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Abstract

In recent years the focus on software component reuse has been elevated to
an important research topic within software engineering circles. This is partic-
ularly visible among object-oriented communities. Although reuse is not new
to object-oriented software developers, it has matured sufficiently to be ap-
plied in the early phases of the development life-cycle. In the ROSA (Reuse of
Object-oriented Specifications through Analogy) project (Tessem et al. 1994)
the aim is to apply analogical reasoning in the reuse of object-oriented spec-
ifications in the initial phase of the software development. This paper ad-
dress distributed connectionist networks in the analogical mapping process of
object-oriented specifications. OOram (Object-Oriented Role Analysis and
Modeling) role models (Reenskaug et al. 1996) have selected for component
specifications. The role models are represented as directed graphs in the map-
ping process. This paper shows that analogical mapping of OOram role mod-
els is not a trivial task. Experiments indicate that presenting the graphs as
holistic patterns to a neural network in order to establish a mapping between
the elements is difficult. In particular, it is difficult to find a uniform represen-
tation of the graphs that is sensitive to the structure. Experimentation with
different distributed connectionist networks, combinations of structural and
semantic information, and alternative coding schemes is necessary to obtain
better results.






1 Introduction

As the software engineering field has matured over the years, it has been a growing
interest in the reuse of software components. Today this is quite apparent in the
object-oriented methodologies in which reuse is strongly motivated to enhance the
productivity and quality of the software components. Further, reuse is no longer
restricted to mere code since the object-oriented abstraction mechanisms facilitate
reuse in the earlier phases of the software life-cycle (Korson and McGregor 1990;
Fichman and Kemerer 1992).

Much research has been invested in design and implementation of reusable classes
and class hierarchies (Johnson and Foote 1988), but less research has been invested in
reuse of analysis and specification components. However, there is a growing belief in
the object-oriented software engineering community that reuse ought to be the realm
of analysis and design rather than code (Biggerstaff and Richter 1989). Moreover,
since object-oriented design components contain no implementation details, they are
more apt to reuse than mere code.

Successful component reuse is heavily constrained by the two dependent key
factors retrieval and representation. First, reuse implies that relevant components
must be retrieved from a collection of previous stored components. Second, there
is a representational problem in that components must be described properly to be
a subject for reuse. None of these problems are trivial and need to be addressed
in software engineering environments. Several methods and techniques have been
proposed to accommodate these problems, such as ITHACA (Fugini et al. 1992)
and REBOOT (Morel and Faget 1993).

In the ROSA project (Reuse of Object-oriented Specifications through Analogy)
the aim is to apply analogical reasoning in the reuse of object-oriented specifications
(Tessem et al. 1994). The OOram (Object-Oriented Role Analysis and Modeling)
role modeling technique (Reenskaug and Andersen 1992) was selected for specifica-
tion of object-oriented components in the analysis phase. A role model is described
along a set of dimensions, called facets, in order to support fast retrieval (Tessem
1995a). After the retrieval process of potential role models, called base filtering,
a subsequent mapping process construct correspondences between elements of the
retrieved role model (base analog) and the new role model (target analog). The
later process is, in this context, crucial for transferring knowledge between the two
domains.

This paper addresses the use of neural networks' in the analogical mapping
between elements of a base analog and a target analog. The base analogs are role
models retrieved in a base filtering process, and the target analogs are new role
models. The main contribution in this work is to provide a representational scheme
of the role models for a connectionist-based analogical mapping. Some problems
related to analogical mapping of role models by distributed connectionist networks
are also discussed. A two-phased process of analogical mapping is proposed, where
the OOram role models are coded as distributed representations.

To begin with, in Section 2, the background for this work is presented; first a brief
overview of two prevailing, but somewhat different, theories of analogical reasoning,

'In this paper I will use neural networks and distributed connectionist networks interchangeably,
as opposed to localist connectionist networks (see Section 2.3).



followed by a description of OOram role models as candidates for analogical reason-
ing. Section 2 also presents an overview of different paradigms related to knowledge
representation and processing. To what extent these paradigms can be unified is
briefly discussed. This is followed by a presentation of the phases of analogical rea-
soning in the ROSA project. Section 3 provides a representational scheme of the
role models in a graph notation. The purpose of the graph notation is to specify a
framework for a connectionist-based analogical mapping of the role models in terms
of labeled graphs. Subsequently, in Section 4, an outline of a connectionist-based
analogical mapping that considers different constraints is presented. In Section 5 a
two-phased algorithm is presented together with a description of the data set that is
used. This is then contrasted with related work. Lastly, this paper closes in Section 7
by providing some concluding remarks and an outline for further research.

2 Background

2.1 Analogical reasoning

Broadly speaking, analogical reasoning (AR) is the ability to use a previous solution
to an old problem as means for solving new and similar problems. The concept of
analogy has been investigated by many researchers in several disciplines, and the
contribution from psychology and philosophy is indispensable. However, the most
promising work in our case is related to computational approaches to analogy. A
substantial part of the theoretical investigations on computational analogy has its
origin in the paradigm of traditional symbolic artificial intelligence. Therefore, sev-
eral models of mental structures and processes have evolved, most of which assumes
that there is a correspondence between the processes of human thoughts and the
programs that run on computers (Thagard 1988; Haugeland 1986). This classi-
cal assumption has been challenged by the connectionist paradigm. For example,
Holyoak and Thagard (1989) have studied the use of a connectionist network as
a cooperative algorithm for analogical mapping. Each unit in the network repre-
sents a feature and the connections represent constraints among the features. This
type of network is characterized as a constraint satisfaction network (Rumelhart and
McClelland 1986a).

