
Documenting Frameworks using Patterns

Ralph E. Johnson
University of Illinois at Urbana-Champaign

Department of Computer Science
1304 W. Springfield Ave.

Urbana IL 61801

Abstract: The documentation for a framework
must meet several requirements. These
requirements can all be met by structuring the
documentation as a set of patterns, sometimes
called a “pattern language”. Patterns can describe
the purpose of a framework, can let application
programmers use a framework without having to
understand in detail how it works, and can teach
many of the design details embodied in the
framework. This paper shows how to use
patterns to document a framework, and includes a
set of patterns for HotDraw as an example.

Christopher Alexander, an architect, developed
the idea of a “pattern language” to enable people to
design their own homes and communities
[Alexander et. al.]. A pattern language is a set of
patterns, each of which describes how to solve a
particular kind of problem. His pattern language
starts at a very large scale, explaining how the
world should be broken into nations and nations
into smaller regions, and goes on to explain how
to arrange roads, parking, shopping, places to
work, homes, and places of worship. The
patterns focus on finer and finer levels of detail,
passing though a discussion of how to arrange
rooms in a house, and finally describing the type
of material to use for walls, how to decorate
rooms, and how to provide lighting.

Alexander's pattern language is supposed to be a
document that non-architects can use to design
their own communities and homes. No
specialized training is needed to use it. It focuses
on common design problems that non-architects
will encounter, like how to build bedrooms and
row houses, rather than uncommon ones, like
how to build concert halls and cathedrals.

To be presented at OOPSLA’92.

Although Alexander uses the term “pattern
language” to describe his document, it is not a
formal language like a context-free language, for
example. A pattern language is a structured
essay, not a mathematical object. Therefore, we
will replace that term with the term “patterns”.

A framework is a reusable design of a program or
a part of a program expressed as a set of classes
[Deutsch][Johnson and Foote]. Like all software,
it is a mixture of the concrete and the abstract.
Since frameworks are reusable designs, not just
code, they are more abstract than most software,
which makes documenting them difficult. Frame-
works are designed by experts in a particular
domain and then used by non-experts. The
principal audience of framework documentation is
someone who wants to use the framework to
solve typical problems, not someone building a
software cathedral. Patterns seem to be well
suited for this audience.

This paper shows one way to document
frameworks with patterns. It is essentially an
experiment to see how well patterns work to
describe a framework. The result is a set of
patterns that are included in the appendix. The
main purpose of a set of patterns is to show how
to use a framework, not to show how it works,
but patterns can also describe a great deal of the
theory of its design.

1. A Format for Patterns

One of the important features of Alexander’s
pattern language is its structure; each pattern is
written in a particular format and patterns are
arranged so that each pattern leads into the next.
The format that Alexander uses is unlikely to be
suitable for software. For example, since he is
building physical objects, he requires pictures
both for stating the problem that a pattern solves
and for stating the solution. Thus, the patterns in
this paper have a different format that the one he
used.

Each pattern describes a problem that occurs over
and over again in the problem domain of the
framework, and then describes how to solve that
problem. Each pattern has the same format. The
format used in this paper is to first give a
description of the problem in italics. This is
followed by a detailed discussion of the different
ways to solve the problem, with examples and
pointers to other parts of the framework. The
pattern ends with a summary of the solution,
again in italics, followed by pointers to other
patterns that are needed to fill it out and embellish
it.

The appendix to this paper describes a set of ten
patterns for HotDraw, a drawing framework. For
example, pattern 4 is

Pattern 4: Complex Figures

Some figures have a visual presentation with
internal structure. For example, they may have
attributes that are displayed by other figures. It
should be possible to compose them from
simpler figures.

Complicated figures like PERTEvent can be
thought of as being composed of simpler
figures. For example, a PERTEvent has a
RectangleFigure and several TextFigures for
the title, the duration, and the ending date.
Complex figures like PERTEvent are
subclasses of CompositeFigure. A
CompositeFigure is a figure with other figures
as components, and it displays itself by
displaying its components. It has a bounding
box that is independent of the bounding box of
its components, and it will display its
components only if they are inside of its
bounding box. The selection tool and text tool
will operation on its components when the left
shift key is pressed. Custom tools can operate
directly on the components, if you want.

. . .

Complex figures should be a subclass of
CompositeFigure, and figures that display one
of its aspects should be a component of it.

To enforce constraints between the components
of a complex figure, see Constraints (5).

This pattern assumes that the reader has read other
patterns. In this case, pattern 4 is preceded by
pattern 2, which defines figures and bounding
boxes. It also depends on pattern 1 to introduce
the PERT chart example.

Patterns are problem-oriented, not solution-
oriented. Each pattern describes how to solve a
small part of the larger design problem.
Sometimes the solution is to make a new subclass
(e.g. pattern 2), sometimes it is to parameterize an
object of an existing class (e.g. patterns 10), and
sometimes it requires connecting several objects
together (e.g. pattern 3).

2. Framework documentation

Documentation for a framework has three
purposes, and patterns can help fulfill each of
them. Documentation must describe

• the purpose of the framework
• how to use the framework
• the detailed design of the framework.

Patterns are best suited for teaching how to use a
framework, but we will see that with care, a set of
patterns can meet all three of these purposes for
framework documentation.

2.1. Describing the purpose of a framework

A framework is a reusable design for solutions to
problems in some particular problem domain.
The purpose of the framework, i.e. the problem
domain for which it is designed, must be the first
thing that the documentation describes. If the
framework turns out to be inappropriate then the
reader does not have to continue reading. The
first section should be small, so that every
potential reader will have time to read it. It is not
unreason-able to expect that an experienced
designer will have read the first section of the
documentation for every framework owned by his
or her organization and so know the purpose of
each one. This will reduce the problem of finding
the right software to reuse.

