of the variable, which will
be, for all intents and purposes, independent of the architecture for which code is being
generated.

A typical descriptor representing, for example, the third temporary variable would
be:

[frame@(-16)]

This pair of examples, for generating operand descriptors for literals and temporary
variables, illustrate the relationship between the parse tree nodes and the machine
object. The parse nodes use the semantic information in the parse tree to decide which
operations to request from the code generator, in the form of ‘emit’ messages sent to the
machine object with appropriate arguments taken from the state held within the nodes

CHAPTER 6. DELAYED CODE GENERATION 83

themselves. The code generator in turn translates these ‘emit’ requests into machine-
dependent operand descriptors, extracting the necessary information from the ‘emit’
arguments.10 Again, ‘self’ and ‘super’ are treated as any other argument variable (as
in section 5.4.3). The definitions of the ‘emit’ messages called from the other types of
leaf node will not be shown, since they follow a very similar pattern to those above.

Operand descriptors for instance variables are generated by sending the machine
object an ‘emitInstVar:’ message, with the index of the instance variable as the argu-
ment. Instance variables are a little more complicated than temporaries since they
require the object memory address of the receiver to be in a suitable base register. The
code to initialize this register is generated (if necessary — see below) before returning
an operand descriptor representing the physical location of the variable as an offset
into the receiver:

movl frame@(16), d1 | receiver
movl obtab@(d1:l), a1 | start of receiver in memory
[obmem@(8,a1:l)] | first inst. var, offset 8

After the first reference to an instance variable, the base register a1 can be treated as
a cached pointer to the start of the receiver in memory, provided the receiver does not
move due to garbage collection. (The machine object itself is responsible for main-
taining a flag reflecting the state of this cache.) This is easy enough to arrange, since
the code generator knows precisely at which points in the generated code potential
garbage collection can occur.

The garbage collector only ever runs during an attempt to allocate an object. The
object allocator is called in three situations: when a BlockContext or Point is created
in line, or when an object is created as the result of a ‘new’ message. Invalidating
the cached copy of the receiver in the former case is trivial. The latter is also trivial
in the absence of any ‘inter-procedural’ optimizations since any message send poten-
tially involves the creation of a BlockContext or a new object, so the cache should be
invalidated on every message send. Once invalidated, the receiver base register must
be regenerated during the next access to an instance variable.11

An example, although prematurely demonstrating the code produced by the de-
layed code generator, will make this clearer:

instVarA ← instVarB size

10Note that this mechanism also removes the need for special treatment of the left-hand side of an
assignment, since the result of generating code for a variable is not to load that variable’s value, but to
create and return an operand descriptor representing the variable’s location.

11This was the meaning of the ‘cached base of ‘self’’ in figure 5.2 of section 5.1.2.

CHAPTER 6. DELAYED CODE GENERATION 84

movl frame@(12), d1 | oop of receiver
movl obtab@(d1:l), a1 | pointer to receiver
movl obmem@(12,a1:l), sp@- | ‘instVarB’
movl sp@, d0 | receiver
movl #O(91), d1 | ‘size’
jbsr Send | base in a1 invalidated
addql #4, sp
movl frame@(12), d1 | regenerate receiver
movl obtab@(d1:l), a1 | pointer in a1
movl d0, obmem@(8,a1:l) | instVarA ←
[d0] | result of assignment

The cached base of ‘self’ in a1 may be destroyed during the message send, so it must
be regenerated during the second instance variable access (to ‘instVarA’).

Global variables are similar to instance variables, being represented as an offset
from a pointer into the object memory. However, there is no advantage in caching this
pointer so it might as well be generated by the leaf node itself, which subsequently
returns an operand descriptor based on the pointer:12

movl obtab@(O(associationOop)), a0
[obmem@(12,a0:l)] | value field

6.4.2 Assignment

The simplest operation in Smalltalk is assignment, so we will use this as the first
example of the generation of code for an actual operation using operand descriptors.

Consider the statement ‘tempN ← 42’. The parse tree consists of an AssignmentN-
ode with two children: a TemporaryNode for the left- and a LiteralNode for the right-hand
sides of the assignment.

As was explained earlier, an operand descriptor represents either a literal value or
the physical location in which to find the value it represents. Thus for assignment it
is simply necessary to generate operand descriptors for the right and left hand sides
of the assignment (the source and destination values, respectively) and then emit a
‘move’ instruction to copy the value represented by the source operand descriptor into
the location represented by the destination operand descriptor.

Upon receipt of a ‘generate’ message, an AssignmentNode will send another ‘gener-
ate’ to the right hand side which will (no matter how complex the expression involved)
return an operand descriptor representing the result (or more precisely, the location of
the result); the node stores this operand descriptor (implicitly, on the stack, in this
particular case) for later use. The left hand side is then also sent a ‘generate’ message
which returns an operand descriptor representing the location to be assigned to. The

12In a typical Smalltalk image only 0.6% of global variable accesses would benefit from a cached
pointer to the association, compared with the 25.7% of instance variable accesses which benefit from
the technique. Pointers to globals are therefore not cached in the same manner as pointers to the receiver
since doing so would have an essentially undetectable effect on performance. With one global reference
every two methods on average, the space that would be saved by caching pointers is also negligible.

CHAPTER 6. DELAYED CODE GENERATION 85

only remaining thing to do is to ask the machine object to emit a ‘move’ instruction
to complete the assignment. Again, the definition of the ‘generate’ message will be
shown for this operation (to illustrate the technique as fully as possible), but not for
later operations for which code is generated in a similar manner.

AssignmentNode>>generate: aMachine
| source destination |
"aMachine

emitMove: (rhs generate: aMachine)
to: (lhs generate: aMachine)

It would appear that the aliasing situation which occurs as the result of any assignment
is ignored here, but this is not the case since the ‘emitMove’ message must return
one of its arguments as its overall result, so the choice of which argument (source
or destination) to return to the parent is made by the machine while completing the
‘emitMove’:

M68000>>emitMove: src to: dst
src = dst

ifFalse:
[codeStream nextPut: M68move source: src dest: dst].

"src cost < dst cost ifTrue: [src] ifFalse: [dst]

which will append a move instruction to the code stream:

move #I(42), frame@(-4-4N)

The last statement in the ‘emitMove’ method chooses which of the two possible
operand descriptors to return as the result of generating code for the assignment. The
choice is based on the ‘cost’ associated with each type of operand descriptor. In this
case the operand descriptor for the assignment as a whole should be [#42] since an
immediate quantity involves less overhead when used as an operand compared to a
frame-pointer relative memory location.

Figure 6.2 shows the parse tree, operand descriptors and generated code for this
example.

Comparing the code produced by the delayed code generator, even for this trivial
example, to that which the naı̈ve compiler would have produced, it should be apparent
that the move chain which would have required removal by peephole optimization
is no longer present in the final code.13 The leaf node no longer needs to generate
an entire instruction, and can generate just the required operand and pass that up the
parse tree to be used later by the assignment node which has much more information
available regarding what to do with it.

13The more alert reader will probably have been slightly suspicious at the ‘src = dst’ test in the
‘emitMove’ method, which is the point in the delayed code generator at which a ‘virtual’ peephole
optimization is performed, removing the possibility of a redundant move due to the assignment of a
value to itself.

Figure 6.2: Parse tree, operand descriptors, and generated code for the
assignment ‘tempN ← 42’

6.4.3 Message Sends

The code produced for normal dynamically-bound message sends is comparable with
that produced by the naı̈ve compiler of the previous chapter. The most significant
benefits are only seen when the inlining of the special selectors is considered. This
will be discussed in a short while.

The parse tree and code generator enjoy a very close, almost synergistic, rela-
tionship. The code generator has intimate knowledge of the capabilities of the target
architecture and can therefore choose the best implementation strategy for any partic-
ular operation requested of it by a parse tree node via an ‘emit’ message. Conversely
the parse tree has an enormous amount of semantic knowledge regarding the values
used in the program, both the ways in which they are to be used and in the flow of
data through the program. It is the successful, and intimate, marriage of these two
very rich sources of information that gives the delayed code generator the ability to
generate surprisingly efficient code with relatively little effort.

Message sending is a prime example of this relationship. Message nodes effect
message sends by sending the machine object the appropriate ‘emit’ message: ‘emi-
tUnary’, ‘emitBinary’ or ‘emitKeyword’.14 The arguments to these ‘emit’ messages are
the nodes themselves; just as the code generator entrusts the parse nodes with operand
descriptors so that they can draw on their semantic knowledge to use the operand
descriptors in the most beneficial manner, so the parse nodes sometimes entrust them-
selves to the code generator so that it can decide the best time to forward the ‘gener-
ate’ messages to any descendants that those nodes might have. In the case of message
sends, those descendants are the message’s arguments which will receive ‘generate’
messages from the code generator rather than from their parent node directly.

The principles for code generation for message sends are the same in each of the
three cases, so we will concentrate on keyword messages (an arbitrary choice). The
KeywordNode responds to the ‘generate’ message by sending the machine object an

14Splitting the generation of code for message sends into three operations, depending on the type of
message being sent, is merely a convenience to avoid some rather unpleasant ‘procedural-style’ case
analysis in the code generator.

CHAPTER 6. DELAYED CODE GENERATION 87

‘emitKeyword:’ message with itself (the KeywordNode) as an argument. As before, the
‘generate’ method is almost trivial:

KeywordNode>>generate: machine
"machine emitKeyword: self

Dynamically-bound message sends are still constrained by the runtime conventions
described in section 5.1.3. Arguments must still be placed on the stack, and the result
of a message send is still expected in the usual d0. Assuming the message selector
and arguments do not make the send suitable for optimization (the message is not,
for example, a control selector with block arguments), the code generator responds to
the ‘emit’ message by sending a ‘generate’ message to the receiver and arguments in
turn, pushing each result on the stack in preparation for the dynamic bind. The send
is completed in exactly the same manner as was described in the previous chapter
(section 5.4.5):15

M68000>>emitKeyword: message
self push: (message receiver generate: self).
message arguments do: [:arg | self push: (arg generate: self)].
"self

emitDynamicSend: message selector
size: 1 + message arguments size
supered: message receiver isSuper

Code for cascaded message sends is implemented in the same manner as for the
naı̈ve compiler. A CascadeNode contains the initial receiver, and an OrderedCollection
of message nodes forming the cascade. The receivers in these message nodes are
ignored for the purposes of code generation.

A CascadeNode responds to the ‘generate’ message by asking the machine object
to ‘emitCascade:’ with the CascadeNode itself as the argument. The machine generates
code for the receiver, and then propagates the ‘generate’ message to each message of
the cascade in turn. The result of the last of these propagated ‘generate’s is returned
from the CascadeNode as its overall result.

6.4.4 Method Entry and Exit

The code sequences produced for method entry and exit by the ‘emitMethod:selector:’
message, and the code for block preludes produced by the ‘emitBlockPrelude:’ message
are identical to that given in section 5.4.6. There really is only one way to perform
these operations, which have no intrinsic result and are therefore not affected by the

15The ‘push: something’ message is defined for convenience to append a ‘move something, sp@-’
onto the code stream. The ‘emitDynamicSend:size:supered:’ message loads d0 with the receiver (from
further up the stack using the ‘size’ argument) and d1 with the selector, then calls Send or Super as
appropriate and cleans up the stack, as explained in section 5.4.5.

CHAPTER 6. DELAYED CODE GENERATION 88

use of operand descriptors or delayed code generation. The associated ‘emit’ messages
therefore do not return an operand descriptor as their result.

The ‘emitLocalReturn:’ method now takes a single argument representing the value
to be returned. Before generating identical code to that given in section 5.4.6, a ‘move’
instruction is generated (if necessary) to place the result in d0.

6.4.5 Primitives and Blocks

Since the runtime support is unchanged, the interface to the primitives is the same
for code generated by both the naı̈ve and delayed code generators. Primitives are
explained fully in section 5.4.7.

The code generated for BlockContext creation in response to an ‘emitBlock’ message
is also as given in section 5.4.8. In the case of blocks, however, their treatment in
conjunction with the inlining of the control constructs delivers some impressive results.
This rather more involved area is the subject of the next section.

Both primitives and blocks have an associated return value. The associated ‘emit’
methods are altered slightly to return an operand descriptor representing the location
of any returned value that construct might have. For example, the ‘emitBlock’ message
returns the descriptor [d0], since the OOP of the newly created BlockContext is left in
this location by the generated code fragment.

6.5 Optimizations

The generation of code for the control constructs and special arithmetic selectors is
where the delayed code generator begins to offer some tangible improvements in the
compiled code. The quality of the final code is much higher than could be realized
with any amount of peephole optimization, and is possibly beyond the reach of any
optimizations operating solely on the ‘raw’ generated code of the naı̈ve code generator.

This section deals with the most involved area of the code generator: the mecha-
nisms for inlining the special selectors, and macro-expanding the control constructs.
It starts by explaining a mechanism for the treatment of inlined arithmetic selectors,
introducing the concept of the deferred message send; the effort of understanding the
inlining of arithmetic selectors is worth expending since the explanations of the other
inlined operations will be much easier to follow once the arithmetic selectors are un-
derstood. Inlined arithmetic selectors have much in common with inlined arithmetic
comparisons, so these will be covered next in conjunction with a new type of operand
descriptor representing logical (rather than physical) values which are bound to the
state in the machine’s condition codes register.

Although the use of operand descriptors to delay the generation of code associ-
ated with values improves the code produced for assignment, message sending and
blocks by eliminating move chains and similar deficiencies that are trivial to remove
by peephole optimization, it is not until attention is given to the special selectors (the
arithmetic selectors for example) and macro-expanded selectors (the conditional and

CHAPTER 6. DELAYED CODE GENERATION 89

looping constructs), that the full benefits of the application of delayed code generation
to Smalltalk can be realized.

Most of the power associated with delayed code generation with respect to control
constructs comes from the treatment of relational operators and logical values. By
introducing the notion of a conditional 2-way branch based on the logical ‘truth’ of an
operand descriptor, and then passing this information down the parse tree to inform a
child of the intended use of its value (which can be thought of as an inherited attribute
for the child), very efficient code can be produced for all of the control constructs.

6.5.1 Inlined Special Selectors

The treatment of inlined selectors can be much more effective with delayed code gen-
eration. In cases where there are literal arguments to inlined selectors, there is no
need to test the class of those arguments in the generated code; if the compile-time
check succeeds then there is no need for a check at run-time, and if the compile-time
check fails then the inlined send can be abandoned completely and code for a normal
dynamically bound send generated. This is especially important in the arithmetic and
relational operations involving SmallInteger arguments. The generic cases shown in
section 5.5.1 test the class of receiver and argument for the common case, and code
to perform the operation was emitted inline whenever possible. If either the receiver
or argument failed the class check then a full message send was performed for the
operation.

6.5.1.1 Arithmetic Operations

In the naı̈ve code generator, by the time the compiler had generated code for the re-
ceiver and argument, all that was known about them was their locations. For a unary
message the receiver was in d0; for binary messages the argument was in d0 and the
receiver on the top of the stack. Code had to be generated to check the class of both the
receiver and any argument at runtime before an inlined operation could be performed.
In the delayed code generator, operands are represented by operand descriptors which
either represent a literal or some machine location in which the value resides. When
compiling code for inlined selectors, it is easy to check the class of literal receivers and
arguments at compile time, obviating the need for the check at run time. For example,
the inlined version of the addition operation generates operand descriptors (and maybe
some code) for both receiver and argument, checking for the possibility of the receiver
being corrupted by the evaluation of the argument and taking action if necessary, and
only bothering to generate code to check the classes of non-literals. If either argument
is a non-SmallInteger literal then the inlined send can be abandoned completely and a
full send used in place. If either argument is a SmallInteger literal, then there is no need
to check its class a run time.

A simple example will make this clear. Consider the statement

CHAPTER 6. DELAYED CODE GENERATION 90

M68020>>emitInlinedBinary: message
| rpushed rcv arg fail needsend cont |
rpushed ← false.
(rcv ← message receiver generate: self) isInteger

ifFalse:
[message argument isSend

ifTrue:
[rpushed ← true.
self push: rcv]].