There is a broad consensus among researches that AR includes several phases.
Already mentioned is the initial retrieval phase of candidates from a collection of
analogs (base filtering), followed by a transfer phase. Analogical transfer can be
further subdivided into a mapping phase, where correspondences between elements
of the previous solution (base) and the new problem (target) is established, and an
evaluation/adaption phase for generating a solution in the target domain. When
experiences from previous analogies are considered to improve its performance on
later analogies, then a subsequent learning process takes place.

Besides the work of Holyoak and Thagard, the structure mapping theory of
Gentner (1983) has played an important role in the development of computational
models of AR (Falkenhainer et al. 1989). These two theories have slightly differ-
ent approaches to AR. The difference between the theories become apparent by
investigating representation and mapping. The representation concerns how the
knowledge is coded in a memory, whereas mapping concerns how correspondences



between the elements of the base and target are established. Both Holyoak and
Thagard’s constraint satisfaction theory and Gentner’s structure mapping theory
relies on symbolic representation of the knowledge in terms of predicate calculus.
Moreover, both theories recognize mapping as the significant phase of AR. However,
whereas Holyoak and Thagard use a connectionist network to constraint the map-
ping that includes structural, semantic, as well as pragmatic aspects (for example
purpose and goal), Gentner’s structure mapping theory focuses primarily on rules
and structural constraints of the mapping process.

The retrieval and learning phases are not the major concern in this paper; we
assume that the base analogs have been retrieved in a phase prior to the mapping. As
neural networks are systems capable of learning, it is expedient to regard learning
from two different angels. First, neural networks are capable of adapting to an
environment, which makes learning an immanent and integral part of the system.
On the other hand, learning in the sense of AR has a slightly different meaning in
terms of abstracting general principles and concepts. Nevertheless, it is convenient
to regard mapping and learning as separate phases of AR. This is not to say that
a neural network cannot do both, but in this work I will concentrate on neural
networks in the mapping process.

2.2 Role models and analogical reasoning

We have selected OOram role models for the ROSA project because they are more
general than objects and therefore more apt to reuse than class and object design
(Biggerstaff and Richter 1989). Another reason for using role models is that analogy
between different specifications identifies more easily when the roles an object plays
in an application are considered (Bjornestad et al. 1994). Moreover, each role is
characterized by the messages it can receive from and send to other roles, which, in
turn, defines the model’s collaborating structure (Reenskaug et al. 1996).

Gentner emphasizes that it is the relationships among the elements of the struc-
tures that convey the analogy, rather than simple surface features (Falkenhainer
et al. 1989). Thus, the aim of the analogical mapping of role models in the ROSA
project is to transfer knowledge from one model to another based on the model’s
collaborating structure.

As the role models grow in terms of the number of roles and messages, they
become too large and complex for efficient reuse by analogy. Therefore, by restricting
the reusable components to smaller submodels, we believe a greater potential for
reuse is obtained. A submodel is a smaller part of the system showing the roles that
take part in a particular activity. We believe that the formal and consistent notation
of the OOram role models makes them well suited for reuse purposes.

2.3 Neural networks and analogical reasoning

There is an ongoing debate among Al researchers, cognitive scientists, and connec-
tionists regarding the tenet of human cognition. The debate is often motivated by
different philosophical assumptions. Aside from the hypothetical discussion regard-
ing biological versus cognitive plausibility, and different philosophical doctrines, the
most interesting debate from the perspective of this work is the design of compu-



tational models of human reasoning and cognition. Controversies are also apparent
in the computational approaches to AR, where the debate often goes along two
intimately related dimensions: knowledge representation and knowledge processing.

Two paradigms of knowledge representation

The first dimension, knowledge representation, splits the researchers in two opposite
positions: those who are committed to a high-level symbolic representation of knowl-
edge, and those who distribute the knowledge among a large number of highly inter-
connected processing units. The first position is held by the classical Al researchers
and cognitive scientists, whereas the latter is advocated by the connectionists. How-
ever, most of the work of AR is largely motivated by the assumption that knowledge
of the real-world (concepts, objects, events, plans, goals etc.) are complex entities
that require a high-level symbolic representation. From an ontological point of view
the symbolic paradigm assumes that the knowledge represented in a memory has a
semantic interpretation similar to their real-world counterparts. These symbols have
an atomic, discrete and static nature, and are often complex in terms of representing
different types of declarative and procedural knowledge. Examples of such represen-
tations are frames (Minsky 1985), scripts, schemata (Schank 1980), and production
rules (Newell and Simon 1972). As for the low-level sub-symbolic representational
position, the knowledge units do not have similar semantic interpretations, nor have
the weights that connect the units. Connectionist models do not make the strong
distinction between different ontological categories. In contrast, the connectionists
assume that knowledge emerge from the highly interconnected and rather simple
units in the network.

The knowledge processing concerns how the knowledge is manipulated in a mem-
ory. Like the first dimension, knowledge processing divide the researchers in two
positions: a symbolic-based and a connectionist-based. This distinction is further
discussed below.

Two paradigms of knowledge processing

Over the years, two different views of knowledge processing have evolved: a symbolic-
based and a connectionist-based. The first view represents the classical Al approach
where symbols are combined into larger structures by means of combinatoric opera-
tions in a memory. In that respect it can be argued that symbolic models are in some
sense representation-oriented. Connectionist-based models, on the other hand, are
more process-oriented in that it seeks to explore the processes in humans to explain
knowledge processing. At a low-level of representation connectionist-based models
spreads activation among units in a network, where each unit represents knowledge
in three different ways:

1. localist connectionist network; spreading activation among simple symbolic
units to represent the semantic relationship between conceptual elements (se-
mantic networks), and

2. marker-passing network; a special version of the localist connectionist network,
where activation is spread among high-level symbolic units (frames, scripts
etc.), and



3. distributed connectionist network; spreading activation among simple non-
symbolic units (neurons).