Each pattern describes the problems it is meant to
solve. The first pattern for a framework describes
its application domain. It does this by giving
examples, as do other ways of documenting
frameworks. In addition, the first pattern
introduces the rest of the patterns in the language,
and it will usually tell which patterns should be

read next. Thus, it acts both as a catalog entry for
the framework and as a road map.

2.2. Describing how to use a framework

Next, the documentation for a framework should
show how to use it to build applications. Most
users of a framework want to know as little as
possible about the framework. This means that
they are not interested in a description of the
design of the framework, but want a kind of
cookbook, giving detailed instructions for using
the framework. This is similar to the minimalist
instruction of Caroll[Caroll][Rosson et. al.],
which tries to show how to solve particular
problems and make a system useful to a user as
soon as possible.

Most documentation for frameworks describes
how the framework works first, and then
describes how to use it. However, part of the
folklore of frameworks is that nobody
understands a framework until they have used it,
so using it is more important than reading about
the theory behind it. In fact, I believe that theory
should follow practice, that a discussion of the
theory behind a framework is only understandable
once the framework itself is understood, and that
the best way to get a general understanding of a
framework is to use it. Thus, we need to explain
how to use a framework without explaining how
it works.

This is not a new idea; the documentation for
MacApp has long contained a cookbook [Apple]
and the first documentation for Model-View-
Controller (MVC) was called a “Cookbook for
Model-View-Controller” [Krasner and Pope].
Patterns are more like the MacApp cookbook than
the MVC cookbook. The MCV cookbook is a
collection of examples, but is still a tutorial
designed to be read as a unit. The MacApp cook-
book is a collection of “recipes” with some cross
references, where each recipe solves a particular
problem like how to drag an object. It does not
make use of structure as much as the set of
patterns for HotDraw. None of these documents
is as deterministic as a typical cookbook, which
gives algorithms for making dishes, not just hints
or rules of thumb.

2.3. Describing the design of a framework

The third purpose of documentation for a frame-
work is to describe its design. This not only
includes the different classes in the framework,
but also the way that instances of these classes
collabo-rate. Although programmers can usually
interconnect objects without completely under-
standing how they work, and can even make
subclasses following a cookbook, a framework is
most useful to someone who understands it in
detail.

The major weakness of cookbooks is that they
describe the typical way that the framework will
be used. A good framework will be used in ways
that its designers never conceived. Thus, a
cookbook is insufficient to describe every use of
the frame-work. This is probably why the MVC
cookbook also includes an informal description
of the design of the framework, as well as
instructions on how to use it[Krasner and Pope].
On the other hand, someone's first use of a
framework usually fits the stereotype of the
framework's designer, and using a framework
helps provide the intuition needed to read a more
formal specification.

In contrast to formal specifications like contracts
[Helm et. al.], patterns are an informal technique
aimed primarily at describing how to use a frame-
work, not describing its algorithms, patterns of
collaboration, or shared invariants. However,
patterns provide many opportunities for
describing a design, and it is possible to include
much of the design of a framework in patterns for
it. The section between the statement of the
problem to be solved and the summary of the
solution elaborates upon the solution and explains
why it works. This section usually describes part
of the design of a framework. If the patterns are
designed carefully then they can also describe the
design of a framework.

Where should design information be placed in a
set of patterns? In general, detailed design infor-
mation should be hidden as long as possible from
the reader, because most readers are not interested
in seeing it. On the other hand, it is necessary to
make sure that the patterns contain the information
somewhere and that the information is not dupli-
cated. The technique that I used was to treat the
set of patterns as a directed graph, using the
references from one pattern to another as the
edges, and to place design information as far from
the first pattern as was feasible. Some design

information, such as the fact that a HotDraw
application is made up of Figures, Drawings,
Handles, and Tools, must be described in the very
first pattern, but most of it can be moved to
subsequent patterns without using forward
references.

3. The Role of Examples

Examples play a key role in the documentation of
frameworks. The documentation for MVC
[Krasner and Pope], MacApp [Apple], and Uni-
draw [Vlissides] all include many large examples.
Examples make frameworks more concrete, make
it easier to understand the flow of control, and
help the reader to determine whether he or she
understands the rest of the documentation.

Examples are also important in documentation
based on patterns. Both the problem that a pattern
is supposed to solve and its solution are often
described in terms of examples. This is most
obvious when describing the initial pattern, the
one that describes the purpose of the framework.
It is usually hard to specify a problem domain
precisely, but a small set of examples usually
makes the general area clear. These examples are
not intended to show how to use the framework to
build applications, nor to explain the design of the
framework, but rather to show what the frame-
work is good for. Thus, the examples for a user
interface framework will be finished user inter-
faces, while the examples for a compiler frame-
work will be finished compilers. The examples
will point out user-level features that the frame-
work provides, but they will not explain how
these features are provided or how the application
designer uses them.

Examples can also be used to show features of the
design. The patterns for HotDraw use examples
to motivate the need for complex figures (pattern
4) and for constraints (pattern 5). These patterns
start with example applications of HotDraw and
finish with a discussion of the code needed to
implement these applications.

Examples can be used to test drive the patterns.
The examples should exercise all the patterns, so
someone can make sure that they learn all the
patterns by trying out all the examples. The
examples that have been used to describe the
purpose of HotDraw (i.e. the examples in the first
pattern) are sufficient to test drive all the patterns.