(arg ← message argument generate: self) isInteger
ifTrue:

[rcv isInteger
ifTrue:

["M68Literal value:
(rcv value

perform: message selector
with: arg value)]]

ifFalse: [arg ← self inD1: arg].
rcv isInteger ifFalse: [rpushed

ifTrue: [rcv ← self pop: d0]
ifFalse: [rcv ← self inD0: rcv]].

self
emitBranchNotInteger: rcv and: arg to: (fail ← self newLabel);
emitInlinedOp: message selector rcv: rcv arg: arg;
emitLabel: (cont ← self newLabel);
defer: message rcv: rcv arg: arg start: fail resume: cont.

selfCached ← false.
"d0

Figure 6.3: The full definition of ‘emitInlinedBinary:’. See the text for a
detailed description of its operation.

| a b |
...
a ← a + 1

The BinaryNode will send an ‘emitBinary:’ message to the code generator which checks
if the selector is in the set of selectors suitable for inlining, and that neither receiver
nor argument is a non-SmallInteger literal. If these conditions are not met, a normal
dynamic bind is performed.16 Otherwise the code generator emits code for the inlined

16If either the receiver or argument is a non-SmallInteger literal then the class check would fail on
every occasion, so the inlining can be abandoned even before it is begun.

CHAPTER 6. DELAYED CODE GENERATION 91

version by sending itself the ‘emitInlinedBinary:’ message. This method is long and
complicated. The full definition is given in figure 6.3, and explained in detail below.

Once the code generator decides to go ahead and inline an arithmetic message, the
situation becomes quite complicated. The receiver is sent a ‘generate’ message, which
returns an operand descriptor representing its location or value. If the receiver is not
a simple literal, and the argument is a kind of message send, then the receiver must be
considered volatile; it may depend on machine a resource (such as a base register) that
could be corrupted during the evaluation of the argument. In such cases the receiver
must be pushed onto the stack to protect it while the argument is evaluated.

The argument can now be sent a ‘generate’ message, and if it does not represent a
literal it is moved into d1. If both receiver and argument are literals, then the required
operation could be performed at compile time and the result returned in an operand
descriptor as the result of code generation for the message send. However, this assumes
that the compile time and run time meanings of the message are the same, which may
not be a reasonable assumption.17

The receiver (whether pushed or not) is moved into d0 which gives us a consistent
position whatever the types of the operands: receiver in d0 and argument in d1. The
code generator next emits code to perform class checks for the receiver and argument
by sending itself ‘emitBranchNotInteger:and:to:’ with the two operand descriptors and a
new unique label as arguments; the class check is omitted for one of these if it happens
to be a SmallInteger literal. The label (‘fail’) is used for the destination of the branch in
the class checks if the argument is not a SmallInteger. The code to perform the operation
is appended to the code stream (by sending ‘self’ the ‘emitInlinedOp:’ message), leaving
only the recovery (from class check failure) to be handled.

The ‘emitInlinedOp:’ method generates the instructions necessary to perform the
inlined operation, based on the selector and the operand descriptors for the receiver
and argument. It is the last step in the generation of code for the inlined case so the
result is left in d0, which is necessary since this is where the full send will leave the
result if a class check fails. This method is simple, and the details of its operation are
not particularly interesting. For completeness, its definition is shown in figure 6.4.

Rather than generate code for the full send along with the code for the inlined
version, it will be deferred until the end of the method. This is done for several reasons.
Not only does it make the code much easier to read, it removes a branch instruction
that would otherwise have been necessary after the inlined operation, to skip over the
full send. As we shall see later, the provision of ‘deferred sends’ for recovery from
inappropriate classes reaching inlined operations provides a powerful mechanism when
used during the inlining of relational operations for control constructs.

The label ‘fail’ was already created to tag the first instruction in the full send. We
now need to register a ‘deferred’ send which will be compiled at the end of the method,
along with the bodies of blocks. This will perform a full dynamic bind, returning the

17If the message is a candidate for inlining, and both receiver and argument are SmallInteger literals,
then it is a reasonable assumption since the operation will be inlined at runtime anyway. In this case
performing the operation at compile time implements constant folding during code generation, and so
is indeed done.

CHAPTER 6. DELAYED CODE GENERATION 92

M68020>>emitInlinedOp: op rcv: rcv arg: arg
...

op == #+ ifTrue:
[self inD0: (rcv isInteger ifTrue: [rcv noTagBit] ifFalse: [rcv]).
arg isInteger ifTrue:

[codeStream nextPut: (M68add source: arg noTagBit dest: d0).
"d0].

codeStream nextPut: (M68add source: arg dest: d0).
rcv isInteger ifFalse:

[codeStream nextPut: (M68sub
source: (M68Literal value: 1)
dest: d0).

"d0].
...

Figure 6.4: The part of ‘emitInlinedOp’ that deals with inlined addition.
The receiver is moved to d0 (if it wasn’t already there), stripping the
tag bit if it was a SmallInteger. If the argument is a SmallInteger then
the receiver was a non-literal, so the argument is added to the receiver
directly, without the tag bit, the result of the addition being left in d0
with the tag bit (inherited from the receiver) in place. Otherwise an ‘add’
instruction is generated to perform the addition, and if both receiver and
argument were non-literals, the excess due to the addition of the two tag
bits is subtracted. Note that overflow handling has again been ignored.

result in d0 as usual. Obviously, an extra label will be required to which control will
be transferred after this send has completed, to rejoin the method immediately after
the inlined operation. This label (‘cont’) is created and appended to the code stream.
Deferred message sends will assume an important rôle in the generation of code for
the conditional constructs, as we shall see in section 6.5.2.2

It may seem from the above that efficiency could be improved by not insisting that
the result of the inlined operation be returned in d0. However, the result must be left
in this location since the operation may require a full send if the argument and receiver
are not both SmallIntegers.

The final generated code for inlined operations will be as follows:

CHAPTER 6. DELAYED CODE GENERATION 93

arguments in d0 and d1
btst #0, d0 | SmallInteger?
jeq FULL | no
btst #0, d1 | SmallInteger?
jeq FULL | no
perform inlined operation, result in d0

CONT: rest of method…

deferred sends…
FULL: movl d0, sp@-

movl #I(1), sp@-
movl sp@(4), d0
movl #selector, d1
jbsr Send | perform full send
addql #8, sp
jra CONT | rejoin method body

6.5.1.2 Relational Operations

When supplied with SmallInteger arguments, the relational (comparison) operations can
be inlined in much the same manner as the arithmetic operations. Having performed
the inlined operation, a small additional code sequence must be generated to convert
the result of the operation (which is implicit in the machine’s condition codes register)
into a proper object, ‘true’ or ‘false’, as follows:

result of comparison in condition codes
scc d0 | [-1B 0B] if [true false]
andw #8, d0 | [8W 0W] if [true false]
addw #TRUE, d0 | [16W 8W] if [true false]
extl d0 | [TRUE FALSE] if [true false]

This sequence makes use of the fact that the object pointers for ‘true’ and ‘false’ are
immutable, well-known and consecutive, as follows. The ‘scc’ instruction either sets
its (byte-sized) argument to 0 or −1 depending on the condition cc specified. If the
condition is satisfied then the lowest eight bits of d0 will be set, otherwise cleared.
‘and’ing this with 8 gives either zero or the difference between consecutive object
pointers in d0. Adding ‘TRUE’ to this leaves the object pointer to either ‘true’ or ‘false’
in d0, since ‘false’ immediately follows ‘true’ in the object table. The final step extends
this from a word quantity into a long, massaging the result into a valid object pointer.

Apart from these four extra instructions, only one other minor difference from the
inlining of arithmetic operations is needed. When registering the deferred message
send, a slightly different version of the ‘defer’ message is used in order to perform
the necessary check for non-Boolean results. However, to avoid overcomplicating the
present discussion, the explanation will be left until section 6.5.2.2.

Figure 6.5: Implementing conditional execution and looping via a fork
in the flow of control. (a) Forking to one of two possible code fragments
to implement conditional execution. (b, c) Forking backwards to a
point in the code already executed to implement looping, both ‘repeat’
and ‘while’ loops respectively.

Forking is implemented by adding two new ‘generate’ message to parse nodes,
‘generateForkTrue: aLabel for: aMachine’ and ‘generateForkFalse: aLabel for: aMachine’.
Most nodes will inherit default definitions from ParseNode, as follows:

ParseNode>>generateForkTrue: destination for: machine
"machine

emitBranchTrue: (self generate: machine)
to: destination

The definition of ‘emitBranchTrue: value to: label’ is almost obvious, and causes the
following code to be placed on the code stream, unless the first argument is an operand
descriptor representing a literal:

CHAPTER 6. DELAYED CODE GENERATION 95

cmpl #TRUE,value
jeq label
cmpl #FALSE,value
jne NONBOOL

In the case where the ‘emitBranch:’ argument is an operand descriptor representing a
literal, the appropriate branch of the fork can be determined at compile-time. If the
literal meets the forking condition than an unconditional branch to the specified label
is generated. If the literal is non-Boolean then a compile-time ‘mustBeBoolean’ error
is raised due to the illegal receiver.

A similar default definition is also present for ‘generateForkFalse:for:’, sending
‘emitBranchFalse:to:’ to the machine instead. These defaults simply propagate a ‘gen-
erate:’ message to the receiver, and then cause the machine to emit code to check the
result against ‘true’ and ‘false’. The result is either a branch to the specified label if
the ‘forking’ condition is met, a branch to ‘NONBOOL’ if the value is non-Boolean, or
no branch at all.

These new ‘generate’ methods are overridden in two classes. For BinaryNodes,
which implement relational (comparison) operations, it may be possible to inline the
required operation. Rather than sending the usual ‘emitBinary:’ message, the code
generator is sent an ‘emitForkTrue:’ (or ‘emitForkFalse:’ as appropriate) with the Bina-
ryNode itself as the first argument. This leaves any decisions about inlining to the code
generator, which is only required to implement the desired forking behavior based on
the result of the binary operation.

BlockNodes are used extensively as the receivers in ‘while’ constructs. On receiving
a ‘generateFork’ message they will propagate a normal ‘generate:’ message to each of
their statements except the last, to which they will propagate the ‘generateFork’ mes-
sage originally received. There are two points to note here. Firstly that this generates
the code for the block’s body inline, rather than deferring it for compilation after the
body of the method. This is acceptable since blocks will only ever be sent a ‘gen-
erateFork’ message when they are used to control loop iteration. Secondly, and for
the same reason, the final statement in the block body will most likely be a relational
operation. Passing the original ‘generateFork’ message on to this statement will cause
the comparison and forking operations to be inlined if at all possible, as described in
the preceding paragraph.

6.5.2.2 Deferred Message Sends Revisited

Deferred message sends were introduced in section 6.5.1.1 as a mechanism for storing
dynamic binds for code generation at a later date. There was no particular reason to
introduce this mechanism (apart from the aesthetic consideration mentioned) at the
time, but we will now see how this mechanism can help in the recovery from inlined
comparison operations used as the condition in some control construct.

When used as the test in a conditional construct, an inlined comparison operation
should be able to make use of a ‘compare and branch’ sequence. It may seem, in the
light of possible class check failures, that this is impossible since the result returned

CHAPTER 6. DELAYED CODE GENERATION 96

would be a real object in d0 if the full send were invoked. However, we can extend
the deferred send mechanism slightly to take advantage of the situation, and allow the
inlined version of any comparison operation to use a compare and branch sequence.

The vital observation is that any conditional construct splits the flow of control
between two possible paths, depending on some logical value. If an inlined comparison
is possible then this value will be in the machine’s condition codes register; if a full
send is required then the value will be ‘true’ or ‘false’ returned in d0. In either case,
there is a point in the code corresponding to the test passing, and another corresponding
to the test failing. In a compare and branch sequence, the branch will transfer control
to one of these points or fall through to the other, which will be immediately after the
branch instruction. If we record labels for both of these points while registering the
deferred send it will be possible to generate code to test d0 against ‘true’ and ‘false’
(and perform the non-Boolean receiver check) as part of the deferred send, transferring
control to the appropriate point in the body of the method.

This is accomplished by expanding the ‘resume:’ argument of the message deferral
mechanism (see figure 6.3) into two arguments, one being the label connected to the
code associated with the test passing and the other with the test failing:

machine
defer: message
rcv: receiver
arg: argument
true: passLabel
false: failLabel

From here, it is a trivial step to see how the code generator produces the following
code for inlined comparison operations and their recovery from class check failure:

perform test, branch to FULL on class check failure
otherwise result implicit in condition codes register
j?? FAIL | fork

PASS: success code
jbra CONT

FAIL: failure code
CONT: rest of method

...
FULL: perform full send for recovery, result in d0

cmpl #TRUE, d0
jeq PASS
cmpl #FALSE, d0
jeq FAIL
jbra NONBOOL

The next sections explain how the these forking mechanisms are used during the gen-
eration of code for the conditional and looping constructs.

CHAPTER 6. DELAYED CODE GENERATION 97

In section 6.5.1.2 it was mentioned that inlined relational operations used a slightly
different version of the ‘defer’ method than that used by inlined arithmetic operations;
one which also provided a check for nonBoolean results before continuing the execution
of the method after recovery from a class-check failure. The actual version used is that
just given, but with both ‘true:’ and ‘false:’ arguments being the same ‘resume’ label.

6.5.2.3 Code for Conditionals

As with previous examples, we will concentrate on the optimization of one particular
message from the class of optimizations under consideration. In this case, the inlining
of the message

a == 1 ifTrue: [a ← 0]

will be explained.
A ‘generate’ message arriving at a KeywordNode causes the code generator to re-

ceive an ‘emitKeyword:’ message with the KeywordNode as the argument. The code
generator will inspect the selector, receiver and argument to determine if the message
is a candidate for inlining. In this case it will find the selector is ‘ifTrue:’ and the
argument a literal block, and will therefore inline the operation by sending itself an
‘emitIfTrue’ message with the KeywordNode as the argument.

M68000>>emitIfTrue: message
"Generate inlined code for ‘ifTrue:’; message argument is a
literal block. Return value of block if executed, otherwise nil."
| else cont |

Figure 6.5(a) shows how conditional execution can be accomplished using the
forking mechanism described in the preceding section. The first thing to be done is to
generate a new label (for the ‘fail’ branch) and to ask the receiver to ‘generateForkFalse’
to this label (the receiver plays the part of the ‘test’ expression in figure 6.5(a)):

message receiver generateForkFalse: (else ← self newLabel) for: self.

This will take care of generating the inlined code to perform the comparison, branching
to ‘else’ if the test condition fails. The body of the block can now be compiled inline,
moving the result of the last statement into d0 for any enclosing expression to use:

self inD0: (message arguments first generateBody: self).

Assuming the test failed and the block was not executed, it will be necessary to return
‘nil’ as the result of the ‘ifTrue:’, so an instruction must be generated to accomplish
this. If the last statement in the block was not a return, then a branch will be needed
to skip over this instruction:

CHAPTER 6. DELAYED CODE GENERATION 98

message arguments first returns
ifFalse: [self emitBranchTo: (cont ← self newLabel)].

self
emitLabel: else;
inD0: (self emitNil).

cont isNil ifFalse: [self emitLabel: cont].

Note that the branch after the block body over the ‘else’ case is not needed if the
body of the block finished with a return statement. Sending a BlockNode the message
‘returns’ checks for such a return statement. The ‘emitNil’ message does not generate
any code, but merely returns an operand descriptor representing the constant ‘nil’.

All that remains to be done is to return an operand descriptor to whoever sent the
KeywordNode the original ‘generate’ message. Since both branches of the conditional
return their result in d0, this is straightforward:

"d0

noindent The full definition of the ‘emitIfTrue:’ method is given in figure 6.6.

M68000>>emitIfTrue: message
"Generate inlined code for ‘ifTrue:’; message argument is a
literal block. Return value of block if executed, otherwise nil."
| else cont |
message receiver generateForkFalse: (else ← self newLabel) for: self.
self inD0: (message arguments first generateBody: self).
message arguments first returns

ifFalse: [self emitBranchTo: (cont ← self newLabel)].
self

emitLabel: else;
inD0: (self emitNil).

cont isNil ifFalse: [self emitLabel: cont].
"d0

Figure 6.6: The full definition of the ‘emitIfTrue’ method. See the text
for a description of its operation.

The code generator methods associated with the other conditional constructs are
very similar. For ‘emitIfTrueIfFalse’, the only change is that two literal blocks are
expected as the message arguments, and the body of the second is generated inline
rather than the single instruction to move ‘nil’ into d0. The two other cases with the test
reversed for ‘ifFalse:’ and ‘ifFalse:ifTrue:’ are identical, but with the forking condition
reversed (in other words, the ‘generateForkFalse’ is changed to a ‘generateForkTrue’).