The marker-passing network is probably closest to the classical symbolic Al par-
adigm, whereas the distributed connectionist network is closest to neural networks.
Barnden (1994a) argues that connectionist-based AR is restricted to localist and
marker-passing connectionism. According to Rumelhart and McClelland (1986b), a
neural network does neither represent knowledge localized in particular units, nor
do the units have any semantic interpretation; knowledge is, in contrast with localist
and marker-passing networks, distributed among the highly interconnected units in
the network. However, all three types of networks connect the units by means of
scalar values (weights) in order to adapt to an environment.

Although Holyoak and Thagard (1989) use a connectionistic approach, their prin-
cipal model of AR is a localist connectionist network. There are, however, models
that embrace both the symbolic and the connectionistic dimension of knowledge
representation and manipulation. For example, Eksridge (1994) and Kokinov (1994)
combines the two dimensions into hybrid models of AR. In most these cases, a con-
nectionist network is used to represent the associative relevance among the knowledge
elements, that is, to maintain a long-term memory.

Symbolism and connectionism: A unified model of AR?

As discussed by several authors (e.g., Eksridge 1994; Kokinov 1994; Holyoak et al.
1994), connectionism contributes to a broader understanding of the diverse processes
of AR, both seen from a cognitive and from a computational point of view. More-
over, as reported by Dinsmore (1992a), AR has the potential to close the gap be-
tween symbolism and connectionism. As tangible this thought might be, unifying
connectionism into AR may have several obstacles.

A potential direction is to create unified models that combine symbolic and
connectionist models. This direction, yet promising, may meet more problems than
it intentionally try to solve. The reason for this is mainly the conflicting nature
of the two paradigms. Let us take learning as an example: whereas distributed
connectionist learning requires statistical generalization from many repetitions on a
large number of examples, analogical learning systems often require rapid “two-trial”
learning from a small number of instances. Moreover, combining high-level symbolic
and low-level neuronal representation is not trivial simply because of the different
levels of descriptions.

Although the symbolic paradigm has had success in AR, there are, nevertheless,
several limitations are reported. As discussed by Dinsmore (1992b), connectionism
seems to provide a better solution to many of the difficult problems that arise in
symbolic models. Some of the problems are:

e dealing with imprecisely defined information
e approximate matching
e generalization

e soft constraints



e parallel processing

A major strength of connectionist networks is the ability to deal with imprecisely
defined information. The performance of a connectionist system does not hinge on
the accuracy and completeness of the information. Even in situations where missing
or inaccurate information (noise) is presented, the connectionist network is still able
to approximate a result. Moreover, given an incomplete pattern as input, the network
is able to fill the gaps of missing information. This situation is often called pattern
completion. As for the symbolic paradigm, if presented with noisy information, the
model will most likely have a decreasing performance.

Presented with a sufficient number of training samples, a distributed connection-
ist network is able to do similarity-based generalization and categorization due to
its rich internal representation. This is not easily obtained in the symbolic models,
in which knowledge often is hand-coded and where the generalization abilities are
limited.

Another important strength of distributed connectionist networks is the ability
to implicitly identify and cope with multiple constraints. In a symbolic model the
constraints are defined as rules, and as the number of rules and the complexity of
the knowledge grows, the amount of computational overhead increases exponentially
due to sequential search of the memory. A distributed connectionist network, on the
other hand, does not have the same exponential scaling problem due to its continu-
ous nature, and can cope with the constraints in parallel. The constraints appear as
excitatory and inhibitory connections between the units in the network. The con-
straints are soft in that they can be overridden and modified continuously. Despite
the conflicting nature of the two paradigms, taking advantage of the strength of
connectionism, where symbolism is weak, is an appealing thought. An important
question is therefore how to incorporate connectionism into AR? Whereas there
are several examples of incorporating localist connectionist networks (e.g., Holyoak
and Thagard 1989; Kokinov 1994; Eksridge 1994), there are fewer examples of in-
corporating distributed connectionist networks, i.e., neural networks (Lange 1992).
There is a compelling reason for this, in that AR relies on a complex knowledge
representation in order to represent complex real-world entities with their relational
structure (Barnden 1994a). This is not easily obtained in neural networks.

2.4 Analogical reasoning and ROSA

The mapping is, as discussed in Section 2.1, only one of several phases of AR.
Figure 1 illustrates how the phases of AR are organized in the ROSA project. First,
a base filtering process retrieves potential base model candidates from the ROSA
repository. The criteria for the base filtering are specified by the user in the target
role model. Then, a connectionist-based mapping process generates a mapping model
by establishing the appropriate correspondences between the elements of the target
and base role models. Lastly, an adaption process generates a solution from the
mapping model by transferring additional knowledge from the base role model to
the target role model.

A possible learning process (not shown in Figure 1) can be applied to improve
later retrieval and mapping processes. Although not investigated in depth here, we
consider learning in ROSA to be the following:
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Figure 1: A conceptual model of analogical reasoning in the ROSA project.

1. Modification of the semantic relevance between the terms in the ROSA repos-
itory.

2. Storing generalized prototypes of the solution role models for abstracting com-
mon properties of the target and base role models.

The AR phases illustrated in Figure 1 are processed in a sequential order, with the
base filtering process as the initial phase. The base filtering process and the mapping
process is regarded as the most important computational processes in ROSA. A
consequence of the sequential order of the phases is that the processes are to a
certain extent independent of each other. Eksridge (1994) argues however that the
phases of AR should be highly integrated. This is not the case in ROSA, where the
phases are less integrated. Although this may not be a plausible model of human
analogical reasoning, we consider the depicted model of AR as adequate for our
purposes. The reason is that the solution relies on representation and processing in
the different phases, i.e., symbolic representation and processing of the role models
in the repository versus sub-symbolic in the neural network mapping process.