Not only does the documentation for HotDraw
use examples heavily, but HotDraw comes with
several applications that show concrete examples
of applying the framework to a particular
problem. Studying working examples is a time-
honored way of learning a framework, and
patterns are a way of reinforcing, encouraging,
and system-atizing this method, not a replacement
for it.

It is interesting to note that examples also play a
key role in design (c.f. use cases [Jacobson] or
walk-throughs [Wirfs-Brock et. al.]). This is
just another example of the general rule that
concrete examples are easier to understand than
abstractions.

4. Patterns for HotDraw

Most of this paper is an appendix that contains an
example of patterns for a framework. The
framework is HotDraw, which is a framework for
semantic graphic editors that was originally
developed at Tektronix by Kent Beck and Ward
Cunningham. It has been reimplemented several
times. The latest version, and the one that the
patterns describe, was written by Patrick
McClaughry for ParcPlace ObjectWorks for
Smalltalk-80 release 4.0. This implementation
was simpler than previous ones because the
design of the user interface framework for
Smalltalk-80 release 4.0 was influenced by
HotDraw.

HotDraw is not unique as a graphics editor
framework. Unidraw is a similar framework for
the C++/X windows environment that is built
upon the InterViews user interface framework
[Vlissides]. DRAW_Master is a graphics editor
framework for the C++/OS 2 and Windows
environment that is built upon the GUI_Master
application framework[Veltman and Riksen].
HotDraw is simpler and less powerful than the
others, but this simplicity makes it a better
example for a paper like this.

The first pattern describes the purpose of
HotDraw. The patterns form a directed graph,
with the first pattern as the entry point. Other
patterns are arranged so that those closest to the
first pattern are the ones that are most often used.
For example, the second pattern describes how to
make subclasses of Figure, which is something

that almost every user of HotDraw will need to
know. The third pattern describes (among other
things) how to install a handle on a figure, but the
sixth pattern describes how to make new kinds of
handles, which is usually unnecessary.

The patterns assume that the reader knows
Smalltalk. Some of the patterns contain fragments
of Smalltalk code. They also assume that the
reader is using Smalltalk, so they often refer to
examples in HotDraw and imply that the reader
can quickly look them up using the browser. This
suggests that patterns would work well with an
on-line documentation system, perhaps one that is
based on hypertext.

5. Reflections

The set of patterns got its start at the workshop on
“Towards an Architecture Handbook” organized
by Bruce Anderson at OOPSLA'91. Kent Beck
and I shared an interest in both HotDraw and
Alexander’s pattern language, so we took the
opportunity to write some patterns for HotDraw.
Later that fall I gave the patterns to some graduate
students learning HotDraw, but the patterns were
not helpful. At the time each pattern was only a
paragraph, and both the examples and the theory
of design of HotDraw were separated from the
patterns.

I studied Alexander’s pattern language again, and
realized that each pattern relied on examples and
that he provided explanations for his patterns in
terms of underlying theories of the properties of
building materials or social interaction. When I
integrated the examples with the patterns I found
that the examples did not illustrate all the patterns,
so I created another one or two examples. I put
enough of the theory of design in the first pattern
to define the main vocabulary and put the rest as
far down in the patterns as possible, but far
enough forward to both avoid duplication and to
make sure the information was present before it
was needed.

The next group of people who read the patterns
knew Smalltalk well, but most did not know
HotDraw. Their feedback provided a few
changes, but after a few iterations they were
satisfied. The patterns are the only documentation
for a version of HotDraw that has been distributed
since early 1992, and users say they are satisfied
with it. Since there are no complaints, it is hard to

improve the patterns, which shows the weakness
of this kind of informal testing. It would
probably be worthwhile to try out the patterns in a
controlled setting where it would be possible to
watch how people use the patterns and what
aspects of HotDraw are hard to learn.

Writing the patterns was not hard once I figured
out the format. Picking good examples is never
easy, but the patterns showed the features that
they needed to demonstrate. Probably the hardest
part of writing a set of patterns for a framework is
knowing the framework well enough to know
how likely a feature is to be customized.

The structure of the patterns seemed to help
design them. Thinking about patterns as a
directed graph made it easier to decide where to
place examples and design information, and made
it easier to analyze the patterns for completeness.

Designing patterns for HotDraw took a lot of
work, but it also helped clarify the design of the
framework, so it was a useful exercise in itself.
Designing patterns requires analyzing how people
are expected to use the framework, and this points
out ways that using it is awkward.

Although the HotDraw patterns are easy to follow
on paper, patterns might be even more effective as
hypertext. A hypertext system could make it
easier to follow links to patterns, to show more
examples, to hide technical design explanations
from casual readers, and to separate the various
parts of a pattern. Several people who read earlier
versions of this paper commented that patterns are
similar to hypertext documentation systems that
they have seen, though I have little experience
with hypertext systems. The HotDraw patterns
were an imitation of Alexander’s pattern language,
not hypertext or the MacApp cookbook. It is
interesting that the final result is so similar to
them.

Conclusion

Patterns are a good way to describe frameworks
because first-time users of a framework will
usually not want to know exactly how it works,
but will only be interested in solving a particular
problem. As long as the patterns are powerful
enough to describe most initial uses of the
framework, it will meet the needs of the users.

A set of patterns for a framework will be
sufficient documentation for many of the
framework's users. Only those who want to go
outside the usual bounds of the framework or
those with an emotional need to know how the
framework works in detail will need to read
traditional design documentation. The internal
structure of a set of patterns minimizes the amount
that has to be read to solve a problem, and also
provides places to put design information.