CHAPTER 6. DELAYED CODE GENERATION 99

6.5.2.4 Code for Loops

There are four looping constructs: ‘whileTrue’ and ‘whileFalse’ for repeat style loops,
and ‘whileTrue:’ and ‘whileFalse:’ for while (and ‘n1

2’) style loops.18

The former pair are detected by the code generator in response to the ‘emitUnary:’
message and, like the conditional constructs, depend on the selector and a literal block
receiver for inlining to be attempted. The latter pair are detected, like the conditionals,
in response to ‘emitKeyword:’ and require both receiver and argument to be literal
blocks.

The inlining of ‘whileTrue’ is straightforward. First, a label is generated to mark
the entry point to the loop:

emitUnaryWhileTrue: message
| top |
self emitLabel: (top ← self newLabel)

The receiver (a literal block) is then sent a ‘generateForkTrue’ message, which causes
it to generate code for the statements of its body, looping back to the ‘top’ if the result
of the last is ‘true’:

message receiver generateForkTrue: top for: self

The last thing to be done is to return an operand descriptor for the result, which is
always ‘nil’ for a loop:

"self emitNil

The generation of code for ‘whileFalse’ is similar, with the ‘emitForkTrue’ changed
to an ‘emitForkFalse’.

The generation of code for ‘whileTrue:’ follows a similar pattern, but with the
existence of a loop body (the block argument) taken into consideration. Again, the
first thing to do is to generate a label to mark the top of the loop followed by the body
of the test block, branching out of the loop if the condition is not met:

emitKeywordWhileTrue: message
| top exit |
self emitLabel: (top ← self newLabel).
message receiver generateForkFalse: (exit ← self newLabel) for: self.

Next to be generated is the body of the loop, followed by a branch back to the ‘top’,
the label marking the end of the loop, and finally the return value:

18For those who never had the privilege of attending a lecture course by Charles Lindsey, an ‘n 1
2 ’

loop is one whose exit is in some place other than the beginning or end of the loop body.

CHAPTER 6. DELAYED CODE GENERATION 100

message arguments first generateBodyFor: self.
"self

emitBranch: top;
emitLabel: exit;
emitNil

Changing the ‘generateForkFalse’ to a ‘generateForkTrue’ produces the definition of
‘emitKeywordWhileFalse’.

6.5.3 Other Optimizations

As with the naı̈ve code generator, the only other operations considered for inlining
are the two Point accessing messages ‘x’ and ‘y’, and the Point creation message ‘@’.
The code generated for inlined Point creation is identical to that given in section 5.5.1.
The code generated for inlined sends of ‘x’ and ‘y’ is similar to that given in the same
section, but now makes use of the deferred send mechanism.

Section D.4 illustrates the code produced by the delayed code generator described
in this chapter.

6.6 Code Generation for Other Languages

The remainder of this chapter will introduce delayed code generation techniques in
the compilation of a more ‘traditional’ procedural language: C. A full and general
treatment of delayed code generation applied to the compilation of C is far beyond
the scope of this thesis, so the discussion will be limited to a brief description of the
application of the technique with a few examples.

6.6.1 Operand Descriptors for Other Addressing Modes

C is a relatively low-level language, allowing the programmer to express quantities and
operations that have much in common with the capabilities of the majority of complex
instruction set computers. For this reason it generally exercises most of the available
addressing modes and instructions provided by architectures such as the MC68020.

The work done by Cordy, Holt and others on data descriptors [Hol87] [CH90]
attempts to generalize the representation of operands to cover almost every addressing
mode provided by a wide range of CISC architectures. Although code generation
based on this approach has some benefits, it suffers from an inherently multi-pass
nature in which the last few passes translate the highly generic operations and operands
into real instructions and simpler operands, legal for the instructions to which they
are attached. In many cases this involves introducing extra instructions to explicitly
perform ‘effective address’ calculations that are implied by the generic operands but
not supported by the hardware directly.

A delayed code generator constrains all operand descriptors to be within the range
of valid operands for the instructions that they are associated with. In doing so it

CHAPTER 6. DELAYED CODE GENERATION 101

removes the need for these later passes to the extent where a single-pass compiler is
possible. This has a further important consequence in that the semantic gap between
the parser and code generator is closed immensely, allowing a much greater amount of
‘high level’ semantic information to be used to provide simple but effective solutions
to resource management problems such as register allocation.

6.6.2 Operand Sizing

The 68020 supports four operand sizes: 8-, 16-, 32- and 64-bit words. The actual
size of the quantity encoded in an operand descriptor is not needed in Smalltalk since
all values (both object pointers and SmallInteger literals) are implicitly 32-bit words.
In C however, such information is essential if an operand descriptor is to be treated
correctly. We therefore tag each operand descriptor with its size in bytes, so a long-
word variable would be represented as:

[_a]4

The size information is used by most instructions, which come in several variations
depending on the size of their operand(s). The situation is slightly more complicated
when it comes to dyadic operations (arithmetic or move instructions) which have to
take appropriate action if the operands do not have equal sizes. For example, moving
a byte quantity from a register into a long-word variable would necessitate an extra
‘extbl’ instruction to extend the byte quantity into a long-word quantity before the
‘movl’ instruction could be generated. The details of these conversions are intricate
but not difficult to derive, and so will not be discussed further.

6.6.3 Logical Values

In the Smalltalk-80 code generator presented in the first half of this chapter, all values
were manifest in some physical location. Operations such as ‘forking’ to implement
the control constructs (which rely on values implicit in the condition codes register)
were achieved atomically with a single message sent to the code generator, and resulted
in a concrete value being returned (either the value of the last statement in a block, or
‘nil’). It was not necessary to represent logical values implied by the condition codes
in an operand descriptor.

Languages such as C associate both a physical (numerical) and a logical interpre-
tation with all values. It is therefore necessary to extend operand descriptors to cater
for both of these interpretations simultaneously. This is done by adding an attribute
representing a logical condition to each operand descriptor. When an instruction is
generated that will set the condition codes according to its result, the operand descrip-
tor is tagged with the condition which would imply the result was ‘true’.

For example, an assignment in C yields a true result if the quantity moved is non-
zero. Since the ‘move’ instruction used to effect the assignment will set the condition
codes to reflect its source operand, we can tag the returned data descriptor with the
condition ‘ne’ (a non-zero result implying ‘true’). This tells the code generator that

CHAPTER 6. DELAYED CODE GENERATION 102

emitting a ‘jne’ instruction will cause a branch if the result of the assignment was
‘true’. More usefully, for the results of comparisons we can build an operand descriptor
that has no concrete value but instead represents the result in the condition codes of
the comparison operation. For example, the comparison ‘a < b’ would generate the
following code:

movl _a, d0
cmpl _b, d0
[]lt

If used as the test in an ‘if’ statement, the next instruction would branch on the logical
inverse of the condition in the operand descriptor:

jge failLabel

This mechanism has several rather appealing consequences. The logical ‘not’ op-
erator can be applied to an operand descriptor by simply inverting its associated logical
condition. Literals whose operand descriptors are generated in leaf nodes automati-
cally have their logical condition set to ‘t’ for non-zero and ‘f’ for zero quantities,
making the generation of optimal code for constructs such as

while(1)doSomething;

quite straightforward. (In this case the test would generate no code at all, and the loop
body would terminate with an unconditional jump back to the empty test.)

Depending on the type of physical value represented, an operand descriptor may
not have an associated logical meaning. For example, at a leaf node representing the
variable ‘a’, the logical interpretation can only be determined at run-time. Whenever
a branch instruction is required based on an operand descriptor with no logical inter-
pretation attached to it, an explicit test instruction must be generated. For example,
the code produced in response to

aMachine emitBranchTrue: [_a]

would be:

tstl _a | [_a] → [_a]ne

jne destination

Conversely, when a physical interpretation is required of a purely logical value, an
instruction must be generated to coerce the implied value into an explicit value. For
example, ‘a= (b < c);’ will end by sending the code generator the message

aMachine move: []lt to: [_a]

which generates:

CHAPTER 6. DELAYED CODE GENERATION 103

sge d0 | set (byte) on inverse of condition
extbl d0 | set (long) on inverse of condition
addql #1, d0 | set (long) on condition
movl d0, _a | do the assignment
[d0]ne

leaving 0 or 1 in ‘_a’ if the condition was false or true, respectively. The coercion of
logical into physical values in this manner must be performed by the code generator
on any operand descriptor used in a source position.

6.6.4 Coercion of Operand Types

Most CISC architectures do not support fully orthogonal addressability of operands.19

The MC68020 is no different to the majority in this respect, with all dyadic instructions
placing some limitations on the combination of operands which can be used. The
‘move’ instruction is the most general, allowing any addressing mode in the source field
but only “data alterable” modes in the destination field.20 All other dyadic instructions
impose a much stricter set of constraints, such as only allowing a general addressing
mode in one position if the other position contains a data register.

It is therefore inevitable that there will be occasions when an attempt will be made
to generate an instruction with an illegal combination of operand types. These situa-
tions must be resolved by the code generator in a systematic and sensible manner. The
obvious place for the information regarding the legal combinations of operand types
is in the class of each particular instruction. The best time at which to perform any co-
ercion of operand types from an incompatible set into a compatible set is less certain,
but a good choice would seem to be at the time of the instantiation of the instruction
itself. This can be illustrated with an example based on the ‘add’ instruction.

The ‘add’ instruction allows only the following combinations of operand types:

source destination
<ea> dN
dN <ea>

<ea> aN
#<data> <ea>

This is typical of many MC68020 dyadic instructions. It is clear that if the operands
presented for addition are not of a legal combination, then moving the source into a
data register will certainly remove the conflict.

To show the operation of this abstraction mechanism in practice, we shall work
through a short example. Consider the statement ‘a= (b+= c)’. The right hand side,
‘b+= c’, will be compiled first, by sending the code generator the message

19Again, the wonderfully notable exception to this is the PDP-11 which even allows immediate
operands in both source and destination positions (this actually has some practical uses!).

20See [Mot85, table B-1 and page B-101].

CHAPTER 6. DELAYED CODE GENERATION 104

aMachine add: [_c]4 to: [_b]4

The abstract addition operation is defined in M68000 as:21

M68000>>add: src to: dst
| s |
s ← ((src isImmediate or: [dst isReg])

ifTrue: [src]
ifFalse: [self inDReg: src]).

codeStream nextPut: (M68add source: s release dest: dst).
"dst fix

The combination of operand types presented for addition is not legal, so an instruction
must be generated to coerce the source into an acceptable operand type before gen-
erating the actual ‘add’ instruction. This is achieved by the ‘inDReg’ message to the
machine, passing the unacceptable operand as the argument. The ‘inDReg’ message is
defined as:22

M68000>>inDReg: operand
| dReg |

operand isDReg ifTrue: ["operand].
codeStream nextPut:

(M68move source: operand release dest: (dReg ← self newDReg).
"dReg

Once the operand is in the data register, the ‘add’ instruction can be generated from
within the ‘add:to:’ method, and the destination operand returned as the result:

movl _c, d0
addl d0, _b
[_b]ne

4

The result of the addition is [_b]ne
4 , which forms the source for the assignment:

aMachine move: [_b]ne
4 to: [_a]4

which causes the instruction

movl _b, _a
[_a]ne

4

to be generated.
Although trivial, this example illustrates the approach to the generation of code

by abstract operations. Abstract operations defined for other instructions, which will
have to constrain the operand types in the final generated code, will follow a similar
format.

21The meaning of the ‘fix’ and ‘release’ messages will be explained in sections 6.6.5 and 6.6.7.1
respectively.

22The ‘newDReg’ message will be discussed in section 6.6.7.1.

CHAPTER 6. DELAYED CODE GENERATION 105

6.6.5 Operands with Side Effects

Quite a few CISC architectures support addressing modes which have side effects
when used. The MC68020 provides two such modes, address register indirect with
post-increment and pre-decrement. After using one of these modes, the associated
address register will be either incremented or decremented by the size of the data
referred to. Operand descriptors representing these modes that have been used in a
generated instruction cannot be returned as the result of an operation since they will
not refer to the same location once their side effect has been incurred. It is therefore
necessary to ‘fix’ any side effects associated with operand descriptors before returning
them for further use.

For example, an operand descriptor representing a long-word quantity at the ad-
dress held in a3 with an implied post-increment would be represented as:

[a3@+]4

Once used in an instruction, the operand descriptor cannot be used as a reference to
the same value. By returning instead the result of sending it the ‘fix’ message, it has a
chance to return another operand descriptor that does represent the original location.
In this example, the result of sending the ‘fix’ message would be

[a3@(-4)]4

which represents the original value.

6.6.6 Argument Order

Some language implementations (including most implementations of C) require the
arguments to functions to be pushed in reverse order, starting with the last argument
and working towards the first. In C this is usually necessary since functions support
variable numbers of arguments (‘printf()’ for example), and pushing the arguments
in the actual order they occur in a function call can create severe implementation
difficulties and/or inefficiencies.23

If an explicit parse tree is available then this is not a problem, since the branches
representing the arguments are simply visited in reverse order. However, in a single-
pass compiler this could cause problems, since the arguments must be parsed strictly
left to right. Delayed code generation offers an effective solution to this problem.

When parsing and generating code for a function call, each argument will ulti-
mately be represented as an operand descriptor. These operand descriptors not only
represent the value of the argument, but also own and protect any resources (such as

23This concerns the problem of finding the address of the first function call argument in the stack. This
is trivial if the arguments are pushed in reverse order, but which otherwise depends on the number of
actual arguments at runtime. Since the number of actual arguments cannot be determined at compile-
time, some additional mechanism (such as the passing of an invisible last argument containing the
argument count) is required.

CHAPTER 6. DELAYED CODE GENERATION 106

registers) that the value depends upon. By pushing the operand descriptors for the ar-
guments onto a (compile-time) stack, resources required for the earlier arguments are
automatically protected while code is generated for the later arguments. When code
for all the arguments has been generated, their operand descriptors can be popped off
the compiler’s stack, pushed onto the (run-time) stack in the required reverse order,
and their resources released. No run-time performance penalties at all are incurred due
to the reversal of the argument order using this mechanism.

Section D.3 gives a worked example of the technique.

6.6.7 Register Allocation

Register allocation fits neatly into the delayed code generation model using operand
descriptors. The allocation strategy described below is much simpler than register
allocators using graph coloring techniques yet produces code that is almost as efficient
in space and time, and more efficient in machine resource usage.

Graph-coloring allocators generally aim to improve the efficiency of generated
code by minimizing the movement of values between memory (where most data res-
ides) and the machine registers (where computation takes place most efficiently). Not
only is the use of data from memory slower than using cached copies from registers,
but register to register instructions are usually shorter than memory to memory, or
memory to register, instructions. Graph coloring techniques are most valuable in RISC
environments where all computation takes place in machine registers, and where the
overheads of moving data between registers and memory are high.

The allocator described in this section aims to minimize the number of registers
used for a given expression. For many languages (including C) implemented on con-
ventional processors, each function must save and restore any registers it modifies.
Traditionally ‘good’ programming practice leans towards many small functions each
performing a specific task, in which case the overheads associated with saving and
restoring the register context during function entry and exit can become significant.

The allocation strategy used is similar to the strategy used in [ASU86, section 5.8]
for the allocation of space at compile-time for attribute values during syntax-directed
translation.

6.6.7.1 Machine Models and Allocation Strategy

Operand descriptors model the capabilities of the target architecture in terms of the
legal addressing modes that can be used in the instructions of the generated code. A
useful technique, for register-oriented execution models, is to model the use of the
registers of the target architecture at compile time.

The available registers of the target machine will be modeled as a set of free reg-
isters, the ‘register pool’. When an instruction is generated that requires an unused
register for its destination, an operand descriptor will be created to represent the reg-
ister location. The register is removed from the pool, possibly by simply setting a flag
in the pool to indicate the register is in use, and the operand descriptor initialized with

Figure 6.7: Register allocation and deallocation using a pool of free
registers. A register allocated to an operand descriptor for use as a des-
tination in a generated instruction (a) must later be returned to the pool
from whence it came (b). Identifying the exact moment at which an
operand descriptor, and hence any registers that are intrinsically part of
the location it specifies, ‘dies’ is straightforward given the amount of
semantic information available to the code generator (see text).