3 A representational scheme

This section presents a representational scheme of the OOram role models. The aim
is to find an adequate representation of the role models that can work in conjunction
with a neural network mapping process. In the following section it will be given an
overview of the OOram role model notation, followed by a specification of the role
models in terms of graphs and relation matrices.
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3.1 OOram role model notation

An OOram role model is depicted in Figure 2, and illstrates a consultant enterprise
that organizes their work in project groups. A role is represented as a super-ellipse,
and each role is assigned a name. The collaborating structure of the roles is defined
in terms of paths between the roles through which messages can be sent. A message
path is denoted by a solid line between roles, and ports indicate the semantic rela-
tionship with the other role. A role can receive messages from and send messages
to other collaborating roles.
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participatesin -
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- r-=--=---°
=~ controls

L) @7

project_ " angaged by
group @ ~":___g?g___y_

R

-
1 supports
Lom e e e — = P

Figure 2: OOram role model of a part of an enterprise.

A port, shown as single or double circle connected to the role, defines the knowl-
edge a role has about the remote role, that is, the cardinality of the relation. The
notation of the ports is as following: a small circle denotes that the near role knows
about exactly one collaborator; a double circle denotes that the near role knows
about any number of the collaborator; a message path without a port denotes that
the near role does not know the collaborator. For example, the port ct (controls)
in the role model indicates that the role department knows about any number of
the collaborating role project_group, whereas the port ob (organized by) indicates
that the project_group role knows about only one collaborating department role. The
component role however, does not know any of the collaborating project_group role,
and therfore cannot send messages to the project_group role. All roles and ports
have names that give them semantics. The message paths carry semantic informa-
tion and denote the content of the collaboration. Another semantic information in
the role model is the stimulus role, denoted by a dashed role. In Figure 2, client is
the stimulus role that initiates an activity in the model.



3.2 Graph representation of role models

The role models can be given a graph representation as following. Let V' be a finite
non-empty set of vertices, each representing a role in the role model. Further, let
E C V xV, where (vi,v3) € E if and only if there is a path between the roles
corresponding to v; and vy and there is a port near v; on this path. Then the pair
(V, E) is a directed graph representation of the role model.

No isolated roles nor recursive message paths are allowed in a role model. Hence,
the directed graphs are connected, but not necessarily strongly connected. The role
model in Figure 2 is represented as a directed graph shown in Figure 3. In case of
simplicity, the roles are labeled according to their first letter (except the client role,
which is labeled [ to avoid conflicts). Then, let V = {e,d,p,s,¢,l}, and E = {(e,

d),(e, p),(d, ),(d, p),(p, €),(p, d),(p, 1),(p; ¢),(L, p)s(s; ¢),(c, s)}.
e d

Figure 3: The OOram role model in Figure 2 represented as the directed graph G.

Generally, a role model carries more information than can be represented in a
directed graph. For example, there is no distinction between “knows about one
collaborator” (single circled port) and “knows about any number of collaborators”
(double circled port) in the directed graph. The two role model components in
Figure 4 show two different ports, where the upper state that role a knows about
only one instance of its collaborating role b, and the lower state that role a knows
about any number of instances of its collaborating role b. In the current graph
notation both role models obtain an equivalent representation in the graph at the
bottom of the figure. Moreover, the semantic property of the OOram’s stimulus role
(the vertex [ in Figure 3) does not have a representation in the graph.

(L) ()
(o Jo— ¢
a e o b

Figure 4: Directed graph representation of role model ports.



3.2.1 Role models as relation matrices

One way to provide the role models as input to the neural network is to transform the
directed graphs to relation matrices. Given a directed graph G = (V, E) representing
a role model, where V' is the set of vertices and E is the set of edges, the square
m x m relation matrix R defines the relation matrix for E, where |V| = m. Each
entry in the matrix R is defined by equation (1) below.

1, if (v;,vj) €E
Fij = {0, otherwise. (1)

As the directed graphs contain no recursive relations, the matrix diagonal will
always be zero. Moreover, the directed graphs are always connected, i.e., no isolated
vertices, and the sum of the 1-values in row ¢ and column ¢ cannot be zero.

The directed graph shown in Figure 3 can be represented as the 6 x 6 relation
matrix R, shown in (2), where the vertices V = {e, d, p, s, ¢,l} denote the rows and
columns.

011000
196001

R= 1600010 (2)
000100
001000

4 Analogical mapping of role model graphs

Gentner (1983) argues that the structure of the analogs is crucial to the mapping
process, where the elements of the analogs are placed in correspondence by virtue
of their common relational structure. This is also dominant in our case, where
the mapping is based on the correspondences between common relational structures
of roles in the base and target role models. Thus, given two graphs, one target
G; = (Vi, E;) and one base Gy = (V,, Ep), we can define an analogy as a general
mapping function M, as in Equation 3 below,

M:Vi—=Vy E — E (3)

where we, given the vertices and their relations in the target graph, find corre-
sponding vertices and relations in the base graph. The vertex mapping function,
m(v;) = vj, takes as argument the vertex v; in the target graph and return the
corresponding vertex v; in the base graph. Likewise, the edge mapping function,
m((vi,vj)) = (vg, v;), takes as argument a target edge (v;, v;) and returns the corre-
sponding base edge (vg, v;).

Given the mapping function M, we want, ideally, to obtain a one-to-one cor-
respondence between the vertices in the two graphs over an equal set of relations.
A major problem in analogical mapping is to find the corresponding vertices in the
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two graphs without considering the entire set of possible correspondences. A remedy
to this problem is to impose different types of constraints on the mapping. The
type of analogical problem solving we are contemplating in the ROSA project would
be too restrictive if we impose the restriction of isomorphism on the graphs to be
mapped. For example, a typical reuse situation is to provide an incomplete specified
role model as target, and then augment the target with a previous retrieved base
role model to obtain a solution to the problem (see Figure 1 for details).