This paper is just a first step in creating a method
for documenting frameworks. In the future,
patterns should be tested against other ways of
documenting a framework to see which best helps
users build applications. Patterns should be used
for larger frameworks to see whether they scale
well, though Alexander's work suggests that they
will. Although just a first step, the patterns for
HotDraw in the appendix show that patterns are
an attractive possibility for solving the problems
of documenting frameworks.

Acknowledgements Kent Beck and Ward
Cunningham not only invented HotDraw, they
also introduced me to Alexander's pattern
languages. This paper also owes a great deal to
those who read it and provided it with much-
needed criticism, including Bruce Anderson, Kent
Beck, Bob Hinkle, Brian Foote, Pat McClaughry,
Carl McConnell, Bill Opdyke, Don Roberts,
Michael Seif, Dan Walkowski, and the reviewers.

Bibliography

[Alexander et. al.] Christopher Alexander, Sara
Ishikawa and Murray Silverstein, with Max
Jacobson, Ingrid Fiksdahl-King and Shlomo
Angel. A Pattern Language. Oxford University
Press, New York, 1977.

[Apple] MacApp Programmer’s Guide. Apple
Computer, 1986.

[Carroll] John M. Carroll. The Nurnberg Funnel:
Designing Minimalist Instruction for Practical
Computer Skill. MIT Press, Cambridge, Mass.,
1990.

[Deutsch] L. Peter Deutsch, “Design Reuse and
Frameworks in the Smalltalk-80 Programming
System”, pages 55-71, Software Reusability, Vol
II, ed. Ted J. Biggerstaff and Alan J. Perlis,
ACM Press, 1989.

[Jacobson] Ivar Jacobson, “Object Oriented
Development in an Industrial Environment”,
Proceedings of OOPSLA ‘87, pages 183-191,
October, 1987.

[Johnson and Foote] Ralph E. Johnson and Brian
Foote, “Designing Reusable Classes” Journal of
Object-Oriented Programming, 1(2):22-25, 1988.

[Krasner and Pope] Glenn E. Krasner and
Stephen T. Pope, “A Cookbook for Using the
Model-View Controller User Interface Paradigm
in Smalltalk-80”, Journal of Object-Oriented
Programming, 1(3):26-49, 1988.

[Helm et. al.] Richard Helm and Ian M. Holland
and Dipayan Gangopadhyay, “Contracts:
Specifying Behavioral Compositions in Object-
Oriented Systems”, Proceedings of OOPSLA
'90, pages 169-180, October 1990.

[ParcPlace] User's Guide to Objectworks\
Smalltalk Release 4. ParcPlace Systems, 1990.

[Rosson et. al.] Mary Beth Rosson, John M.
Carroll, and Rachel K.E. Bellamy, “Smalltalk
Scaffolding: A Case Study of Minimalist
Instruction”, In Proceedings of CHI’90, pages
423-429, May 1990.

[Veltman and Riksen] B.W.J. Veltman and
A.J.O.M. Riksen, “DRAW_Master, a new branch
of the GUI_Master class tree”, Journal of
Software Research, special issue, 14-23,
Vleermuis Software Research, December, 1991

[Vlissides] John M. Vlissides, Generalized
Graphical Object Editing, PhD Thesis, Stanford
University, 1990. Also technical report CSL-
TR-90-427.

[Wirfs-Brock et. al.] Rebecca J. Wirfs-Brock,
Brian Wilkerson, and Lauren Wiener, Designing
Object-Oriented Software, Prentice Hall,
Englewood CLiffs, NJ, 1990.

Appendix Patterns for HotDraw

Pattern 1: Semantic Graphic Editors

HotDraw is a framework for structured drawing
editors. It can be used to build editors for
specialized two-dimensional drawings such as
schematic diagrams, blueprints, music, or
program designs. The elements of these drawings
can have constraints between them, they can react
to commands by the user, and they can be
animated. The editors can be a complete
application, or they can be a small part of a larger
system.

Figure 1 - PERT chart editor

Many programs need to edit two-dimensional
drawings such as schematic diagrams or
blueprints. Sometimes the elements of these
drawing can be treated independently, but often
the elements have constraints between them. For
example, Figure 1 shows a PERT chart consisting
of rectangles representing events and arrows
between the rectangles representing dependencies
between events. Events display duration and
ending dates, and have starting dates that are not
displayed. The starting date of an event is the
maximum of the ending dates of all the events that
precede it, i.e. that have a connection to it, and the
ending date of an event is the sum of its starting
date and its duration. Changing the duration of
one event will cause its ending date to change.
This may cause the starting dates of other events
to change, and so the ending dates, as well.

Direct manipulation techniques are usually the best
way to edit a drawing. A user will manipulate an
element of a drawing by using the mouse to select
the element and then operating upon it. For
example, when an event in the PERT chart is
selected (e.g. the left-most event-rectangle in
Figure 1), it presents a set of handles. Dragging

the corner handles will change the size of the
event's rectangle, and selecting the handle on its
right side will create an arrow that can be dropped
on another event to indicate that the first event
must precede the second. Moving an event or
changing its size will cause the arrows connected
to that event to move, too.

There are many ways to operate upon an element.
One way is to move a handle that controls an
attribute of the element. For example, events
could have handles that control durations, and the
duration would then be changed by moving the
handle. A second way is to pop up a menu of
operations on the element and select one. Events
could have a “change duration” menu item, which
would prompt for a new duration. A third way is
to choose a specialized tool from the palette to
change the element's attribute. For example, the
text tool can edit text, so a good way to change the
duration and title of an event is to edit them with
the text tool. In the case of the PERT chart editor,
the text tool is the best way to change the
duration, but handles are the best way to change
the size of the display of an event, and menus are
the best way to cut and paste events. The
designer of a drawing editor needs a wide range
of options, but must pick the most appropriate
ones to keep from confusing the user.