Immediately after the last use of any operand descriptor which refers to a reg-
ister, and which contains that register as part of the operand that it represents, that
register must be returned to the pool for reuse. Responsibility for the allocation and
deallocation of registers is shared between the code generator (machine object) and

CHAPTER 6. DELAYED CODE GENERATION 108

the parse tree nodes. The former must sometimes allocate registers while (for exam-
ple) coercing operands into legal types, as in the ‘M68000>>inDReg’ method defined
on page 104. For the same reason it must also deallocate resources no longer needed
in ‘stale’ operand descriptors. Parse nodes must deallocate resources held in operand
descriptors when the value they represent is no longer required for future computation.
Deallocation is performed by asking an operand descriptor to ‘release’ any resources
it owns. For example, a descriptor representing a data register responds as follows:

M68DReg>>release
pool add: self

where ‘pool’ is an instance variable containing the register pool appropriate for this
particular kind of register. Operand descriptors that do not own resources (such as
immediate quantities or absolute addresses) inherit a default definition of ‘release’
that returns the receiver without performing any other action.

Resource management by this technique is particularly effective due, as has been
stressed before, to the breadth of information available: from low-level machine de-
pendent information known to only the code generator during (for example) operand
coercion, through to high-level semantic information regarding the lifetimes of values
known only to the parse tree nodes (or the syntax analyzer in a single-pass compiler).

Most procedural languages reserve certain registers for implementation uses (such
as stack and frame pointers) or for ‘register variables’. Such registers should not be
allocated for use as temporaries, and so are omitted from the relevant pool during ini-
tialization. It is also trivial to arrange for them not to return themselves to the pool
when released, most easily by building a dummy pool (distinct from that which holds
the available resources) to which they ‘add:’ themselves when released. Resources re-
quired for register variables can simply be removed from the pool before, and returned
to the pool after, generating code for the body of the function.

6.6.7.2 Register Allocator Performance

As an example of this register allocation strategy, the code for a simple expression
produced by both a delayed code generator using operand descriptors, and a graph
coloring register allocator, will be compared.

The graph coloring algorithm used is based on that given in [ASU86, section 9.7],
although no heuristic is given there for which node to remove from the interference
graph while finding an ordering of the nodes to use when coloring the graph. The
simple heuristic used in the examples given in this thesis chooses to remove the node
with the highest number of incident arcs, thereby maximizing the number of other
nodes whose connectivities are reduced by its removal.

Graph coloring allocators usually work with a 3-address intermediate code. The
3-address code for an arbitrarily chosen expression and a linearized representation of
its associated interference graph are shown in figure 6.8. The parse tree for the same
expression, showing the operand descriptors and the register allocator activity, appears
in figure 6.9.

Figure 6.9: Parse tree, operand descriptors, and register allocator ac-
tivity for the expression ‘(a*b+c*(d+2))/(b*c)’. Operand descriptors
are shown next to the arcs along which they are propagated. Register al-
location and deallocation is shown under the associated parse tree node
as ‘+dN’ and ‘-dN’ respectively.

The final MC68020 code produced from the translation of the 3-address code with
register names substituted for temporary names, and the code produced directly from
walking the parse tree using delayed code generation with operand descriptor-based
register allocation, is shown in figure 6.10.

Although a single example is completely inadequate to compare the effectiveness
of the two allocation strategies, it does serve to show that the general goals are different.

Figure 6.10: Final 68020 code generated for the expression ‘(a*b +
c*(d+2)) / (b*c)’. (a) The code produced by translating 3-address
code and allocating registers by graph coloring uses four registers and
four memory accesses in ten instructions. (b) The code produced by
a delayed code generator uses two registers and six memory references
in nine instructions. Neither can be said to be the ‘better’ version, since
the choice of metrics depends to a great extent on the context in which
the code is compiled.

Code generators using graph coloring allocators typically try to improve performance
by caching ‘live’ values in registers,24 the idea being that minimizing the number of
memory accesses performed increases the efficiency (in both space and time) of the
generated code. These goals are perfectly feasible in most circumstances, but can be
the cause of register spills when compiling complex expressions. The delayed code
generator-based register allocator has slightly different goals – trying to reduce the
overall number of registers, ignoring future uses for a value cached in a register.25

This could be an important consideration in programs where functions at the leaves
of the call graph are small, and where register save and restore sequences at the entry
and exit points of functions have a significant impact on execution time.

6.7 Summary

The naı̈ve compiler of the previous chapter generates rather poor code for some com-
mon Smalltalk-80 operations. The main reason for this is the short-sightedness of the
code generator, which choses to place every value mentioned in the source program

24The ‘life’ of a value runs from its first use (definition) until its last use.
25The building of an explicit parse tree allows the code generator to determine a Sethi-Ullman com-

plexity [ASU86, page 561] for each branch at a particular node, allowing the walk of the parse tree to
be ordered so as to reduce the number of registers allocated. If this is done, the delayed code generator-
based register allocator will guarantee to allocate the minimum number of registers required to compute
any given expression.

CHAPTER 6. DELAYED CODE GENERATION 111

into a physical register or memory location before leaving the parse tree node repre-
senting that value. The use of delayed code generation to lift this restriction improves
the quality of the generated code enormously — to the extent that peephole optimiza-
tion becomes redundant.

Delayed code generation also seems a promising technique for other, more tra-
ditional languages such as C. Common tasks given to the code generator, such as
register allocation, can be accommodated easily within the delayed code generation
mechanism, and experiments with small examples have been encouraging. Some of
the usual compilation headaches for single-pass compilers (such as pushing arguments
from right-to-left while parsing them from left-to-right) can also be addressed success-
fully with delayed code generation.

Chapter 7

Results

There are three kinds of lies: lies, damned lies, and statistics.

Disraeli.

The purpose of this chapter is to assess the validity of the thesis: that a delayed code
generator with no peephole optimizations can produce code that is as at least as good as
that produced by a more conventional technique incorporating peephole optimization.

Several aspects of the performance of the code produced by the two code generators
will be presented, as follows:

• Execution time
The most obvious candidate for measurement is the speed of execution of the
generated code. This has been measured for all three systems: PS2.3, the naı̈ve
code generator, and the delayed code generator. For the latter two, an uninstru-
mented virtual machine with no debugging support was used in order to achieve
the most realistic results possible.1

• Code size
Although it may seem that the number of instructions generated would be an
interesting thing to measure, it is not really that useful. For example, open-
coded loops contain more machine instructions that close-coded loops, yet run
significantly more efficiently. What is much more important is the overall code
size. In a virtual memory system with a modest amount of memory (a typical
workstation has about 8Mb of physical memory) performance can be adversely
affected by seemingly small increases in the size of the generated code due to
the very sharp knee in the curve of code size versus paging activity. At least as
important is the effect of code size on the processor’s instruction-cache, which
tends to be small. Small reductions in the spatial locality of a program, due

1This is a polite way of saying that the runtime system was going as fast as it could be made to go
without compromising the support required by Smalltalk.

112

CHAPTER 7. RESULTS 113

to small increases in its size, can drastically increase the traffic between the
instruction cache and primary memory.

• Memory usage
The importance of this aspect of the generated code should not be underestimated
since it can have a large impact on the performance of a system. Not only is the
actual act of allocating storage a relatively costly operation2 a reduction in the
size and/or allocation frequency of objects will reduce both the virtual memory
requirements and the overheads due to garbage collection.3

The only important result from these figures (insofar as the validation of the thesis
is concerned) is the relative performance of the naı̈ve versus delayed code generators
for real-world problems (represented here by the macro benchmarks) with all opti-
mizations enabled. This should provide a good indication as to whether the delayed
code generator can compete with, or even outperform, the naı̈ve. Nevertheless, for
completeness the full set of figures has been included in appendix B so that an inter-
ested reader can see the influence on the performance of each particular optimization
technique.

7.1 A Brief Note Concerning Definitions

Before presenting any of the results it is important to clarify a few points of potential
confusion. Most of the comparisons in this chapter and in appendix B concern changes
to aspects of the performance of the system in response to variations in the environment
in which the code is being compiled or executed. Relative performances are always
presented as the ratio of:

dcg measurement
naı̈ve measurement

or
dcg measurement

PS2.3 measurement

Changes are presented as percentages according to the conventions discussed in [HP90,
chapter 1], where the percentage change from A to B is given by:

change =
B − A

A
× 100

2For example, allocating a single object is generally much more costly than performing a dynamic
bind. However, the impact that memory management has on the overall performance of the system
has as much to do with the efficiency of the implementation of the runtime system as it does with the
number of objects required by the compiled code.

3Smalltalk implementations almost invariably allocate a fixed sized object memory. The garbage
collection overhead is thus directly proportional to both the frequency of object allocation and the
average size of each object.

CHAPTER 7. RESULTS 114

7.2 Performance of Generated Code

Table 7.1 shows the relative performance of the naı̈ve and delayed code generators.
The measurements were made in as realistic an environment as possible: the images
used had all optimizations enabled, and the timings were the aggregate of the times
for the three macro benchmark classes that exercise large subsystems of Smalltalk.

compiler
quantity naı̈ve dcg ratio change

image size 1919384 2051676 106.9 6.9%
execution time 63.34 58.78 92.8 −7.2%

objects allocated 84247 81927 97.2 −2.8%
bytes allocated 2531804 2418764 95.5 −4.5%
message sends 1932592 1782457 92.2 −7.8%
primitive calls 994402 915421 92.1 −7.9%

Table 7.1: Relative performance of the naı̈ve and delayed code genera-
tors. The first two columns show the absolute performance for: the total
image size (bytes), the total execution time for the macro benchmarks
(seconds), the numbers of objects and bytes allocated for the macro ben-
chmarks, and the numbers of message sends and primitive calls made for
the macro benchmarks. The third column shows the relative performance
for the delayed code generator with respect to the naı̈ve as a percentage
of the latter.

Overall, delayed code generation has had two clear effects. First, the size of the
generated code has increased by approximately 6.9%. This is due to additional op-
portunities that the code generator found for inlining various operations. Second, the
execution time of the generated code has decreased by approximately 7.2%, due in
part to the additional inlined operations but also to the more efficient code that can be
produced in certain situations (see sections 6.1 and 6.5).

7.3 Compiler Efficiency

Very early in this thesis it was noted that one of the overriding concerns for a compiler
in an EPE is that it be as fast as possible while maintaining a reasonable standard of
generated code. Table 7.2 shows the time spent in the various phases of compilation
for the naı̈ve and delayed code generators, during the compilation of the 790 methods
that were required by the benchmark suite.
The times for the following phases are shown:

• parse
For both compilers this is the time spent performing lexical and syntactic anal-
ysis of the method source, including the time taken to generate the initial parse

CHAPTER 7. RESULTS 115

compiler
phase naı̈ve dcg

parse 98.1 97.0
parse tree optimization 12.0 nil
code generation 37.1 179.4
code optimization 226.7 nil

total 373.9 276.4

Table 7.2: Compilation times for the naı̈ve and DCG-based compilers.
All times are the total in seconds for the compilation of the 790 methods
required for the benchmark suite.

tree.

• parse tree optimization
For the naı̈ve compiler only this is the time taken to perform constant folding
on the parse tree for certain (otherwise inlined) selectors.

• code generation
This is the time taken to walk the parse tree and generate a stream of 68020
instructions.

• code optimization
For the naı̈ve compiler only this is the time taken to perform peephole optimiza-
tion on the raw 68020 code to remove redundancies and dead code.

The extra complexity of the delayed code generator has added 142.3 seconds to
that phase of compilation — an increase of 384%. However, the savings made by not
having to perform the very costly peephole optimization pass more than compensate
for this, reducing the overall code generation time by 35%,4 and the overall compilation
time by 26%.

7.4 Summary

This chapter presented the performance of a two-pass Smalltalk compiler that builds
a parse tree and then walks it to generate code. The back-end for this compiler is
pluggable, and the performance was analyzed for both a naı̈ve and a novel code gen-
erator. The naı̈ve code generator performs parse-tree optimizations before generating

4The overall code generation time for the naı̈ve compiler is taken to be the sum of the times to
generate raw code, and perform the optimizations on both the parse tree and the generated code. This is
realistic since the delayed code generator performs the equivalent of all three of these operations during
its single code generation phase.

CHAPTER 7. RESULTS 116

low quality code, which is tidied up by a peephole optimizer. The more sophisti-
cated ‘delayed’ code generator performs many of the same optimizations during code
generation, and needs no separate parse tree or peephole optimization passes.

The results show that using a delayed code generator produces a compiler that
takes less time to generate better code (in terms of overall performance) than does the
use of a three-pass ‘optimizing’ compiler.5

5Whether or not parse tree optimization should be considered a distinct pass is open to question.

Chapter 8

Conclusion

“Well” said Owl, “the customary procedure in such cases is as follows...”
“What does Crustimoney Proseedcake mean?” said Pooh, “For I am a bear of very little

brain and long words bother me.”
But Owl went on using longer and longer words, until at last he came back to where he

had started.

A. A. Milne.

This thesis began by speculating that it is possible to compile Small- talk-80 directly
into machine code for stock hardware, and to do this efficiently in terms of both com-
piler performance (the compiler must be small and fast) and generated code perfor-
mance. The results presented in chapter 7 demonstrate that this is true. The techniques
developed in chapter 6 for ‘delayed code generation’ in single-pass recursive descent
compilation were demonstrated to produce better code in less time than a compiler
using a naı̈ve code generator followed by peephole optimization. Appendix B also
shows that the compiled code ran at speeds competitive with a commercially available
implementation.1

A brief investigation of the techniques applied to the compilation of a popular
procedural language showed promising results. Some of the more difficult problems
associated with the compilation of procedural languages by one- or two-pass compila-
tion techniques were also addressed using delayed code generation with good results.

8.1 Future Work

The full-scale delayed code generator developed for Smalltalk-80 uses a stack-oriented
execution model. It would be interesting to develop a register-oriented execution
model for Smalltalk-80 and investigate the performance gains made, for example, by

1However, it should be remembered that several important aspects of the runtime system were ig-
nored (section 5.1.5), and a proper solution to these would degrade the performance of the generated
code.

117

CHAPTER 8. CONCLUSION 118

passing arguments in registers rather than on the stack. The register discipline would
have to be constructed carefully to avoid problems with mixed data (OOPS and non-
OOPS in registers) during garbage collection.

Further investigation of the applicability of delayed code generation to the compi-
lation of procedural languages would also be worthwhile. The integration of register
allocation policies with delayed code generation seems a particularly interesting area.

Possibly most important of all would be an investigation of delayed code generation
for RISC architectures.2 Several problems arise when targeting to RISC architectures
that do not arise for CISC architectures, not least of which are those of instruction
scheduling and the utilization of delay slots. The problem of filling delay slots in
RISC code seems similar in some respects to the problem of filling operand positions
in CISC code. In the delayed code generator, the filling of these operand positions is
performed after visiting the parse tree node in which they are generated. It may be
possible to extend the delayed code generation technique to cover entire instructions
in addition to operands, in order to provide scope for instruction scheduling and delay
slot filling within the code generator.

2The RISC versus CISC debate of the late 1980s seems to have been won hands-down by the RISC
team.

Appendix A

Parse Tree Nodes

A.1 Leaf Nodes

Literals (including smallintegers, strings and literal arrays) are simply encapsulated by
a LiteralNode.

Variables come in four flavors: global, argument, temporary, and instance vari-
ables. Each type has its own associated node (figure A.1). For global variables the
node contains the name of the variable and the corresponding association in the Sys-
temDictionary. The contents of the global variable appear in the value field of this asso-
ciation. The other three types of node contain the name of the variable, and its index.
The code generator uses the index of the variable to generate offsets from the frame
pointer (for arguments and temporaries) or from the start of the receiver in memory
(for instance variables).

The pseudo variables self and super are represented by their own unique nodes
(SelfNode and SuperNode, respectively) which implicitly refer to the method’s first
argument. It is necessary to have a separate SuperNode since sends to super do not
behave like sends to self.

A.2 Message Nodes

There are four types of message node: one each for unary, binary and keyword mes-
sages, and one for cascaded messages (figure A.2). UnaryNodes contain the selector
and the node representing the receiver. BinaryNodes contain the selector and nodes
representing the receiver and argument. KeywordNodes contain the selector, a node
representing the receiver, and an array containing nodes for the arguments. CascadeN-
odes contain a node for the receiver and an array of message nodes.

119

Figure A.1: Leaf nodes are generated when either literals or variables
are encountered in the source. LiteralNodes contain the value they repre-
sent. GlobalNodes contain a reference to the association that contains the
value of the variable.

A.3 Special Action Nodes

The nodes representing assignment, return statements, and primitive methods are shown
in figure A.3. AssignmentNodes contain a node each for the left hand side (which must
be a leaf node representing a variable) and the right hand side. PrimitiveNodes only ever
occur at the top of the parse tree and contain the number of the primitive concerned
and a node containing the tree for the fail case code. ReturnNodes contain a single
node representing the returned value.