Apparently it is not strictly necessary to have an isomorphism between the two
analogs, in that the base and target analogs can have an unequal number of roles and
relations; some roles and relations in the two analogs need not have any correspon-
dences at all. Therefore, as pointed out by Owen (1990), a partial homomorphism
is a more realistic constraint, that is, mapping of as large subsets of the two graphs
as possible. Other types of constraints are discussed later.

4.1 Structural information

The AR phases in the ROSA project, shown in Figure 1, indicate that the mapping
process has two inputs: the specified target role model and the retrieved base role
model from the repository. A mapping model is provided as output of the mapping
process. Figure 5 depicts a neural network-based mapping process, taking the base
and target relation matrices as input and generates a correspondence matrix as
output. The correspondence matrix is the mapping model shown in Figure 1.

correspondence
matrix

A

neural
network

target relation base relation
matrix matrix

Figure 5: Neural network-based mapping process.

Essentially, we want the neural network to learn the mapping between the el-
ements of two graphs, one base and target. For example, given a directed graph
of a target role model G; = (V;, E;) and a base role model Gy = (V}, E}) shown in
Figure 6, we want a neural network to learn the mapping from the target to the
base.

There are several similar substructures found in the two graphs in Figure 6. The
symmetric relationship between vertex t3 and ¢5 in G; corresponds to the symmetric
relationship between vertex bs and by in G. Thus, the vertex mappings m(t3) = bs
and m(ts) = bs, and the corresponding relation mappings m((ts,t5)) = (ba, bs)
and m((ts,t3)) = (bs, b2) are established. In addition to the structural constraints,
different semantic constraints can be imposed on the mapping process. We impose
the restriction that a role model must have one, and only one, stimulus role. An
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tl t2 bl < > b3
ts ty by bs be
ts 143 by

Figure 6: Graph representation of base and target role model, where the left is the
target graph G, and the right is the base graph Gj.

example of a semantic constraint is the annotation of the stimuli roles in the two
graphs. Given that vertex t; represents the stimulus role in (G}, and vertex bs
represents the stimulus role in Gy, (denoted by unfilled vertices in the graphs), there
is a high probability to establish a mapping between the two vertices, i.e., m(t5) = bs.

4.2 Network output: The correspondence matrix

Given the two graphs G; and G}, in Figure 6, where |V;| = m and |V}| = n denotes
the number of rows and columns respectively, the m x n correspondence matrix C
is defined as in Equation 4 below:

Cij = {0, otherwise (4)

The relation matrices R; and R,, shown in (5) below, for the two graphs in
Figure 6 represent patterns for input to a neural network, and the associated m x n
correspondence matrix C represents the output pattern. The set of mappings from
target to base is defined as R = {(tl,bl), (tg,bﬁ), (tg,bg), (t4,b3), (t5,b5), (tﬁ,b7)},
from which the associated correspondence matrix C is defined. Note that vertex by
in graph G} has no corresponding mapping in graph G;. Therefore, column 4 in the
correspondence matrix C in (5) is zero.

Rt ) Rb
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cooroo
corocoo
omoocoo
cooroo
cooroo
o—oocoo

Il

coocoo—o
oRocoooo
orRocoooo
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Q
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coocoor
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co—ocoo
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—ooooO

~—

o1

e

There are certain constraints that can be imposed on the mapping. A many-to-
one mapping is regarded as valid, that is, several target vertices are mapped to the
same base vertex. A one-to-many mapping, that is, the same target vertex is mapped
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to several base vertices, is not regarded as valid as it violates the formal definition
of a function. However, this restriction may occasionally be violated as we cannot
always obtain the ideal one-to-one mapping on pair of isomorphic graphs. Also, a
vertex in the target graphdoes not necessarily have to be mapped to a base graph
vertex. These constraints are visible in the correspondence matrix C by requiring
no more than one 1-value per row, whereas any number of 1-values are allowed in
the columns. A zero-valued column indicates that the base vertex does not have a
mapping in the target at all, as the case for the base vertex b, in graph G, in Figure 6,
where the fourth column in C is all zero-valued. The correspondence matrix C in
(7) is an example of a many-to-one mapping where the same target vertex is mapped
to two base vertices.

Feeding a neural network with the relation matrices shown in (5) as input pattern
yields an input vector of |V;|>+ |V}|?> = 85 input elements, and |V;| x |V}| = 42 output
elements. In a real-world system of ROSA, one must assume a certain variance with
respect to the number of roles in the role models, hence the number of vertices in
the graphs. Firstly, the role model variances may have implications for the analog-
ical mapping process in that a one-to-one mapping cannot be obtained. Secondly,
variances may also cause problems with respect to the neural network performance
in terms of variable-sized input patterns. This is further discussed below.

4.2.1 Mapping variances

If we consider the variances with respect to the mapping, three different cases are
identified:

1. Each vertex in the target graph is mapped to a corresponding vertex in the base
graph. This is the ideal one-to-one mapping, but not necessary isomorphic,
situation where |V;| = [V4|. An example is the graphs shown in Figure 7,
where Gy = (V;, E}) is the target graph with vertices V; = {t1, %o, %3} and the
set of edges E = {(t3,11), (t3,t2)}, and Gy = (V4, Ep) is the base graph with
vertices Vy = {b1, be, b3} and the set of edges E, = {(bs, b1), (b3, b2), (b2, b3)}.
The stimulus role vertex t3 in the target graph is mapped to its counterpart
vertex b3 in the base graph, i.e., m(t3) = bs. The correspondence matrix for
this mapping is shown in (6) below.

o

Note that the two graphs are not isomorphic in that there is no equivalent to
the edge (b3, bs) in the target graph, that is, (to,t3) & E}.

oo
oo
—Ooo

] 6)

2. Two or more vertices in the target graph are mapped to the same vertex
in the base graph. An example of this is illustrated in Figure 8, where G; =
(Vi, Ey) is the target graph with vertices V; = {t1, t2, t3, 14} and the set of edges
E; = {(t1,13), (t3, ta), (ta, t1), (ts, t2}, and Gy = (Vp, Ep) is the base graph with
vertices Vy = {b, be, b3} and the set of edges Ey = {(b1, bo), (b1, bs3), (b3, b1)}.
The two vertices ¢; (stimulus role) and ¢3 in the target graph are mapped to
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one and the same vertex bz (stimulus role) in the base graph. Further, the
two mappings m(ty) = by and m(tz) = by are also correctly established, which
provide the correspondence matrix shown in (7) below as the final mapping.