The palette on the left of the editor in Figure 1
offers four tools: a selection tool (which is
currently active), a scrolling tool, a text tool, and a
tool for creating new events. Selecting a tool with
the mouse makes it active.

HotDraw is a framework for semantic drawing
editors (i.e. editors for drawings whose elements
have constraints on their behavior) that was used
to build the PERT chart editor of Figure 1. The
most important class in HotDraw is Figure, which
is the class of drawing elements. Figures are
responsible for rendering, hit-testing, and
notifying dependents when their appearance
changes. Other important classes are Drawing
(which represents the entire drawing), Tool,
Handle, and DrawingEditor.

Drawing editors created with HotDraw can be part
of a larger application. For example, Figure 2
shows a network editor. The top pane in the
editor is a HotDraw drawing of a network. The
left two panes on the bottom select two of the
nodes, while the bottom right pane lets the user

display and change a weight on the edge between
the two nodes. The network is drawn so that
nodes are close together if they have a lot of
communication between them, i.e. if their edge
has a large weight. Adding and deleting nodes
and edges is done using the three lower panes, but
the user can rearrange (within limits) the nodes in
the drawing directly. Note that the network editor
has no palette. All the user can do with the
drawing directly is drag nodes.

Figure 2 - A Network Editor

The network editor is also an example of how
drawings can be animated. It treats the graph
layout problem as a variation of the n-body
problem, and solves it iteratively. Each node has
a repulsive force on every other node, but edges
act like springs to keep nodes together. The
drawing is animated by showing intermediate
steps in the n-body solution. This lets the user
rearrange nodes if the network is in a suboptimal,
but stable, configuration.

DrawingEditor new open will create the
drawing editor shown in Figure 3, which is the
default version of HotDraw. This is what you
will get if you don't redefine the tools that the
drawing editor has in its palette.

Figure 3 shows the default drawing editor. Most
of the tools in the palette on the left create different
kinds of figures. The exceptions are the first two,
which are the selection tool and the scrolling tool,
the third and fourth, which rearrange the order of
figures by bringing a figure to the front or to the
back, and the fifth, which deletes figures. It is

probably a good strategy to play with this editor
for a while to learn the user interface. The menu
on selected figures provides commands to cut and
paste them, but all other changes to figures are
performed by manipulating their handles.

Figure 3: Default drawing editor

To design a drawing editor using HotDraw, first
list the atomic elements of the diagram. Each one
will be a subclass of Figure. Decide whether the
drawing needs to be animated. List the tools that
will be in the palette and make a subclass of
DrawingEditor with a tools method that returns
an array of the tools making up the palette.

To create a subclass of Figure, see Defining
drawing elements (2).
To animate a drawing, see A n i m a t i n g
drawings (9).
If the drawing editor is going to be part of a larger
tool, see Embedding a drawing in another
tool (7).
To put a tool in the palette, see Tools(8).

Pattern 2: Defining Drawing Elements

There are an infinite variety of primitive figures
that can be included in a drawing. Thus, there
needs to be a way to make new figures for each
application.

Each kind of drawing element is a subclass of
Figure. Note that there are already subclasses of
Figure for the simple geometric objects, such as
EllipseFigure, RectangleFigure, and LineFigure.
Class CompositeFigure is the superclass of
complex figures liked PERTEvents, which can
contain other figures as components. Sometimes
these classes are suitable to be used directly. For
example, the lines connecting events in the PERT

chart are just instances of LineFigure. Often it is
necessary to make a subclass of Figure or one of
its existing subclasses.

Most figures will be either CompositeFigures or
subclasses of existing geometric figures like
RectangleFigure or LineFigure, so they will
inherit the visual presentation of their superclass.
A subclass of Figure that is not a subclass of any
other subclass must define its own visual
presentation. Figure is a subclass of
VisualComponent, so it must define displayOn:.
It must also define o r i g i n , e x t e n t , and
translateBy: . These are the only methods
necessary to render and move a figure, and are the
minimum methods necessary to define a new
subclass of Figure.

The main distinction between Figure and other
subclasses of VisualComponent is that a figure
keeps track of other objects that depend on it.
This has no effect on methods that do not change
the state of a figure, such as origin, extent, and
displayOn:. However, methods that change
some attribute of a figure must notify the objects
that depend on it. This is done by sending the
willChange message to itself before changing
the attribute, and sending the changed message
to itself afterwards.

For example, EllipseFigure has an instance
variable “ellipse” that contains a rectangle
representing its bounding box. It implements
origin and extent by returning the origin and
extent of ellipse. It implements translateBy: as

translateBy: aPoint
self willChange.
ellipse := ellipse translateBy: aPoint
self changed

In HotDraw, the dependents of a figure are almost
always constraints (to create a constraint, see
Constraints(5)).

Most figures have other attributes. For example,
geometric figures like RectangleFigure and
EllipseFigures have an interior color, a border
color, and a border width. PERTEvents have
duration, ending dates, and titles. Changing any
of these attributes also requires notifying the
dependents of the figure. An easy way to ensure
that a figure gets the willChange and changed
messages whenever it changes one of its attributes

is to change the attribute in only one place, and to
have that method send the messages to itself.

Each drawing element in a HotDraw application is
a subclass of Figure, and must implement
displayOn:, origin, extent, and translateBy:. In
addition, a subclass of Figure can implement any
method needed by the application.