A.4 Method and Block Nodes

The remaining types of node represent blocks and entire methods (figure A.4).
BlockNodes contain an array of nodes representing the statements of the block’s

body, and an array of variable nodes representing the arguments (if any). For conve-
nience, they also contain a flag which is true if the block performs a non-local return,
and a label by which the block is known during code generation.

MethodNodes contain an array of nodes for the method body, two arrays containing
the argument and temporary variables, and the ‘message pattern’ for the method (the
method’s selector). These nodes also hold references to the Mapper and ‘machine
object’ created for the method (see sections 5.3.1 and 5.4.1, respectively).

Figure A.3: ReturnNodes simply encapsulate the statement whose value
is to be returned. PrimitiveNodes contain the primitive number and an
array of statements which form the body of the method to be executed
if the primitive fails. AssignmentNodes contain a VariableNode of some
class for the left hand side, and an expression for the right hand side.

Figure A.4: BlockNodes contain an array of arguments and an array of
statements which form the body of the block. MethodNodes contain the
message pattern (selector) of the method, arrays of arguments, tempo-
raries and statements (for the method body), and an instance of Machine
which is used to generate code and manage the use of the target hardware
resources.

Appendix B

Raw Results

This appendix contains some of the raw, unbridled results from the benchmarking
work.

The horizontal axis in each table ranges over the classes of benchmarks. The
selectors and activities targeted in each class are described in chapter 4. The vertical
divisions delimit the micro benchmarks from the macro benchmarks. The three macro
benchmark classes are much more realistic indicators of system performance, so a final
column gives the sum of the figures for the three classes of macro benchmark. The
names of the benchmark classes in the tables are mnemonic (due to space limitations)
as shown in figure B.1.

The vertical axis ranges over optimizations. Each optimization is preceded by
either ‘+’ meaning enabled, or ‘−’ meaning disabled. For the ‘+’ cases, all other
optimizations are disabled. For the ‘−’ cases, all other optimizations are enabled. Two
special cases are ‘+none’ meaning no optimizations enabled and ‘−none’ meaning all
optimizations enabled. Each optimization has a mnemonic label in the tables, as shown
in figure B.2.

123

APPENDIX B. RAW RESULTS 124

short
name full description

micro benchmarks
arith arithmetic and comparison operations
cond conditional constructs
loop looping constructs
access literal and variable access
activ block and method activation
point point creation and access
mem memory management intensive
nolook miscellaneous no-lookup operations
gfx graphics (‘BitBlt’) operations

macro benchmarks
struct data structure access
num number crunching
iface user interface operations
macro+= sum of macro benchmark results

Figure B.1: The mnemonic names and full descriptions used for the
benchmark class names in the tables in this appendix.

short
name full description

+ indicates the optimization is enabled and all others disabled
− indicates the optimization is disabled and all others enabled
arith arithmetic operations are inlined for SmallInteger arguments
at point creation is inlined
class the ‘class’ message is inlined
if conditional constructs are inlined
none the “null optimization” (see text)
tests relational operations are inlined for SmallInteger arguments
while looping constructs are inlined
xy access to instances variables is inlined for Point receivers

Figure B.2: The mnemonic names and full descriptions used for the
compiler optimizations in the tables in this appendix.

A
PPE

N
D

IX
B

.
R

A
W

R
E

SU
L

T
S

125

time arith cond loop access activ point mem nolook gfx struct num iface macro+=
+arith 86.72 4.10 89.26 226.70 54.26 19.30 1.80 26.82 18.36 25.80 50.66 77.08 153.54
+at 111.28 3.62 93.12 210.80 64.40 17.52 1.82 28.54 18.26 28.50 61.86 84.38 174.74
+class 112.24 3.68 93.88 223.46 60.38 18.62 1.74 27.66 17.64 27.16 58.30 80.70 166.16
+if 99.94 0.18 62.14 219.80 35.14 17.94 1.78 27.30 17.58 19.76 29.20 65.06 114.02
+none 112.08 3.62 93.92 226.92 61.58 19.92 1.86 29.52 19.56 28.24 60.76 87.12 176.12
+tests 94.38 3.62 84.16 209.64 60.80 17.64 1.76 27.18 17.62 26.28 51.44 76.94 154.66
+while 95.80 3.64 22.14 210.30 61.00 17.88 1.76 27.74 17.64 20.52 58.64 56.76 135.92
+xy 110.94 3.68 93.28 214.88 63.50 5.22 1.82 28.22 18.22 28.36 61.20 84.12 173.68
-arith 72.56 0.18 12.98 209.92 34.58 4.28 1.88 27.78 17.18 15.02 21.68 44.98 81.68
-at 45.16 0.18 4.30 210.72 25.50 5.14 1.84 26.74 17.20 12.68 12.40 38.52 63.60
-class 45.36 0.18 4.26 217.08 24.60 4.30 1.88 26.20 17.12 12.62 12.28 38.44 63.34
-if 52.68 3.66 4.28 219.26 51.06 4.12 1.78 26.36 17.08 17.28 41.38 46.22 104.88
-none 45.38 0.20 4.28 217.06 24.58 4.30 1.88 26.26 17.06 12.64 12.26 38.44 63.34
-tests 61.96 0.18 14.60 210.18 25.38 4.28 1.92 26.08 17.12 13.64 19.56 42.52 75.72
-while 53.32 0.18 44.64 210.04 24.80 4.18 1.76 25.66 17.08 16.40 12.00 52.04 80.44
-xy 45.56 0.16 4.30 219.42 25.18 17.04 1.92 26.20 17.30 12.72 12.26 38.60 63.58

time arith cond loop access activ point mem nolook gfx struct num iface macro+=
+arith 77.37 113.26 95.04 99.90 88.11 96.89 96.77 90.85 93.87 91.36 83.38 88.48 87.18
+at 99.29 100.00 99.15 92.90 104.58 87.95 97.85 96.68 93.35 100.92 101.81 96.85 99.22
+class 100.14 101.66 99.96 98.48 98.05 93.47 93.55 93.70 90.18 96.18 95.95 92.63 94.34
+if 89.17 4.97 66.16 96.86 57.06 90.06 95.70 92.48 89.88 69.97 48.06 74.68 64.74
+none 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
+tests 84.21 100.00 89.61 92.38 98.73 88.55 94.62 92.07 90.08 93.06 84.66 88.31 87.82
+while 85.47 100.55 23.57 92.68 99.06 89.76 94.62 93.97 90.18 72.66 96.51 65.15 77.17
+xy 98.98 101.66 99.32 94.69 103.12 26.20 97.85 95.60 93.15 100.42 100.72 96.56 98.61
-arith 159.89 90.00 303.27 96.71 140.68 99.53 100.00 105.79 100.70 118.83 176.84 117.01 128.95
-at 99.52 90.00 100.47 97.08 103.74 119.53 97.87 101.83 100.82 100.32 101.14 100.21 100.41
-class 99.96 90.00 99.53 100.01 100.08 100.00 100.00 99.77 100.35 99.84 100.16 100.00 100.00
-if 116.09 1830.00 100.00 101.01 207.73 95.81 94.68 100.38 100.12 136.71 337.52 120.24 165.58
-none 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
-tests 136.54 90.00 341.12 96.83 103.25 99.53 102.13 99.31 100.35 107.91 159.54 110.61 119.55
-while 117.50 90.00 1042.99 96.77 100.90 97.21 93.62 97.72 100.12 129.75 97.88 135.38 127.00
-xy 100.40 80.00 100.47 101.09 102.44 396.28 102.13 99.77 101.41 100.63 100.00 100.42 100.38

Table B.1: Benchmark execution times for the naı̈ve code generator.
The upper half of the table lists absolute time (in seconds) taken to com-
plete the benchmarks in each category, against the various optimizations
enabled (“+”) and disabled (“-”). The lower half lists the performance
relative to the ‘base’ cases, where ‘100%’ is the performance with all
optimizations disabled (‘+none’) or all enabled (‘-none’).

A
PPE

N
D

IX
B

.
R

A
W

R
E

SU
L

T
S

126

time arith cond loop access activ point mem nolook gfx struct num iface macro+=
+arith 53.30 3.58 72.12 136.60 47.70 15.12 1.72 25.36 17.70 23.82 39.96 67.58 131.36
+at 57.60 3.62 91.92 209.68 59.76 14.36 1.74 25.90 17.68 27.76 59.54 79.14 166.44
+class 56.90 3.54 91.84 200.88 60.42 15.40 1.72 19.50 17.80 27.66 58.66 79.18 165.50
+if 45.42 0.18 60.98 209.12 33.78 14.88 1.72 25.40 17.54 19.82 29.26 61.64 110.72
+none 57.56 3.50 92.12 208.06 60.38 15.18 1.76 25.44 17.82 27.72 59.34 79.26 166.32
+tests 57.56 3.50 92.12 208.00 60.40 15.18 1.80 25.44 17.82 27.72 59.38 79.22 166.32
+while 42.90 3.56 20.74 201.08 58.54 14.94 1.72 25.60 17.46 20.64 58.38 55.40 134.42
+xy 57.94 3.58 92.28 208.82 59.56 4.32 1.78 24.90 17.40 27.36 58.58 77.78 163.72
-arith 33.62 0.18 11.96 201.70 34.04 3.54 1.84 19.60 17.12 14.20 20.14 40.80 75.14
-at 32.84 0.20 1.64 138.00 23.60 4.50 1.86 19.10 17.16 11.38 8.82 33.08 53.28
-class 33.34 0.20 1.64 140.62 21.76 3.50 1.86 25.72 17.00 11.42 9.22 33.06 53.70
-if 38.88 3.56 1.62 136.56 47.70 3.38 1.74 19.06 16.98 16.60 38.76 42.46 97.82
-none 33.82 0.22 1.70 140.32 24.48 3.68 1.94 20.16 17.64 12.24 9.70 36.84 58.78
-tests 34.94 0.22 12.02 137.00 22.24 3.52 1.86 19.48 16.96 13.00 17.58 39.38 69.96
-while 40.94 0.20 41.32 136.72 22.66 3.40 1.74 19.28 16.98 15.48 8.74 46.92 71.14
-xy 32.84 0.20 1.62 139.10 23.74 14.10 1.86 19.20 17.14 11.42 8.72 33.18 53.32

time arith cond loop access activ point mem nolook gfx struct num iface macro+=
+arith 92.60 102.29 78.29 65.65 79.00 99.60 97.73 99.69 99.33 85.93 67.34 85.26 78.98
+at 100.07 103.43 99.78 100.78 98.97 94.60 98.86 101.81 99.21 100.14 100.34 99.85 100.07
+class 98.85 101.14 99.70 96.55 100.07 101.45 97.73 76.65 99.89 99.78 98.85 99.90 99.51
+if 78.91 5.14 66.20 100.51 55.95 98.02 97.73 99.84 98.43 71.50 49.31 77.77 66.57
+none 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
+tests 100.00 100.00 100.00 99.97 100.03 100.00 102.27 100.00 100.00 100.00 100.07 99.95 100.00
+while 74.53 101.71 22.51 96.65 96.95 98.42 97.73 100.63 97.98 74.46 98.38 69.90 80.82
+xy 100.66 102.29 100.17 100.37 98.64 28.46 101.14 97.88 97.64 98.70 98.72 98.13 98.44
-arith 99.41 81.82 703.53 143.74 139.05 96.20 94.85 97.22 97.05 116.01 207.63 110.75 127.83
-at 97.10 90.91 96.47 98.35 96.41 122.28 95.88 94.74 97.28 92.97 90.93 89.79 90.64
-class 98.58 90.91 96.47 100.21 88.89 95.11 95.88 127.58 96.37 93.30 95.05 89.74 91.36
-if 114.96 1618.18 95.29 97.32 194.85 91.85 89.69 94.54 96.26 135.62 399.59 115.26 166.42
-none 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
-tests 103.31 100.00 707.06 97.63 90.85 95.65 95.88 96.63 96.15 106.21 181.24 106.89 119.02
-while 121.05 90.91 2430.59 97.43 92.57 92.39 89.69 95.63 96.26 126.47 90.10 127.36 121.03
-xy 97.10 90.91 95.29 99.13 96.98 383.15 95.88 95.24 97.17 93.30 89.90 90.07 90.71

Table B.2: Benchmark execution times for the delayed code generator.
As in table B, the upper half lists absolute performance and the lower
half relative performance.

A
PPE

N
D

IX
B

.
R

A
W

R
E

SU
L

T
S

127

time arith cond loop access activ point mem nolook gfx struct num iface macro+=
+arith 96.48 8.28 531.94 129.68 132.42 14.28 42.58 20.58 26.80 38.78 136.60 160.36 335.74
+at 102.60 8.14 611.06 127.68 140.18 50.32 41.70 21.28 26.28 39.58 140.42 161.50 341.50
+class 107.72 8.22 543.10 124.26 135.28 14.34 42.14 21.12 26.50 38.94 138.38 161.78 339.10
+if 62.54 5.38 354.00 129.88 17.22 15.30 40.30 23.50 29.66 27.90 151.26 97.48 276.64
+none 103.12 8.20 593.20 123.66 136.92 14.48 41.92 21.32 26.86 39.50 140.68 157.98 338.16
+tests 88.78 8.26 528.00 59.44 132.16 14.36 41.70 21.44 26.82 38.70 136.92 159.96 335.58
+while 52.20 7.64 16.22 112.40 134.24 11.84 34.68 18.60 26.46 27.44 145.22 79.82 252.48
+xy 107.78 8.22 539.80 125.74 137.24 13.10 45.20 21.18 26.82 39.34 140.24 162.76 342.34
-arith 27.20 3.98 12.22 59.72 12.84 40.90 34.70 19.10 25.94 22.34 141.36 67.06 230.76
-at 16.22 4.02 8.26 60.34 7.12 10.92 34.90 18.20 26.38 21.72 137.88 65.48 225.08
-class 16.08 4.02 8.68 58.26 7.40 40.86 34.66 18.06 25.90 21.74 137.62 65.34 224.70
-if 27.94 7.58 8.34 60.96 122.72 40.84 35.08 17.98 25.94 25.94 136.88 76.42 239.24
-none 16.26 4.04 8.18 58.94 7.46 41.48 35.32 18.42 25.86 21.76 137.60 65.38 224.74
-tests 30.32 4.08 11.92 112.16 12.54 41.26 35.02 18.30 25.88 22.54 141.22 67.24 231.00
-while 34.26 5.26 342.30 60.22 6.88 44.78 37.42 20.82 25.94 25.78 134.62 86.52 246.92
-xy 16.28 4.02 8.96 58.76 7.40 46.78 39.42 18.26 25.94 21.56 137.60 65.22 224.38

time arith cond loop access activ point mem nolook gfx struct num iface macro+=
+arith 93.56 100.98 89.67 104.87 96.71 98.62 101.57 96.53 99.78 98.18 97.10 101.51 99.28
+at 99.50 99.27 103.01 103.25 102.38 347.51 99.48 99.81 97.84 100.20 99.82 102.23 100.99
+class 104.46 100.24 91.55 100.49 98.80 99.03 100.52 99.06 98.66 98.58 98.37 102.41 100.28
+if 60.65 65.61 59.68 105.03 12.58 105.66 96.14 110.23 110.42 70.63 107.52 61.70 81.81
+none 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
+tests 86.09 100.73 89.01 48.07 96.52 99.17 99.48 100.56 99.85 97.97 97.33 101.25 99.24
+while 50.62 93.17 2.73 90.89 98.04 81.77 82.73 87.24 98.51 69.47 103.23 50.53 74.66
+xy 104.52 100.24 91.00 101.68 100.23 90.47 107.82 99.34 99.85 99.59 99.69 103.03 101.24
-arith 167.28 98.51 149.39 101.32 172.12 98.60 98.24 103.69 100.31 102.67 102.73 102.57 102.68
-at 99.75 99.50 100.98 102.38 95.44 26.33 98.81 98.81 102.01 99.82 100.20 100.15 100.15
-class 98.89 99.50 106.11 98.85 99.20 98.51 98.13 98.05 100.15 99.91 100.01 99.94 99.98
-if 171.83 187.62 101.96 103.43 1645.04 98.46 99.32 97.61 100.31 119.21 99.48 116.89 106.45
-none 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
-tests 186.47 100.99 145.72 190.30 168.10 99.47 99.15 99.35 100.08 103.58 102.63 102.84 102.79
-while 210.70 130.20 4184.60 102.17 92.23 107.96 105.95 113.03 100.31 118.47 97.83 132.33 109.87
-xy 100.12 99.50 109.54 99.69 99.20 112.78 111.61 99.13 100.31 99.08 100.00 99.76 99.84

Table B.3: Benchmark execution times for PS2.3. Again, the upper half
lists absolute performance and the lower half relative performance. The
timings were all made with the same set of optional primitives and BitBlt
copyBits operation as were present in the native code runtime system.