] (7)

3. It is not a requirement that all base vaertices have to be mapped. This is the
case for vertex b, in Figure 6, which is not mapped at all. The correspondence
matrix is shown in (5) above.

Q

Il
1
—ooo
co~o
oM

tz t3 b2 b3

Figure 7: One-to-one mapping of the graph vertices, where the left is the target graph
Gy and the right is the base graph Gy.

tl t2 bl b2

t3 (7 b3

Figure 8: Many-to-one mapping of the graph vertices, where the left is the target
graph G and the right is the base graph Gj.

4.2.2 Pattern variances

Typically, neural networks do not handle symbolic structures, such as the directed
graphs, particularly good. If there are variances in the graphs, as discussed in the
previous section, the problem for the neural network may increase further. The
problems are related to the network’s relatively static structure?. Consequently, in a
fixed structure, if arbitrary length patterns are presented to the network there might
be superfluous units in the network that do not contribute in the learning process.
Assignment of some kind “don’t care” values are often required in such cases. A
common remedy to this problem is to transform the patterns to a uniform represen-
tation. This solution works best if the patterns are insensitive with respect to the
element’s relational structure. For example, a gray-scale image can be transformed

2 Although there are some neural network models that dynamically add and remove units during
learning, the number of input and output units is, nevertheless, commonly constant.
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with respect to translation, rotation, scaling and size without a significant loss of the
information contents. However, this is not a satisfactory solution with graphs where
the patterns are highly sensitive to the element’s relational structure. To illustrate
the difference between unstructured and structured compositional patterns, let us
use a binary image matrix and a graph’s relation matrix as an example: Inverting
one entry (pixel) from one to zero in the binary image matrix does not change the
global features of the image significantly. One the other hand, inverting one entry
in the graph’s relation matrix removes or adds an edge between two vertices in the
graph. The later case may change the graph structure significantly. For example,
removing an edge may cause the isolation of a vertex which, in turn, violates the
connectedness of the OOram role model graphs.

Provided that the number of input/output units in the neural network is fixed, a
possible solution to the variance problem is to constrain the number of vertices in the
graphs. A maximum number of vertices can be defined as a constant £, from which
a fixed number of input/output units in the network can be defined. For a graph
G = (V, E), if |V| < k, then temporary vertices can be added to the graph in order
to obtain a fixed-size representation. A simple heuristic is to select a terminal vertex
and add a [-chain (Tessem 1995a) to expand the graph to the maximum number of
vertices k. [ is the number of vertices in the chain and is defined as [ = k — |V/|.

To illustrate this solution, let us use the two graphs in Figure 6, one target graph
Gy = (V;, E;) and one base graph G, = (V3, E}), as an example. A neural network
takes as input two graphs, one target and one base, with maximum k& = 10 vertices.
This yields a 10 x 10 correspondence matrix as output. In order to complete the
graphs in Figure 6, a 3-chain with the vertices x1, z2, and z3, is added to G}, and
a 4-chain,with the vertices i, 2, vy3, and y4, is added to G;. This is depicted in
Figure 9. Notice that the [-chains are added to an arbitrary terminal vertex in the
graphs, i.e., vertex bg in GG, and vertex t, in Gy.

Y1 bo
t1 tz ® ® Y2 b1 ® b3
t3 t4 ® Y3 b4 b5 ® b6 T3
ls te oY1 b7 Z9

X

Figure 9: Adding l-chains to complete the graphs. The left is the target Gy and the
right is the base Gy.

According to this simple heuristic we obtain a fixed size of the input relation
matrices as well as the output correspondence matrix. Although we obtain a fixed
size of the input graphs, it does not necessarily mean that a one-to-one mapping
is obtained. For example, from the graphs in Figure 9 we may establish correctly
the mapping m(y;) = x1, m(y2) = x2, and m(ys) = x3, whereas there is still no
corresponding mapping for vertex by in graph G,. Matric C in (8) shows the mapping
from the target to the base graph, where the rows denote the target graph vertices
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Vi = {t1, ta, t3, 4, t5, t6, Y1, Y2, Y3, Y4} and the columns denote the base graph vertices
Vo = {b1,bo, b3, by, bs, bg, b7, 21, T2, 23}. The zero-valued 4’th column indicates the
non-mapped vertex of vertex bs. Similarly, the 10’th row indicates that vertex y, in
graph G; has no mapping in Gj.
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4.3 Semantic information

Although the mapping of OOram role models is constrained by structure, semantic
information can be included to constrain the mapping furher. In this section it will
be discussed how semantic information can be utilized for additional constraints on
the mapping process. Generally, semantic information impose the constraint that
the elements in the two analogs must have similar meaning, that is, share common
properties in order to be mapped. The motivation for imposing semantic constraints
is therefore to obtain a more effective mapping. In the matter of the ROSA project,
a semantic constraint may indicate that the mapped roles and relations must have
similar meaning or share some common properties in order to be mapped.