To write displayOn:, see [ParcPlace 90]1.
To let the user change the size or the color of a
figure, see Changing drawing element
attributes (3).
To see how to implement complex figures like
PERTEvents, see Complex Figures (4).
To enforce constraints between different figures,
see Constraints (5).

Pattern 3: Changing drawing element
attributes

There are at least three ways to edit a figure's
attribute; with a handle, with the figure's pop-up
menu, or with a special tool. Each technique is
appropriate in different cases.

The size of a figure and other numeric attributes
are best edited with handles. Textual attributes
like names, or numeric attributes that must be
precise like dates, are best edited by displaying the
text as part of the figure and letting the user edit it
with the TextTool. Use of the TextTool implies
that the figure is a CompositeFigure (see
Complex Figures (4)).

A figure's handles method returns a collection of
handles on the figure. The handles method for
Figure returns resizing handles on the four
corners, so it is common for a handles method to
call it (with super handles) and add more
handles. SelectionTrackHandle has class methods
that create customized handles. For example,
colorOf: will change the inside color of a figure,
borderColorOf: will change the color of the
border, and so on. For good examples of a
h a n d l e s method, see LineFigure or
RectangleFigure.
A figure's menu is returned by its menu method.
By default, an operation in the menu is sent to the

1Ideally this reference would be to another pattern, but the set
of patterns for a complete system will be very large.
Providing a pointer to existing documentation is an easy way
to reduce the number of patterns.

DrawingView. Operations whose selectors are in
a collection returned by the menuBindings
method of a figure are instead sent to the figure.
The default menu defined in Figure implements
cut and paste. See Figure for a simple example
and TextFigure for a more complex example with
hierarchical menus.

List the attributes of the drawing element that you
want to edit. For each attribute, decide whether to
edit it with a handle, an operation from the menu,
or a tool, and update the handles method, the
menu method, or the list of tools in the drawing
editor.

To make new kinds of handles, see Handles
(6). To make new kinds of tools, see Tools(8).

Pattern 4: Complex Figures

Some figures have a visual presentation with
internal structure. For example, they may have
attributes that are displayed by other figures. It
should be possible to compose them from simpler
figures.

Complicated figures like PERTEvent can be
thought of as being composed of simpler figures.
For example, a PERTEvent is a RectangleFigure
with several TextFigures for the title, the duration,
and the ending date. Complex figures like
PERTEvent are subclasses of CompositeFigure.
A CompositeFigure is a figure with other figures
as components, and it displays itself by displaying
its components. It has a bounding box that is
independent of the bounding box of its
components, and it will display its components
only if they are inside of its bounding box. The
selection tool and text tool will operation on its
components when the left shift key is pressed.
Custom tools can operate directly on the
components, if you want.

In general, a figure should be a subclass of
CompositeFigure whenever one of its attributes
will be edited directly by a tool. The most
common example is that an attribute is a string,
and must be edited with the text tool. Instead of
storing the text attribute in an instance variable,
store it in a TextFigure. Do this by first ensuring
that the attribute is read and written only by a pair
of accessing methods. Instead of a string-valued
instance variable, make a TextFigure-valued

instance variable, and make the string’s accessing
methods read and write it from the TextFigure.

This can be generalized for any kind of attribute
that is represented by another figure. The attribute
should be stored in the component figure, changes
to the attribute result in changes to the figure, and
changes to the figure result in changes to the
attribute. If changes to one component might
effect others then constraints should be used.
(See Constraints (5)).

The initialize method of the complex figure
must create the figure representing the attribute
and add it to the complex figure. It may also need
to create constraints. PERTEvent is a good
example.

Complex figures should be a subclass of
CompositeFigure, and figures that display one of
its aspects should be a component of it.

To enforce constraints between the components of
a complex figure, see Constraints (5).

Pattern 5: Constraints

Often an attribute of one figure is a function of the
attributes of other figures. For example, in the
PERT chart editor of Figure 1, the starting date of
an event is the maximum of the ending dates of all
the events that precede it, i.e. that have a
connection to it. As another example, the
endpoints of the lines connecting events depend
on the locations of the events. Handles also
depend on the figure to which they are attached.

Smalltalk has a standard way of keeping track of
dependences between objects. Each object has a
collection of dependents (usually empty), and the
addDependent: and removeDependent:
messages update this collection. Sending the
changed: message to an object will cause the
update: message to be sent to all its dependents.
This same mechanism is used to maintain
constraints in HotDraw.

HotDraw extends the standard Smalltalk class
library by making constraints be objects.
Traditionally each object that can depend on
another defines its own update method. The
problem with this is that many update methods are
similar, so there is a lot of duplicated code.
Making constraints be objects means one figure

does not directly depend on another. Instead, the
dependents of an object are always constraints,
and updating a constraint will cause it to modify
other figures in response.

Many of the HotDraw figures have the constraints
that they need built automatically. For example, a
line that connects two figures is just a LineFigure,
except that there are two constraints that are
created along with it. The first constraint
depends on the starting figure and updates the
starting point of the LineFigure, and the second
depends on the ending figure and updates the
ending point of the LineFigure. These constraints
do nothing more than keep track of the two
figures and the messages to be sent to get a
position from one figure and to change the
position of the other. These constraints are
created by the LineFigure c lass
startLocation:stopLocation: method, which
creates a line connecting two figures.

Other times you will need to create constraints for
a figure. There are two standard classes of
constraints, PositionConstraint and
MultiheadedConstraint. A PositionConstraint is
typically used to maintain a constraint between the
position of two figures. For example, it is used to
connect a line to other figures. A
MultiheadedConstraint depends on a set of
figures.