A
PPE

N
D

IX
B

.
R

A
W

R
E

SU
L

T
S

128

naı̈ve arith cond loop access activ point mem nolook gfx struct num iface macro+=
+arith 4395782 152036 3701066 16490186 2293998 1202036 57018 2614128 65181 986816 1910516 2589711 5487043
+at 6655882 156036 4301186 17260186 2949358 1168036 58018 2876128 64606 1155432 2606876 3083025 6845333
+class 6655882 156036 4301186 17260186 2949358 1223036 58018 2876128 73576 1155432 2606876 3086602 6848910
+if 5930662 24028 3100898 15600134 1966254 1181028 56014 2512096 71543 887453 1651748 2389726 4928927
+none 6655882 156036 4301186 17260186 2949358 1223036 58018 2876128 73576 1155432 2606876 3086602 6848910
+tests 5365764 152028 3701008 16370146 2949314 1202028 57014 2674100 72318 1092837 2129308 2821694 6043839
+while 5395358 136024 1200434 13050144 2949152 1118024 53012 1946092 70899 869192 2606464 2026737 5502393
+xy 6655882 156036 4301186 17260186 2949358 223036 58018 2876128 56776 1155432 2606876 3077301 6839609
-arith 3880228 8012 600252 12160066 1966086 42012 52006 1744044 42897 652070 1173932 1468807 3294809
-at 1620128 4012 132 11390066 1310726 76012 51006 1482044 43472 483454 477572 975143 1936169
-class 1620128 4012 132 11390066 1310726 21012 51006 1482044 34502 483454 477572 971566 1932592
-if 1845140 128016 136 11390104 2293748 21016 51008 1482064 35476 637981 1432536 1251210 3321727
-none 1620128 4012 132 11390066 1310726 21012 51006 1482044 34502 483454 477572 971566 1932592
-tests 2910246 8020 600310 12280106 1310770 42020 52010 1684072 35760 546049 955140 1237399 2738588
-while 2380444 16020 1900600 13940094 1310850 84020 54010 2048068 36120 656242 477820 1614424 2748486
-xy 1620128 4012 132 11390066 1310726 1021012 51006 1482044 51302 483454 477572 980867 1941893

dcg arith cond loop access activ point mem nolook gfx struct num iface macro+=
+arith 3105664 148028 3100888 10100146 2293954 1181028 56014 2412100 63923 944451 1432948 2295538 4672937
+at 3655882 156036 4301186 17260186 2949358 1168036 58018 2776128 64606 1191802 2606876 3053213 6851891
+class 3655882 156036 4301186 17260186 2949358 1223036 58018 2376128 73566 1190777 2606876 3053070 6850723
+if 2930662 24028 3100898 15600134 1966254 1181028 56014 2412096 71543 913853 1651748 2364694 4930295
+none 3655882 156036 4301186 17260186 2949358 1223036 58018 2776128 73576 1191802 2606876 3056790 6855468
+tests 3655882 156036 4301186 17260186 2949358 1223036 58018 2776128 73576 1191802 2606876 3056790 6855468
+while 2395358 136024 1200434 13050144 2949152 1118024 53012 1846092 70899 893202 2606464 1995925 5495591
+xy 3655882 156036 4301186 17260186 2949358 223036 58018 2776128 56776 1191802 2606876 3047489 6846167
-arith 1885228 8012 600252 12160066 1966086 42012 52006 1244044 43532 645490 1173932 1336263 3155685
-at 1620128 4012 132 5890066 1310726 76012 51006 1082044 43457 469254 477572 839208 1786034
-class 1620128 4012 132 5890066 1310726 21012 51006 1482044 34497 470279 477572 839351 1787202
-if 1845140 128016 136 5890104 2293748 21016 51008 1082064 35466 643216 1432536 1216786 3292538
-none 1620128 4012 132 5890066 1310726 21012 51006 1082044 34487 469254 477572 835631 1782457
-tests 1905246 8020 600310 6780106 1310770 42020 52010 1284072 35100 556334 955140 1204551 2716025
-while 2380444 16020 1900600 8440094 1310850 84020 54010 1648068 36105 651122 477820 1479683 2608625
-xy 1620128 4012 132 5890066 1310726 1021012 51006 1082044 51287 469254 477572 844932 1791758

Table B.4: The number of full message sends performed by the bench-
marks compiled using the naı̈ve and delayed code generators.

A
PPE

N
D

IX
B

.
R

A
W

R
E

SU
L

T
S

129

naı̈ve arith cond loop access activ point mem nolook gfx struct num iface macro+=
+arith 3630530 69012 2500692 14590078 983226 160012 55006 1970048 20012 602641 955372 1619207 3177220
+at 5890630 73012 3100812 15360078 1638586 126012 56006 2232048 19437 771257 1651732 2094570 4517559
+class 5890630 73012 3100812 15360078 1638586 181012 56006 2232048 28407 771257 1651732 2097038 4520027
+if 5605528 20012 2500702 14590066 1310866 160012 55006 2070044 27507 647337 1174172 1832881 3654390
+none 5890630 73012 3100812 15360078 1638586 181012 56006 2232048 28407 771257 1651732 2097038 4520027
+tests 4600512 69004 2500634 14470038 1638542 160004 55002 2030020 27149 708662 1174164 1840583 3723409
+while 5150322 61008 1200418 12930064 1638464 118008 53004 1706036 26848 603689 1651488 1507570 3762747
+xy 5890630 73012 3100812 15360078 1638586 181012 56006 2232048 28407 771257 1651732 2097038 4520027
-arith 3815202 8000 600240 12040012 1310740 42000 52000 1504004 16220 471290 696440 1169829 2337559
-at 1555102 4000 120 11270012 655380 76000 51000 1242004 16795 302674 80 694116 996870
-class 1555102 4000 120 11270012 655380 21000 51000 1242004 7825 302674 80 691648 994402
-if 1600104 53000 120 11270024 983060 21000 51000 1242008 8225 372478 477560 770166 1620204
-none 1555102 4000 120 11270012 655380 21000 51000 1242004 7825 302674 80 691648 994402
-tests 2845220 8008 600298 12160052 655424 42008 52004 1444032 9083 365269 477648 948778 1791695
-while 2055310 12004 1300404 12930026 655462 63004 53002 1606016 8884 416126 244 1095652 1512022
-xy 1555102 4000 120 11270012 655380 21000 51000 1242004 7825 302674 80 691648 994402

dcg arith cond loop access activ point mem nolook gfx struct num iface macro+=
+arith 2340412 65004 1900514 8200038 983182 139004 54002 1768020 18754 548746 477804 1349847 2376397
+at 2890630 73012 3100812 15360078 1638586 126012 56006 2132048 19437 796097 1651732 2080028 4527857
+class 2890630 73012 3100812 15360078 1638586 181012 56006 1732048 28397 795072 1651732 2079216 4526020
+if 2605528 20012 2500702 14590066 1310866 160012 55006 1970044 27507 668207 1174172 1819664 3662043
+none 2890630 73012 3100812 15360078 1638586 181012 56006 2132048 28407 796097 1651732 2082496 4530325
+tests 2890630 73012 3100812 15360078 1638586 181012 56006 2132048 28407 796097 1651732 2082496 4530325
+while 2150322 61008 1200418 12930064 1638464 118008 53004 1606036 26848 621329 1651488 1493348 3766165
+xy 2890630 73012 3100812 15360078 1638586 181012 56006 2132048 28407 796097 1651732 2082496 4530325
-arith 1820202 8000 600240 12040012 1310740 42000 52000 1004004 16855 461760 696440 1110157 2268357
-at 1555102 4000 120 5770012 655380 76000 51000 842004 16780 285524 80 632285 917889
-class 1555102 4000 120 5770012 655380 21000 51000 1242004 7820 286549 80 633097 919726
-if 1600104 53000 120 5770024 983060 21000 51000 842008 8215 371343 477560 754137 1603040
-none 1555102 4000 120 5770012 655380 21000 51000 842004 7810 285524 80 629817 915421
-tests 1840220 8008 600298 6660052 655424 42008 52004 1044032 8423 372604 477648 930267 1780519
-while 2055310 12004 1300404 7430026 655462 63004 53002 1206016 8869 405476 244 1033890 1439610
-xy 1555102 4000 120 5770012 655380 21000 51000 842004 7810 285524 80 629817 915421

Table B.5: The number of primitive calls performed by the benchmarks
compiled using the naı̈ve and delayed code generators.

A
PPE

N
D

IX
B

.
R

A
W

R
E

SU
L

T
S

130

oops arith cond loop access activ point mem nolook gfx struct num iface macro+=
+arith 505140 104018 600318 1130087 655389 76018 51009 282062 15028 272045 955058 582793 1809896
+at 505140 104018 600318 1130087 655389 76018 51009 282062 15028 272045 955058 582793 1809896
+class 505140 104018 600318 1130087 655389 76018 51009 282062 15028 272045 955058 582793 1809896
+if 50022 10 140 240047 5 55010 50005 80034 13520 68677 10 102601 171288
+none 505140 104018 600318 1130087 655389 76018 51009 282062 15028 272045 955058 582793 1809896
+tests 505140 104018 600318 1130087 655389 76018 51009 282062 15028 272045 955058 583068 1810171
+while 195016 100006 6 45 655343 55006 50003 26 14351 201509 954966 281634 1438109
+xy 505140 104018 600318 1130087 655389 76018 51009 282062 15028 272045 955058 582793 1809896
-arith 6 2 2 19 1 55002 50001 10 13402 57477 2 26768 84247
-at 6 2 2 19 1 55002 50001 10 13402 57477 2 26768 84247
-class 6 2 2 19 1 55002 50001 10 13402 57477 2 26768 84247
-if 195016 100006 6 45 655343 55006 50003 26 14351 201509 954966 281809 1438284
-none 6 2 2 19 1 55002 50001 10 13402 57477 2 26768 84247
-tests 6 2 2 19 1 55002 50001 10 13402 57477 2 26693 84172
-while 50022 10 140 240047 5 55010 50005 80034 13520 68677 10 102676 171363
-xy 6 2 2 19 1 55002 50001 10 13402 57477 2 26768 84247

bytes arith cond loop access activ point mem nolook gfx struct num iface macro+=
+arith 12123360 2496432 14407632 27122088 15729336 1384432 824216 6769488 338412 6239152 22921392 14786436 43946980
+at 12123360 2496432 14407632 27122088 15729336 1384432 824216 6769488 338412 6239152 22921392 14786436 43946980
+class 12123360 2496432 14407632 27122088 15729336 1384432 824216 6769488 338412 6239152 22921392 14786436 43946980
+if 1200528 240 3360 5761128 120 880240 800120 1920816 302220 1358320 240 3261828 4620388
+none 12123360 2496432 14407632 27122088 15729336 1384432 824216 6769488 338412 6239152 22921392 14786436 43946980
+tests 12123360 2496432 14407632 27122088 15729336 1384432 824216 6769488 338412 6239152 22921392 14793436 43953980
+while 4680384 2400144 144 1080 15728232 880144 800072 624 322164 4546288 22919184 7558620 35024092
+xy 12123360 2496432 14407632 27122088 15729336 1384432 824216 6769488 338412 6239152 22921392 14786436 43946980
-arith 144 48 48 456 24 880048 800024 240 299388 1089520 48 1442236 2531804
-at 144 48 48 456 24 880048 800024 240 299388 1089520 48 1442236 2531804
-class 144 48 48 456 24 880048 800024 240 299388 1089520 48 1442236 2531804
-if 4680384 2400144 144 1080 15728232 880144 800072 624 322164 4546288 22919184 7563220 35028692
-none 144 48 48 456 24 880048 800024 240 299388 1089520 48 1442236 2531804
-tests 144 48 48 456 24 880048 800024 240 299388 1089520 48 1440036 2529604
-while 1200528 240 3360 5761128 120 880240 800120 1920816 302220 1358320 240 3264028 4622588
-xy 144 48 48 456 24 880048 800024 240 299388 1089520 48 1442236 2531804

Table B.6: Memory utilization for the naı̈ve code generator. The upper
half of the table shows the number of object pointers allocated for the
benchmarks in each class for each particular optimization. The lower
half shows the total number of bytes allocated.

A
PPE

N
D

IX
B

.
R

A
W

R
E

SU
L

T
S

131

oops arith cond loop access activ point mem nolook gfx struct num iface macro+=
+arith 505140 104018 600318 1130087 655389 76018 51009 282062 15028 280525 955058 572083 1807666
+at 505140 104018 600318 1130087 655389 76018 51009 282062 15028 280525 955058 571808 1807391
+class 505140 104018 600318 1130087 655389 76018 51009 282062 15028 280525 955058 571808 1807391
+if 50022 10 140 240047 5 55010 50005 80034 13520 70517 10 97051 167578
+none 505140 104018 600318 1130087 655389 76018 51009 282062 15028 280525 955058 571808 1807391
+tests 505140 104018 600318 1130087 655389 76018 51009 282062 15028 280525 955058 571808 1807391
+while 195016 100006 6 45 655343 55006 50003 26 14351 206849 954966 272789 1434604
+xy 505140 104018 600318 1130087 655389 76018 51009 282062 15028 280525 955058 571808 1807391
-arith 6 2 2 19 1 55002 50001 10 13402 58757 2 23093 81852
-at 6 2 2 19 1 55002 50001 10 13402 58757 2 23168 81927
-class 6 2 2 19 1 55002 50001 10 13402 58757 2 23168 81927
-if 195016 100006 6 45 655343 55006 50003 26 14351 206849 954966 272964 1434779
-none 6 2 2 19 1 55002 50001 10 13402 58757 2 23168 81927
-tests 6 2 2 19 1 55002 50001 10 13402 58757 2 23168 81927
-while 50022 10 140 240047 5 55010 50005 80034 13520 70517 10 97126 167653
-xy 6 2 2 19 1 55002 50001 10 13402 58757 2 23168 81927

bytes arith cond loop access activ point mem nolook gfx struct num iface macro+=
+arith 12123360 2496432 14407632 27122088 15729336 1384432 824216 6769488 338412 6443592 22921392 14471516 43836500
+at 12123360 2496432 14407632 27122088 15729336 1384432 824216 6769488 338412 6443592 22921392 14464516 43829500
+class 12123360 2496432 14407632 27122088 15729336 1384432 824216 6769488 338412 6443592 22921392 14464516 43829500
+if 1200528 240 3360 5761128 120 880240 800120 1920816 302220 1403400 240 3070348 4473988
+none 12123360 2496432 14407632 27122088 15729336 1384432 824216 6769488 338412 6443592 22921392 14464516 43829500
+tests 12123360 2496432 14407632 27122088 15729336 1384432 824216 6769488 338412 6443592 22921392 14464516 43829500
+while 4680384 2400144 144 1080 15728232 880144 800072 624 322164 4675368 22919184 7288060 34882612
+xy 12123360 2496432 14407632 27122088 15729336 1384432 824216 6769488 338412 6443592 22921392 14464516 43829500
-arith 144 48 48 456 24 880048 800024 240 299388 1121160 48 1295356 2416564
-at 144 48 48 456 24 880048 800024 240 299388 1121160 48 1297556 2418764
-class 144 48 48 456 24 880048 800024 240 299388 1121160 48 1297556 2418764
-if 4680384 2400144 144 1080 15728232 880144 800072 624 322164 4675368 22919184 7292660 34887212
-none 144 48 48 456 24 880048 800024 240 299388 1121160 48 1297556 2418764
-tests 144 48 48 456 24 880048 800024 240 299388 1121160 48 1297556 2418764
-while 1200528 240 3360 5761128 120 880240 800120 1920816 302220 1403400 240 3072548 4476188
-xy 144 48 48 456 24 880048 800024 240 299388 1121160 48 1297556 2418764

Table B.7: Memory utilization for the delayed code generator. The
upper half of the table shows the number of object pointers allocated for
the benchmarks in each class for each particular optimization. The lower
half shows the total number of bytes allocated.