The stimulus role, discussed in Section 4.1, is another example of a semantic
constraint. The stimulus role provides an additional meaning for a role by initiating
the activity in a role model. Thus, there is a relatively high probability of establishing
a mapping between the stimuli roles. However, as discussed in Section 3.2, neither the
stimulus nor other types semantic information have any representation in the current
scheme. The current scheme can be expanded to include semantic information as
illustrated in Figure 10.

correspondence
matrix

neural
network

target relation base relation semantic
matrix matrix information

Figure 10: A conceptual view of a neural network-based mapping process that includes
semantic information.
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Some remarks are needed to explain how the semantic matrix in Figure 10 can
be exploited to improve the mapping process. Each component category, listed in
Table 1, is described in terms of one or more facets (Tessem 1995b). This yields a
multi-dimensional description of the components which can be used in the retrieval
of potential candidates.

component category ‘ facets ‘

full role model name

stimulus role
scenario structure-description
submodel name

stimulus role
structure-description

role name
port

message name
sender
receiver

Table 1: Component categories and their facets.

In the ROSA project it is has been identified five component categories. However,
as discussed previously, full role models are too complex for efficient reuse. As
discussed in Section 2.2, the most promising component category for analogical
retrieval and mapping is submodels, and perhaps scenario. It will be focused on
submodels. Each submodel includes role and message components. The submodel’s
stimulus role is already emphasized as an important semantic constraint. Roles
are important in that the name and port facets are throughly used in the retrieval
process and in the subsequent mapping process. For example, the name indicates
to what extent the roles share common properties in the base and target domain.
Similarly, the port indicates the role’s collaboration with other roles. Although a
role’s different ports cannot be fully represented in a graph (exemplified in Figure 4),
their diversified meaning can nevertheless be embedded as semantic information.

Each facet stored in the ROSA repository has a related term space organized
similar to semantic networks. Components whose terms in the target and base
analogs are semantically related, are likely to be mapped to each other. A semantic
relation is a matter of closeness between the terms. Such closeness is specified by a
weight between the terms in the term space. Close related terms obtain a high value
on the weight, whereas unrelated terms obtain a low value on the weight.

Returning to the conceptual mapping process shown in Figure 10. Semantic
information can be represented in a matrix that reflects the similarities between the
elements in the target and base model. In fact, several facets can be combined to
obtain a comprehensive representation of the semantic information. If |V;| = n and
\Vo| = m, then S is a n X m matrix whose elements are 0 < S;; < 1 and indicate the
semantic similarities between the elements in the role models. A high value, close to
1, indicates a high semantic similarity and strengthens the belief that the elements
should be mapped. Conversely, a low value, close to 0, indicates a low semantic
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similarity and weakens the belief that the elements should be mapped. A small
example illustrates the rationale behind this, where a target graph G, is mapped to
a base graph Gy, shown in Figure 11.

10
(O e . S i
A . )
0.8

Figure 11: Mapping between two graphs, one target Gy (left) and one base Gy, (right),
supported by semantic information.

Provided that vertex b, in the base graph and vertex ¢; in the target are identified
as stimulus roles, a high value, e.g., 1.0, is assigned to the particular entry in the
semantic matrix. Therefore, the mapping m(t;) = b is established. Potentially,
vertex to in the target graph can be mapped to both vertex b; and vertex b3 in the
base graph. The values in the semantic matrix S suggest that semantic closeness
between vertex (ts,b3) is higher than between (t9,b1). Therefore, it is more likely
that the mapping m(ty) = bs precedes m(ty) = b;. The semantic information for the
mapping between the graphs in Figure 11 is given in matrix (9) below, where the
rows denote the target graph vertices V; = {t1, %>} and the columns denote the base
graph vertices Vj, = {b1, by, b3}.

0.0 1.0 0.0
5= [0.2 0.0 0.8} (%)

Potentially the semantic information obtained from the repository can be in-
cluded as constraints in the neural network mapping process. In the example above,
only the role name facet and the stimulus role facets are provided as semantic in-
formation. If several facets from different component categories are combined, a
somewhat more complex situation arises. One possible solution is to use the theory
of evidence, where the semantic similarities between the component categories are
defined as belief functions, and combined by Dempster’s rule (Shafer 1976) to obtain
a comprehensive semantic matrix.

4.4 Combining structural and semantic information

One way to combine semantic and structural information is to use the structural
information as constraints for modifying the semantic information. This strategy is
schematically shown in Figure 12.

Because the semantic information a tentative mapping from the target to the
base role model based on their semantic similarity, the strategy is to learn the
neural network to modify the semantic matrix by using the structural information
as constraints to obtain a mapping scheme according to the corresponding matrix
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structural
information

_ semantic 4 neural > mapping
information network scheme

Figure 12: Combining semantic and structural informaion.

specified in Section 4.2. Hence, there will be, as shown in Figure 10, three input
matrices: (1) the target relation matrix Ry, (2) the base relation matrix Ry, and
(3) the semantic matrix S. Likewise, there will be one output matrix C. The
correspondence matrix can be regarded as a modified semantic matrix, where the
entries have been transformed to the binary values 0 and 1.

4.5 Subprocesses of analogical mapping

Analogical mapping may be separated into several phases, each carrying out a partic-
ular subtask. This is illustrated in Figure 13. First, the role models retrieved in the
base filtering process along with a target role model need to be preprocessed accord-
ing to the scheme described in Section 3.2 before presented to the neural network.
Further, semantic information extracted in the base-filtering process is formatted
and organized in matrices as described in Section 4.3. The preprocessing encode the
graph structures and organizes the semantic information in numerical vectors for
input to the neural network. After the neural network has processed the patterns,
the output correspondence matrix need to be post-processed in order to obtain a
complete mapping scheme. Post-processing includes preparation of the output from
the neural network according to the constraints discussed in Section 4.1, including
transfer of additional elements from the base to the target.

role mapping
models scheme

input output
patterns patterns

neural
network

Figure 13: Subprocesses of analogical mapping.