Both kinds of constraints are customizable. A
PositionConstraint refers to a position on a figure
with a Locator, and also knows a message that it
sends to the dependent object when the figure that
it depends on changes. A Locator refers to a
position on a figure by keeping track of the figure
and knowing the message to send to the figure to
learn its position. The “bounding box accessing”
protocol of class Figure defines methods to
compute many positions, such as center, left,
bottomRight, etc. A MultiheadedConstraint is
created with a block that it evaluates whenever any
one of the figures that it depends on changes.

It is not hard to create new kinds of constraints.
A constraint must define the update: method, but
otherwise its design is entirely up to you.
Fortunately, simple uses of HotDraw will not
require using constraints explicitly.

Each constraint in a drawing should be
represented by a constraint object.

To add constraints between figures automatically
when you add lines between them, see Adding
Lines (10).

Pattern 6: Making new kinds of handles

Handles vary in behavior. Sometimes handles
change the size of a figure, sometimes they
change its color, sometimes they create new lines.
In general, one could imagine pressing on a
handle performing any kind of operation.
Moreover, handles can be attached to any part of a
figure, and they move when the figure moves.
This means that handles must be parameterized in
some way.

Figure 4 - Handles on Two Figures

Figure 4 shows some of the different kinds of
handles in HotDraw. It has three figures in it, and
the rectangle figure and the text figure have been
selected and so have handles. The interior
handles in the rectangle change its inside color and
the color and the width of its border. Its corner
handles change its shape. The right-most handle
on the text figure controls the width of the text
field and the bottom handle controls the font size
of the text. All the handles shown, except the one
in the center of rectangle, are instances of
SelectionTrackHandle. Like most of the Handle
subclasses, Select ionTrackHandle is
parameterized and so a new subclass rarely needs
to be written.

SelectionTrackHandle changes an aspect of each
selected figure, including its own. It is a subclass
of TrackHandle, which only changes an aspect of
its own figure. Both kinds of handle are
parameterized by a message that the handle sends
whenever it is dragged, with an argument that is

the distance that the handle has been moved.
Nearly any numeric attribute can be edited by a
TrackHandle or a SelectionTrackHandle. The
only precondition is that there must be a message
to set the numeric attribute.

The expression Se l ec t i onTrackHandle
widthOf: aFigure will create a handle that can
change the width of a RectangleFigure or an
EllipseFigure. It does this by sending the
borderWidthBy: message to the figure, as can
be seen in the definition of the widthOf: method,
which specifies that the handle will be -10@0 off-
center of the figure, and will only “sense color”
(which means to use just the y-value of the
distance that the handle has been dragged as an
argument to the borderWidthBy: message).

widthOf: aFigure
 ^self
 on: aFigure
 at: #offCenter:
 with: -10@0
 sense: #senseColor:
 change: #borderWidthBy:

The handle in the center of the rectangle of Figure
4 is a ConnectionHandle, which is a handle that
creates a line from its figure to another figure. A
ConnectionHandle can be parameterized with a
block taking the source and destination figures as
arguments; that block is evaluated when the figure
is created. See Adding lines (10).

If you do need to make a new subclass of Handle,
you only need to define one method, invoke:.
The argument of invoke: is a DrawingView,
since it needs to access the controller (and hence
the mouse), the drawing, and the display. Since
invoke: gets sent whenever the user presses the
mouse button on a handle, it is possible to make
handles with any kind of behavior.

For example, Figure 5 shows the diagramming
inspector, a HotDraw application that displays the
interconnections between objects. Each box is an
instance of ObjectFigure, and represents an
object. When an ObjectFigure is selected, it
presents handles for each instance variable that is
non-nil. Clicking on one of these handles creates
a new ObjectFigure representing the value of the
instance variable, unless that object already has an
ObjectFigure, in which case a line is drawn to it.

ObjectFigure requires a new kind of handle, one
that is activated by clicking, not dragging.
ReferenceHandle is a subclass of Handle that
implements these new handles. It redefines the
invoke: method to first find an ObjectFigure for
the object, creating a new one if necessary. It
then creates a line to the ObjectFigure and adds the
line to the drawing. It takes several methods to
implement all of this.

Figure 5 - The Diagramming Inspector

A handle that changes only an aspect of its figure
when it is dragged is an instance of TrackHandle.
A handle that changes an aspect of all the selected
figures when it is dragged is an instance of
SelectionTrackHandle. A handle that creates a
line from its figure to another figure is a
ConnectionHandle. Handles that perform other
functions will need to be new subclasses of
Handle.

To create a ConnectionHandle, see Adding
lines (10).

Pattern 7: Embedding a drawing in
another program

Drawings are often part of a complex user
interface that includes text panes, buttons, lists,
and so on. HotDraw is built on top of the
Smalltalk-80 Model/View/Controller framework,
and so should be able to be a small part of a
complex application.

In addition to Drawing and its components, a
HotDraw application will have a DrawingView, a

DrawingController, and a DrawingEditor. The
DrawingView and DrawingController are
designed to fit into the Model/View/Controller
framework and are rarely customized, so little
needs to be said about them. The DrawingEditor
is the model, and is responsible for keeping track
of the drawing, the set of tools, the current tool,
the menu of operations on the drawing (in
distinction to the menus of operations on figures,
for which each figure is responsible), and many
of the operations on drawings. For example, the
standard DrawingEditor class has methods for
reading and writing drawings to files.

For simple applications of HotDraw, a subclass of
DrawingEditor only needs to redefine the tools
(See Tools(8)). For example, that is all that is
needed for the PERTChart. The Diagramming
Inspector of Figure 5 does not even have its own
subclass of DrawingEditor, but just uses the
default palette. However, complex user interfaces
like that of the network editor of Figure 2 require
more complex subclasses. The editor must not
only support DrawingEditor protocol, it must also
support the other panes of the user interface.