APPENDIX B. RAW RESULTS 132

B.1 Unexpected Results

Perhaps the most surprising result is the effect of enabling a special send of the ‘@’
message in PS2.3, where the performance is actually degraded.

A small degradation of performance would make sense for a bytecode interpreter,
which would be required to perform an extra indirection during the conversion process
between selector index (in the bytecode) into an object pointer (from the ‘SpecialSe-
lectors’ array) for use in the dynamic bind. However, it is much harder to imagine why
the effect is so pronounced, since secondary compilation of bytecoded methods into
n-code should produce identical results for both a full send and a special send of ‘@’
— especially considering that the justification for its special send status is simply to
save valuable literal frame slots.

B.2 Absolute Performance of the DCG Compiler

Although a comparison of the absolute performance of PS2.3 and Native Code Small-
talk-80 is not that relevant, table B.8 has been included — for entertainment purposes
only!

PS2.3 dcg PS2.3 ÷ dcg
unoptimized execution time 338.16 166.32 2.03

optimized execution time 224.74 58.78 3.82
unoptimized ÷ optimized 1.50 2.83

Table B.8: The performance of PS2.3 and the delayed code generator
version of Native Code Smalltalk-80.

Appendix C

Assembly Language Conventions

The following tables give the notation used by both Sun and Mo- torola for the ad-
dressing modes used in this thesis. Full details of the addressing capabilities of the
MC68020 and their notations can be found in [Sun88] and [Mot85].

Notation
Meaning Sun Motorola

Address Register an An
Data Register dn Dn
Index (Data or Address) Register ri Xn
Constant Displacement d d or od
Immediate Data xxx xxx

Notation
Mode Sun Motorola

Data Register Direct dn Dn
Address Register Direct an An
Address Register Indirect an@ (An)
Address Register Indirect an@(d) (d,An)
with Displacement
Address Register Indirect an@(d,ri) (An,Xn)
with Index
Address Register Indirect an@+ (An)+
with Postincrement
Address Register Indirect an@- -(An)
with Predecrement
Memory-Indirect an@(ri)@(d) ([An,Xn],od)
Pre-Indexed
Immediate #xxx #xxx

133

Appendix D

Examples

This appendix contains several examples to illustrate delayed code generation for an
entire Smalltalk method, and for some small expressions in C. Section 6.6 describes
in detail the techniques used.

D.1 Conditional Statement

Figure D.1 shows the parse tree, operand descriptors, and generated code for the state-
ment ‘if(a < b) a= b;’. Code for the comparison is generated first, taking into
account the addressability constraints on the operands of the ‘cmpl’ instruction, re-
sulting in []lt (no physical value or size). The ‘if’ node generates a jump instruction
on the inverse of this condition, ‘jge failLabel’, to skip the body of the ‘then’ clause
if the condition is not satisfied. Finally the code for the assignment and a label for the
jump destination are generated, before returning a null operand descriptor [] as the
result. (‘if’ statements have no overall value in C.)

D.2 String Copy Loop

Figure D.2 shows the parse tree, operand descriptors, and generated code for the state-
ment ‘while(*to++= *from++);’. This example assumes that both ‘from’ and ‘to’
are variables of type ‘register char *’.

Firstly the ‘while’ node generates a label to mark the beginning of the test, which
consists of an assignment statement. Neither of the two pointer dereferencing oper-
ations produce any code, since they translate naturally into an addressing mode sup-
ported directly by the hardware. It is only when the assignment finally takes place
that a ‘movb’ instruction (taking account of the size of the source and destination) is
generated. The result of the assignment is the ‘fixed’ version of one of the operands.
Since fixing an operand does not affect the condition codes register, the result is still
tagged with the ‘ne’ condition implied by the move instruction.

The ‘while’ node now performs an optimization: since the body of the loop is null
it can generate a jump back to the start of the test directly, using the ‘ne’ condition

134

Figure D.1: Parse tree, operand descriptors and generated code for
‘if(a < b) a= b;’

synthesized in the assignment. As in the previous example, the overall result is the
null descriptor, [].

D.3 Function Call

Figure D.3 shows the parse tree, operand descriptors, and generated code for the func-
tion call ‘fread(buf, sizeof int, a*a + b*b, fp);’.

The function call node (‘()’) first evaluates the name of the function, which yields
[#_fread]t

4. Next the four arguments are processed left-to-right, pushing the resulting
operand descriptors onto a compile-time stack. Once the last has been dealt with,
they are popped off this stack and an instruction generated to move them onto the
run-time stack thereby pushing the required arguments in reverse order. In the case
of the two constants, [#4]t

4 and [#_buf]t
4, the push is performed by a ‘push effective

address’ instruction which is shorter and faster than the equivalent move instruction.
This transformation is carried out by the ‘M68000>>emitPush:’ method which checks
for a literal argument, and uses a ‘pea’ if possible. The function call is completed
by generating a ‘jbsr’ instruction, and then the stack pointer incremented over the
arguments (which were counted as they were evaluated).

The return value from a function call, in the absence of any interprocedural opti-
mizations, always comes back in a standard place – in the case of C it is usually d0.
The size of the resulting operand descriptor will depend on the type of the function’s
value, and the state of the condition codes will be implementation dependent.

Figure D.2: Parse tree, operand descriptors and generated code for
‘while(*to++= *from++);’

D.4 Generated Code For nfib

To illustrate the code generated by the back-end described in chapter 6, the definition
and final compiled code for the ‘nfib’ function is quoted below. (The skeptical reader
can write down the parse tree and compile the method “by hand” to verify that the code
shown is indeed produced by the code generator described above.) The comments in
typewriter font are those inserted by the compiler; those in italic are a commentary.
So, the function

Figure D.3: Parse tree, operand descriptors and generated code for
‘fread(buf, sizeof int, a*a + b*b, fp);’

SmallInteger>>nfib
"self <= 1

ifTrue: [1]
ifFalse: [(self - 1) nfib + (self - 2) nfib + 1]

results in the compiled code shown on the next page (all optimizations are enabled).

A
PPE

N
D

IX
D

.
E

X
A

M
PL

E
S

138

BEGIN(SmallInteger__nfib) movl sp@, d0 5$: movl d0, sp@-
.long O(24074) | literal frame movl #O(1415), d1 | nfib movl #I(1), sp@-
pea a3@ old home jbsr Send movl sp@(4), d0
pea a6@ old frame addql #4, sp pop args movl #O(3663), d1 | -
movl sp, a6 new frame movl d0, d1 rhs jbsr Send
pea O(48082) | method movl sp@+, d0 lhs addql #8, sp
movl a6@(12), d0 self btst #0, d0 inline? jra 6$
btst #0, d0 integer? jeq 9$ no 7$: movl d0, sp@-
jeq 2$ no btst #0, d1 inline? movl #I(2), sp@-
cmpl #I(1), d0 <= 1? jeq 9$ no movl sp@(4), d0
jhi 1$ no addl d1, d0 yes movl #O(3663), d1 | -

3$: movl #I(1), d0 return 1 subql #1, d0 adjust tag jbsr Send
jra 4$ exit 10$: btst #0, d0 integer? addql #8, sp

1$: movl a6@(12), d0 self jeq 11$ no jra 8$
btst #0, d0 integer? addql #2, d0 + 1 9$: movl d0, sp@-
jeq 5$ no 4$: unlk a6 old frame movl d1, sp@-
subql #2, d0 self - 1 movl sp@+, a3 old home movl sp@(4), d0

6$: movl d0, sp@- 1st arg rts exit movl #O(3650), d1 | +
movl sp@, d0 receiver deferred sends… jbsr Send
movl #O(1415), d1 | nfib 2$: movl d0, sp@- addql #8, sp
jbsr Send movl #I(1), sp@- jra 10$
addql #4, sp pop args movl sp@(4), d0 11$: movl d0, sp@-
movl d0, sp@- result movl #O(1818), d1 | <= movl #I(1), sp@-
movl a6@(12), d0 self jbsr Send movl sp@(4), d0
btst #0, d0 integer? addql #8, sp movl #O(3650), d1 | +
jeq 7$ no cmpl #TRUE, d0 jbsr Send
subql #4, d0 self - 2 jeq 3$ addql #8, sp

8$: movl d0, sp@- 1st arg jra 1$ jra 4$
END(SmallInteger__nfib)

Appendix E

Further Implementation Notes

This appendix presents some brief notes on the more important aspects of implementa-
tion that would be addressed if Native Code Smalltalk-80 were to be developed into a
‘production’ Smalltalk-80 system. These comments are provided ‘without warranty’,
and are based as much on supposition and gut feeling as they are on hard facts.

E.1 Further Improvements in the Generated Code

There is still room for some improvement in the compiled code, to reduce both exe-
cution time and the overall size of compiled methods.

E.1.1 Shared Deferred Sends

The amount of extra method space taken by deferred sends is directly proportional to
the number of deferred sends, regardless of the mix of selectors between them. Where
a particular message is inlined several times, each occurrence will cause a deferred
send. A single deferred send could be shared by each of these inlined sends by using
a relative, indirect ‘join’ address. (The same comment applies to forking where a pair
of relative, indirect ‘join’ addresses would be used for the ‘fork’ and ‘no fork’ cases.)

For example, the generated code for ‘nfib’ shown on page 138 has three separate
deferred sends each dealing with an inlined addition. Much space could be saved in
the compiled code by sharing a single deferred send between several inlined sends of
the same selector, placing an offset in an address register indicating the location in the
method body at which the value is required.1

The code for an inlined send would now look something like this:

1This address register would have to be saved on entry to, and restored on exit from, every method
with inlined sends. Garbage collection would be complicated slightly due to this. Alternatively every
method could save and restore this register (or a dummy value, or even just decrement the stack pointer
since this stack location is ignored during garbage collection), making for a trivial change to garbage
collection but introducing a slight redundancy in methods that have no inlined sends.

139

APPENDIX E. FURTHER IMPLEMENTATION NOTES 140

arguments in d0 and d1
lea FULL-CONT+N, aN | (relative) join address
btst #0, d0 | SmallInteger?
jeq FULL | no
btst #0, d1 | SmallInteger?
jeq FULL | no
perform inlined operation, result in d0

CONT: rest of method…

deferred sends…
FULL: movl d0, sp@-

movl d1, sp@-
movl #selector, d1
jbsr Send | perform full send
addql #8, sp
jmp pc@(aN) | rejoin method body

(Compare this with the code shown on page 92.)

E.1.2 Better Use of Class Information

In some situations the code generator can emit a SmallInteger tag check even though it
knows that the quantity it is dealing with is a SmallInteger. The most common case is
when several inlined arithmetic operations appear in an expression. The ‘nfib’ example
described in section D.4 contains the following expression:

(self - 1) nfib + (self - 2) nfib + 1

which reduces to

hthing1i + hthing2i + 1

incurring an unnecessary tag check in the second addition if the inlined version of the
first addition succeeded. (See the code at and around the label 10$ on page 138.) The
code generator could make a simple rearrangement of the code to avoid the class check
in the second addition in cases where the first inlined addition is executed. This would
require a little thought about communicating the necessary class information between
successive message sends, but should not be impossible to implement.

E.2 Support for Debugging

E.2.1 Failed Message Sends

Smalltalk recovers from an unknown method by sending the receiver of the errant mes-
sage a ‘doesNotUnderstand:’ with the failed Message as the argument. The Message

APPENDIX E. FURTHER IMPLEMENTATION NOTES 141

contains the failed selector and an Array of the actual arguments. For this Array to be
constructed, the number of actual arguments must be available at runtime. In the code
produced by the compilers described in this report, this information is not available.

Various solutions present themselves, but most have at least one drawback that
prevents their use in a realistic implementation.

No mechanism for counting the arguments at runtime is possible since sends as-
sociated with the computation of arguments for an enclosing message send are accu-
mulated on the stack. There is consequently no convenient non-OOP ‘marker’ on the
stack from which to count the number of actual arguments.

The selector is available to the runtime system, and it is not inconceivable that
this could be used to determine the number of arguments expected by the intended
destination method. Determining the argument count by inspecting the type of the
selector (unary, binary, or keyword with embedded colons) would work if messages
failed only from within compiled code. Unfortunately messages can also fail due to
the ‘perform’ primitives, which could defeat a selector inspection mechanism if the
supplied Array of arguments is not of the size implied by the selector. However, if
sends occurring indirectly via this primitive (and it’s close relatives) were handled
specially, then this mechanism could be used in practice.2

The only safe mechanism is to place a count of the actual arguments in a register
prior to the message send. For compiled sends, this figure is available at compile time.
For indirect sends via the ‘perform’ primitives, this can be determined easily at runtime
from the actual arguments supplied prior to performing the message send. Given such
a count the solution to the problem follows trivially, although this is the least desirable
solution because of the added overhead on each message send.

One possible alternative will be mentioned later during the discussion on inlined
caches.

E.3 Inline Caches

A preposterous3 amount of time is spent by the runtime support in performing dynamic
binds. Even with the method cache hit rate at effectively 100% (the ‘working set’ of
<class,selector> pairs for even the macro benchmarks is relatively small), profiling the
benchmark suite revealed the following situation:

2Crafty programmers could still defeat this by changing the compiler’s notion of what constitutes a
binary selector. The runtime system would be oblivious to such changes.

3At least for an implementation that is already faster than PS2.3 by a factor of 3.8 ;-) (section B.2)

APPENDIX E. FURTHER IMPLEMENTATION NOTES 142

%time name English translation
43.3 Send dynamic binding
18.1 VALERR primitives
13.2 _GC GC: mark/sweep
10.1 _BitBlt
8.5 _compact GC: compaction
3.8 AllocS object allocation
2.3 primtab compiled code
0.3 _main initialization

+ traces <= 0.1

(‘VALERR’ appears near the top because it is the last external symbol defined in the
runtime system before the primitives; ‘primtab’ is the last external symbol in the
runtime system and will occur immediately before the start of the loaded image — the
associated figure represents the time spent executing the compiled code in the image.)
The fundamental need for an inline cache should be obvious from this table.

E.3.1 Inline Cache Design

An inline cache needs to handle three situations:

Initialization
The first time a particular message send is encountered, the inline cache must
be initialized by performing a full dynamic bind (via the method cache, if one
is present). The call site must be patched with a reference to the destination
method, before that method is entered.

Cache hit
Due to the locality of type usage found in Smalltalk, the second and subsequent
encounters of some particular message send will most probably be to the same
class of receiver. In such cases, the previously determined method can be entered
without delay.

Cache miss
If the class of the receiver differs from that of the previous receiver then a ‘re-
initialization’ must occur, patching the call site with the result of a new full
dynamic bind before entering the newly determined method.

Inline caches can be implemented in many different ways, but all have to manage
essentially the same few pieces of information in order to perform the tasks listed
above:

• the class of the receiver,

• the selector,

APPENDIX E. FURTHER IMPLEMENTATION NOTES 143

• the cached method address from the previous send, and

• the class of the previous receiver.

The variation between designs comes in the dynamic relationships between various
items in the list above, and the location(s) in which they are kept:

• embedded within the code at the ‘point of send’,

• with the destination method, or

• in an auxiliary data structure appended to the method proper.

Choice of representation for method references, such as object memory address versus
OOP, also increases the range of designs possible. Assuming we can choose either a
real address or OOP for the cached method address, ignoring the additional degrees
of freedom introduced by any dynamic relationships between different quantities, and
assuming no flexibility in where each of the previously mentioned tasks are to be
performed, we already have at least 162 possible organizations for our inline cache.4

Rather than embark upon an exhaustive investigation into inlined cache construc-
tion (which might well make an admirable thesis topic in itself), we will consider very
briefly just one likely looking candidate.

E.3.2 Example Inline Cache

This is a fairly straightforward inline cache. The only caveats are that the OOP of the
destination method is cached rather than the address (this simplifies garbage collection
enormously), and the ‘inline cache binding materials’ (ICBMs) are kept together in a
silo at the end of the method after the compiled code (which removes a little overhead
associated with tweezing the return address to skip these materials were they to be
kept inline at the point of send). Thus:5

4Admittedly, a significant number of these will be meaningless, or at best highly inefficient.
5Note the ICBM field containing the number of arguments — this is to help with the handling

of failed messages, and the consequent construction of the Array of arguments for the resulting
‘doesNotUnderstand:’.