If an application only displays one drawing at a
time then the model should be a subclass of
DrawingEditor, but if there is more than one
drawing then it is better to make the model be a
completely new class. DrawingView is a
pluggable view (see [ParcPlace]) so it can be
parameterized with the messages to get the tools,
menu, and drawing from the editor. To see how
to parameterize a DrawingView, look in the
instance creation protocol of the class methods of
DrawingView.

The DrawingEditor is responsible for creating the
user interface. This usually is nothing more than
creating a top-level window and embedding the
palette and the DrawingView within it. However,
a complex application like the network editor of
Figure 2 requires a method for creating all the
panes and connecting them together. A good
example is the open method of NetworkEditor.
For more on how to embed a DrawingView in a
larger application, see Chapter 17 of [ParcPlace].

Make a drawing part of a complex application by
making a DrawingView be a subview of the
application's view and giving the DrawingView a
model that responds to DrawingEditor protocol,

i.e. that implements the currentTool, menu,
drawing, and drawing: methods.

Pattern 8: Tools

Tools represent the modes of the user interface to
a drawing. Selecting a tool from the palette lets
the user manipulate figures, create new figures, or
perform operations upon a figure or the entire
drawing. An important part of designing an editor
using HotDraw is to design the set of tools that
will be on the palette.

The tools method in DrawingEditor returns an
ordered collection of tools that makes up the
palette. These tools usually include the selection
tool, creation tools for each drawing element that
the user will create with a creation tool, a tool to
scroll the drawing, and tools to move figures from
front to back and from back to front. There are
standard Tool subclasses for these tools, but it is
also possible to define new subclasses of Tool.

Several of the subclasses of Tool are
parameterized, so new subclasses of Tool are
rare. CreationTool is parameterized by the class
of the figure to create, the icon to display in the
palette, and the cursor. Most subclasses of Figure
define a class method creationTool that returns
an initialized CreationTool that can be installed in
the palette. EllipseFigure and RectangleFigure
both contain good examples.

Two more parameterized classes of tools are
DrawingActionTool, which performs an action on
the drawing, and FigureActionTool, which
performs an action on a figure. A
DrawingActionTool is parameterized with two
blocks, one that is evaluated when the tool is
selected and the other when it is deselected. On
the other hand, a FigureActionTool is
parameterized with a single block that is evaluated
when the mouse is clicked on a figure.
DrawingActionTool has class methods loadTool
and saveTool, which return tools to read and
write the current drawing to a file, respectively.
FigureActionTool has class methods that return
tools to bring a figure to the front of the drawing,
that send it to the back, and the delete it. To make
other tools that perform single actions, use these
methods as models.

The tools method of the DrawingEditor defines
the tools that will be on the palette by returning an

ordered collection of tools, which are instances of
subclasses of Tool.

Pattern 9: Animating drawings

Constraints, handles and tools let a drawing react
to a user, but cannot give a drawing a life of its
own. Animation requires a controlling object to
direct all the figures in a drawing.

Animation is provided in HotDraw by making a
subclass of Drawing that defines the s tep
method. This is the main reason that Drawing is
subclassed. A drawing is repeatedly sent the step
message whenever HotDraw is running. The
purpose of the step method is to move each of the
drawing's figures. For example, MovingDrawing
simulates the n-body problem by giving each
figure a velocity and assuming that figures exert
forces on each other. Its step method is

step
animating ifFalse: [^super step].
“First, calculate the new velocities of each
 figure by calculating the gravitational force
that each has on the others.”

self figures do:
[:fig1 | fig1 calculateForceFrom:

self figures] .
“Last, move each figure.”
self figures do: [:fig1 | fig1 step]

Typically there is some way to turn animation off,
in this case by setting the “animating” variable of
the moving drawing to false. The easiest way to
set this variable is by a tool. The tool should be
an instance of DrawingActionTool that is
parameterized by a block that sends the
startAnimation message to the drawing when
the tool is selected and a block that sends
stopAnimation when the tool is deselected.
(See Tools (8)).

Animate a drawing by making a subclass for it
that defines the step method to perform the next
step in the animation.

Pattern 10: Adding lines

Lines are often used to connect figures.
Sometimes these connections have no semantics,
i.e. they are a by-product of other actions and
deleting or moving them does not affect other
figures. However, sometimes adding a line will

result in constraints being added or other figures
created.

The best way to create a connecting line from one
figure to another is to add a ConnectionHandle at
the point from which the line starts. By default,
this line has no semantics. However, a
ConnectionHandle can be parameterized with a
block that is evaluated when the line is added.
For example, adding a line from one PERTEvent
to another means that the destination PERTEvent
depends on the source. The handle to create these
lines is created (in the handles method of
PERTEvent) by

handle := ConnectionHandle
on: self
at: #rightCenter
class: LineFigure.

handle
action:

[:source :dest |
dest startConstraint

 addSource: source endFigure].

The action block depends on the fact that
PERTEvents have startConstraints (to compute
the starting date) that are MultiheadedConstraints
(see Constraints(5)), and so understand the
addSource: message.

The user should create lines that connect figures
by pressing a ConnectionHandle on one of the
figures. ConnectionHandles can be parameterized
so that connecting two figures with a line can
perform some other action on them as well, such
as adding a constraint or testing whether a
connection is allowed.

HotDraw is available by anonymous ftp from
st.cs.uiuc.edu in /pub/st80_r4/hotdraw.