APPENDIX E. FURTHER IMPLEMENTATION NOTES 144

usual send prologue: arguments on stack,
receiver in d0, NO SELECTOR NEEDED
lea pc@(icbm42), aN | address of ICBM
movl aN@(0), aM | method OOP
jbsr obmem@(aM)@(12) | call method
addql #nArgs, sp | tidy stack
rest of method…

end of method, start of silo
some ICBMs…

icbm42: .long method OOP
.long selector
.long previous class
.long argument count
some more ICBMs…

Each method entry now has a prelude that checks the inline cache for a match between
the actual receiver’s class and the previous receiver’s class:

12 bytes of method header
entry: arrive here with ICBM address in aN

movl obtab@(d0)@(0), aC | class of receiver
cmpl aC, aN@(8) | cache hit?
jeq hit | yes - enter method
jmp icMiss | no - patch up calling ICBM

hit: normal method entry…

The cache miss code (only one copy, somewhere inside the runtime system) performs
the dynamic binding:

recover from inline cache miss
icMiss: arrive with ICBM address in aN, receiver class in aC

movl aN@(4), aS | selector
bind on aC×aS, result in aM
movl aM, aN@(0) | patch method OOP
movl aC, aN@(8) | and previous class
dispatch to method, skipping cache class check…
jmp obmem@(aM)@(12+hit-entry)

Cache initialization can be ensured by constructing ICBMs so as to point to an
arbitrary method (either something unlikely to change such as ‘Object>isNil’ or some
method defined especially for this purpose that has been removed from its class orga-
nization so as to make it invisible to the programmer), and then put some ludicrous
value in the ‘previous class’ field (such as ‘nil’ or zero). The first encounter of the send
would consequently miss the cache regardless of the class of the receiver, causing the
correct method OOP to be found and placed in the cache.

APPENDIX E. FURTHER IMPLEMENTATION NOTES 145

With a little ingenuity it is possible to reduce the number of fields in each ICBM,
and hence the total size of the compiled methods in the image, by effectively moving
information from the call site to the destination site (there will always be many more
call sites than destinations). For example the selector need not be cached at the point
of send but instead kept with the destination method itself, although this complicates
the initialization of the ‘method OOP’ field for sends in which the selector is a new
message.

More efficient schemes are also possible if self-modifying code is used. However,
certain processors explicitly forbid self-modifying code because of problems of con-
sistency between their on-chip code and data caches.6 Some initial experiments,7 with
inline caches in code compiled ‘by hand’ in the spirit of a delayed code generator,
puts the performance of the compiled code for the ‘nfib’ example at just over 70%
that of the equivalent C. The same experiments suggest that the application of a little
flow analysis, and further specialization in the compiled code for arithmetic and rela-
tional operations on receivers discovered to be SmallIntegers at runtime, would almost
remove the performance gap between Smalltalk and C.8

E.3.3 Interference with Deferred Sends

Inline caches become less effective if shared deferred message sends are being used.
The more inlined selectors that share a single deferred send, the less the consistency
of type usage at that send. In the worst case, we might have a method that adds a pair
of Points and then a pair of Fractions; the inline cache at the associated deferred send
would thrash mercilessly.

E.3.4 Cache Consistency

When compiling or removing a method, Smalltalk is careful to maintain the consis-
tency of any caches that may become inconsistent. The method cache is fairly easy
to purge, but an inline cache presents a much more serious problem. The solution
depends to a large extent on the particular implementation strategy adopted, but the
choice would seem to be between the following:

• keeping out of line structures at the end of methods holding inline cache in-
formation. Purging these becomes a matter of trawling the object memory for
CompiledMethods and then sifting through the inline cache structures appended
to the compiled code;

• keeping the cache information embedded within the code itself at each point of
send, and appending a ‘map’ of the locations of each send point to the method;

6The MC68040, for example, tends to catch fire when presented with self-modifying code.
7Undertaken by Eliot Miranda.
8The technique is similar to the ‘method splitting’ used by the SELF compiler, but applied in a much

more selective fashion in order to avoid SELF’s notorious space explosion problems.

APPENDIX E. FURTHER IMPLEMENTATION NOTES 146

• keeping the cache information embedded within the code itself at ech point of
send, and marching through the code looking for a particular instruction se-
quences which act as a ‘signature’ for the inline cache.

Bibliography

[ASU86] Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullman, “Compilers: Principles,
Techniques and Tools”, Addison-Wesley, 1986. ISBN 0-201-10194-7.

[Ash87] Peter James Ashwood-Smith, “The Source Level Optimization of Turing
Plus”, University of Toronto Dept. of Computer Science, March 7, 1987.

[Atk86] Robert G. Atkinson, “Hurricane: An Optimizing Compiler for
Smalltalk”, SIGPLAN Notices 21(11) pp. 151-158, November 1986.

[Bor79] Richard Bornat, “Understanding and Writing Compilers”, Macmillan
Publishers Ltd., 1979. ISBN 0-333-21732-2.

[CU89] Craig Chambers and David Ungar, “Customization: Optimizing
Compiler Technology for SELF, a Dynamically-Typed Object-Oriented
Programming Language”, in Proc. SIGPLAN ’89 Conference on
Programming Language Design and Implementation, published as
SIGPLAN Notices 24(7), July 1989.

[CUL89] Craig Chambers, David Ungar and Elgin Lee, “An Efficient
Implementation of SELF, a Dynamically-Typed Object-Oriented
Language Based on Prototypes”, in Proc. of the Conference on
Object-Oriented Programming Systems, Languages and Applications,
pp. 49-70, October 1989.

[CP83] W. Citrin and C. Ponder, “Implementing a Smalltalk compiler”, in
Smalltalk on a RISC: Architectural investigations, proceedings of
CS292R, pp. 167-185, Department of Computer Science, University of
California at Berkeley, April 1983.

[CW73] R. W. Conway and T. R. Wilcox, “Design and implementation of a
diagnostic compiler for PL/I”, CACM 16(3) pp. 169-179, March 1973.

[Cor86] James R. Cordy, “An Orthogonal Model for Code Generation”, Technical
Report CSRI-177, Computer Systems Research Group, University of
Toronto, January 1986.

147

BIBLIOGRAPHY 148

[CH90] J. R. Cordy and R. C. Holt, “Code Generation Using an Orthogonal
Model”, Software Practice and Experience 20(3) pp. 301-320, March
1990.

[DB76] L. Peter Deutsch and Daniel G. Bobrow, “An Efficient, Incremental,
Automatic Garbage Collector”, CACM 19(9) pp. 522-526, Sept 1976.

[DS83] L. Peter Deutsch and Alan M. Schiffman, “Efficient Implementation of
the Smalltalk-80 System”, in PROC 11th ACM POPL, Salt Lake City,
UT, 15–18 January 1984.

[Dyb87] R. K. Dybvig, “The Scheme Programming Language”, Prentice-Hall
Inc., 1987. ISBN 0-13-791864-X.

[Eli88] Nicholas L. Eliot, “Automatic Derivation of Orthogonal Code Generators
from Applicative Specifications”, M.Sc. Thesis, Queen’s University,
Kingston, Ontario, Canada, July 1988.

[GR83] Adele Goldberg and David Robson, “Smalltalk-80: The Language and its
Implementation”, Addison-Wesley, 1983. ISBN 0-201-11371-6.

[Hal86] Charles Brian Hall, “A Production-Quality Machine-Independent Code
Generator for Turing”, M.Sc. Thesis, Department of Computer Science
University of Toronto, September 1986.

[HP90] John L. Hennessy and David A. Patterson, “Computer Architecture — A
Quantitative Approach”, Morgan Kaufmann Publishers, Inc., San Mateo
CA, 1990. ISBN 1-55880-069-8.

[Hol87] R. C. Holt, “Data Descriptors: A Compile-Time Model of Data and
Addressing”, ACM TOPLAS, vol. 9, no. 3 (July 1987), pages 367-389.

[HCW82] R. C. Holt, J. R. Cordy and D. B. Wortman, “An Introduction to S/SL:
Syntax/Semantic Language”, ACM TOPLAS 4(2) pp. 149-178, April
1982.

[HWW87] Trevor Hopkins, Ifor Williams and Mario Wolczko, “MUSHROOM—A
Distributed Multi-User Object-Oriented Programming Environment”, in
Proc. Joint Workshop of the BCS Parallel Processing and Object Oriented
Programming and Systems Specialist Groups, London, October 1987.

[Jan90] Goran T. Janevski, “Automatic Generation of Modular Semantic
Analyzers from Functional Specifications”, M.Sc. Thesis, Queen’s
University, April 1990.

[JGZ88] Ralph E. Johnson, Justin O. Graver and Lawrence W. Zurawski, “TS: An
Optimizing Compiler for Smalltalk”, in OOPSLA ’88 Conference
Proceedings, Published as SIGPLAN Notices 23(11), November 1988.

BIBLIOGRAPHY 149

[KR78] Brian W. Kernighan and Dennis M. Ritchie, “The C Programming
Language”, Prentice Hall, 1978. ISBN 0-13-110163-3.

[Kra83] Glenn Krasner, “Bits of History, Words of Advice”, Addison-Wesley,
1983. ISBN 0-201-11669-3.

[LB83] J. Larus and W. Bush, “Classy: A method for efficiently compiling
Smalltalk”, in Smalltalk on a RISC: Architectural investigations,
proceedings of CS292R, pp. 186-202, Department of Computer Science,
University of California at Berkeley, April 1983.

[McC60] John McCarthy, “Recursive Functions of Symbolic Expressions and
Their Computation by Machine, Part I”, CACM vol. 3 no. 4,
pp. 184-195, 1960.

[McC62] John McCarthy et al., “LISP 1.5 Programmer’s Manual”, MIT Press,
Cambridge MA, 1962.

[Mir87] Eliot Miranda, “BrouHaHa — A Portable Smaltalk Interpreter”, in
Proceedings of the Conference on Object-Oriented Programming
Systems, Languages and Applications, published as ACM SIGPLAN
Notices 22(12) pp. 354-365, December 1987.

[Mos87] J. Eliot B. Moss, “Managing Stack Frames in Smalltalk”, Proceedings of
the SIGPLAN ’87 Symposium on Interpreters and Interpretive
Techniques, published as SIGPLAN Notices 22(7) pp. 229-240, July
1987.

[Mot85] Motorola Inc., “MC68020 32-Bit Microprocessor User’s Manual”,
Second Edition, Prentice-Hall Inc., Englewood Cliffs NJ, 1985. ISBN
0-13-566860-3 (Prentice-Hall Edn.), 0-13-566878-6 (Motorola Edn.).

[PH90] David A. Patterson and John L. Hennessy, “Computer Architecture — A
Quantitative Approach”, Morgan Kaufmann Publishers, Inc., San Mateo
CA, 1990. ISBN 1-55880-069-8.

[Ros80] Alan Rosselet, “PT: A Pascal Subset”, Technical Report CSRG-119,
Computer Systems Research Group, University of Toronto, September
1980.

[Sun88] “Assembly Language Reference for the Sun-2 and Sun-3”, Part Number
800-1773-10, Sun Microsystems Inc., Mountain View CA, May 1988.

[ST84] N. Suzuki and M. Terada, “Creating efficient systems for object-oriented
languages”, in Proc. of the Eleventh ACM Symposium on the Principles
of Programming Languages, pp. 290-296, January 1984.

BIBLIOGRAPHY 150

[Wil71] T. R. Wilcox, “Generating machine code for high-level programming
languages”, Ph.D. dissertation, Computer Science Dept., Cornell
University, Ithaca, NY, 1971.

[Wil89] Ifor W. Williams, “The MUSHROOM Machine – An Architecture for
Symbolic Processing”, in Proc. IEE Colloquium on VLSI and
Architectures, London, March 1989.

[Wol88] Mario I. Wolczko, “Introducing MUST — The MUSHROOM Programming
Language”, MUSHROOM project technical report, University of
Manchester, UK, October 1988.

[Wol84] Mario I. Wolczko, “Implementing Smalltalk-80 on the ICL PERQ”,
M.Sc. Thesis, Department of Computer Science, University of
Manchester, UK, October 1984.

…continued from the inside front cover.

UMCS-88-2-1 Synthesis of Recursive Logic Procedures by Top-down Folding
UMCS-88-4-1 Temporal Term Rewriting
UMCS-88-6-2 The Joint Academic Network JANET
UMCS-88-7-1 On Computing Best Symmetric Matrix Approximations
UMCS-88-10-1 Synthesis of Logic Programs for Recursive Sorting Algorithms
UMCS-88-12-1 Review of Concurrent Object Systems
UMCS-88-12-2 SMACK: The Smalltalk Actor Kernel
UMCS-87-4-1 Centrenet Terminal Multiplexer
UMCS-87-5-1 Some Aspects of Induction
UMCS-87-8-2 Review of Existing Theorem Provers
UMCS-87-11-1 Formal Specification and Verification of Hardware: A Comparative Case Study
UMCS-87-12-5 A semantics driven temporal verification system
UMCS-87-12-6 Symbolic Execution of Specifications: User Interface and Scenarios
UMCS-87-12-7 Logical Frames for Interactive Theorem Proving
UMCS-87-12-8 An Experimental User Interface for a Theorem Proving Assistant
UMCS-87-12-9 Teaching Notes for Systematic Software Development Using VDM
UMCS-86-3-1 Centrenet Network Monitor
UMCS-86-4-1 An Implementation of the GKS-3D/PHIGS Viewing Pipeline
UMCS-86-4-3 Stored Data Structures on the Manchester Dataflow Machine
UMCS-86-10-1 Using Temporal Logic in the Compositional Specification of Concurrent Systems
UMCS-86-10-2 A Study of an Extended Temporal Language and a BTemporal Fixed Point Calculus
UMCS-86-10-5 Program Specification and Verification in VDM
UMCS-86-11-1 Program Logics – A Survey
UMCS-86-11-2 Unification in Boolean Rings and Unquantified Formulae of First Order Predicate Calculus
UMCS-86-11-5 Load Balancing, Locality and Parallelism Control in Fine-Grain Parallel Machines
UMCS-AI-93-1-7 The Expressive Power of the English Temporal Preposition System
UMCS-AI-91-12-1 Learning a Grammar
UMCS-AI-91-12-3 German Temporal Prepositions from an English Perspective
UMCS-AI-91-12-5 An Introduction to Categorial Grammars £10.00

The following theses are also available:

UMCS-89-2-1 A Categorial Syntax for Coordinate Constructions £9.50
UMCS-89-7-1 Symbolic Execution as a Tool for Validation of Specifications £4.50
UMCS-89-8-1 An Investigation into Architectures for a Parallel Packet Reduction Machine £7.00
UMCS-89-9-1 Multicast Facilities for Multimedia Group Communication Environments £4.50
UMCS-89-10-1 Decision Procedures for Temporal Logic £2.50
UMCS-89-10-3 Operation Decomposition Proof Obligations for Blocks and Procedures £8.00
UMCS-89-11-2 Concurrency Control in the Multi-Ring Manchester Dataflow Machine £8.80
UMCS-88-6-1 Semantics of Object-Oriented Languages £3.50
UMCS-88-8-1 Recursion Transformations for Run-Time Control of Parallel Computations £4.00
UMCS-88-8-2 The Use of Knowledge Based Techniques for Electronic Computer Aided Design £3.80
UMCS-87-1-1 An Investigation of the Argonne Model of Or-Parallel Prolog £2.00
UMCS-87-1-2 A Formal Description Method for User Interfaces £3.00
UMCS-87-2-1 The Parallel Reduction of Lambda Calculus Expressions £2.50
UMCS-87-2-2 A Hardware Simulator for a Multi-Ring Dataflow Machine £4.00
UMCS-87-5-3 Behavioural Implementation Concepts for Nondeterministic Data Types £2.50
UMCS-87-6-1 Specification and Control of Execution of Nondeterministic Dataflow Programs £3.50
UMCS-87-8-1 Throttle Mechanisms for the Manchester Dataflow Machine £4.50
UMCS-87-11-2 Manchester Dataflow Machine: Preliminary Benchmark Test Evaluation £3.80
UMCS-87-11-3 An Approach to General Silicon Compilation £2.50
UMCS-87-11-4 Decidability in Temporal Presburger Arithmetic £3.00
UMCS-87-12-2 Performance Evaluation of a Heterogeneous Multi-Ring Dataflow Machine £2.50
UMCS-87-12-3 Monitoring Tools for Parallel Systems £3.00
UMCS-87-12-4 Temporal Logics for Abstract Semantics £3.50
UMCS-86-7-1 A Logic for Partial Functions £4.00

Ian K. Piumarta
Delayed Code Generation in a Smalltalk-80 Compiler
UMCS–93–7–0