The proposed model of analogical mapping must be regarded as hybrid, because
there are both symbolic and connectionist aspects to it. Whereas the role models
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presented to the mapping model have symbolic representations in terms of directed
graphs, neural networks rely on distributed connectionist representation. A challenge
is to investigate whether these to “paradigms” can be unified in a coherent model.

5 Experiments

The goal of the ROSA project is to design a tool for reusing object-oriented spec-
ifications. Techniques from AI have been found promising in that respect, where
analogical reasoning is applied in the reuse phase. OOram role model components
constitute the specifications of the problem domain, stored in a repository. In a base
filtering process, potential base role models are retrieved from the repository for aug-
mentation with a new role model (target) in a subsequent neural network mapping
process. The analogical mapping we are contemplating here is a complex task, and
is approached empirically in order to find potential solutions. The data set on which
the neural network mapping model is tested, is presented in Section 5.1 below. Note
that the role models used in the experiments are subject to the representational
restrictions defined in Section 3.

5.1 Data set

In a real-world system of ROSA the number of role models stored in the repository
can vary from a few to several hundred. Currently it is not a sufficient number
of role models in the ROSA repository for the experiments. Therefore, data for
the experiments are synthetically generated (Tessem 1996). The graph generation
algorithm generates rooted, directed graphs between 3 and 20 vertices. The ran-
dom generator simulates message passing either to new vertices or to already made
vertices, and the result is graphs that are satisfactory similar to realistic models.
It is also possible to generate random analogues to a graph by adding or deleting
some edges to the graph. This wriggling algorithm gives us graphs that are very
much alike the original graph. For every generated pair of graphs, one base and one
wriggled target graph, mapping function M is provided. The mapping function M
defines an “ideal” mapping from a structural point of view.

Given a mapping M, we can define a correspondence matrix C, whose rows
denote the target graph vertices and the columns denote the base graph vertices.
The correspondence matrix C is defined in Equation 4.

A semantic matrix S is randomly generated from C. The elements of S represent
similarities between vertices in the two graphs. Similarity between vertices in the
two graphs is initially assumed to be perfect (i,e., 1.0) between vertices that we
consider match, and 0.0 for non-matching vertices. Then, to obtain the semantic
matrix S, noise is distributed on C using a random triangular distribution from 0
to 1 with top at 0. For non-matching vertices the noise is added, and for matching
vertices it is subtracted. For the root vertices (i.e., the stimuli roles), the noise is
scaled by a factor of 0.25. The following parameters can be used to control the graph
generation:

e number of base graphs

20



e number of analogous target graphs for each base graph
e minimum and maximum number of vertices in the graphs

e number of changes in the analogue graphs

An annotation of the root vertex (stimulus role) is provided for all the generated
graphs. It is assumed that the graph generation algorithm provides a sufficient basis
for experimentation with different models and solutions.

5.2 Results

As the patterns are treated holistically, the network may have problems to discrim-
inate among the elements of the graphs. Thus, correspondences between the graphs
are not easily found due to lack of explicit representations of the graph elements.
Nevertheless, the network can learn to find a mapping between pair of graphs, one
target and one base, as holistic patterns, but the level of generalization may suffer
significantly. This means that the network’s ability to find a mapping for novel
graphs is limited. Moreover, as discussed is Section 4.2, finding a uniform represen-
tation of the graphs in terms of relation matrices is difficult simply because small
variances in the patterns may imply significant change in the graph structure.

In order to test a neural network on the analogical mapping task as described
in this paper, 38 unique graphs with 3 vertices were generated. The first graph
generated is the base graph, Gy, and the successive 37 graphs, Gy, Gy, ..., Gy,,, are
analogue target graphs with maximum two changes relatively to the base graph. Each
vertex in the graphs is assigned unique labels from the set {t1,s,%3}. The graphs
are represented as the 3 x 3 relation matrices Ry, Ry, Ry,,..., Ry,,. In addition,
3 x 3 correspondence matrices C ), Cpy), - - -5 Cioyyr) are generated that define
the mapping between the vertices of the target graph and the base graph. Examples
of the generated graphs are shown in Figure 14.

Gb Gt5 GtS Gt21 Gt35

by t ty ty 123
by < g o t3 @‘<I lo /Q ty 4
b3 t3 tg t3 t3

Figure 14: Sample graphs from the input data.

The unfilled vertices in the graphs denote the stimuli roles. In the current ex-
periment framework it is not obvious how to embed the semantic information as
discussed in Section 4.3. Therefore, for the case of simplicity, the semantic informa-
tion is disregarded in this experiment. This gives a mapping process as shown in
Figure 5. However, rather than providing the relation matrices of the graphs directly
as input to the mapping nettwork, a two-phased mapping process is proposed. First,
in phase one, a neural network compute distributed representations (Rumelhart et al.
1986) of the entire set of graphs. Second, in phase two, another neural network takes
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as input the distributed representations and computes a correspondence matrix as
output. This technique is somewhat similar to learning of familiy trees described by
Hinton (1986). Note that since we want the neural network to find proper mappings
on one set of graphs—that is, between one base graph and many analogue target
graphs—we restrict the input data to target graphs only. Therefore the base graph
Gy is not explicitly presented to the networks, but appears implicitly as a map-
ping in the correspondence matrices. A neural network trained by backpropagation
(Ellingsen 1995) is used in both phase one and phase two.

Phase one: compute distributed representations

Given that each relation matrix R in the data set can be represented as a vector x,
the input data matrix to the neural network is defined as X = [x4,,Xy,,- - -, Xt ]
where dim(x;,) = 9. The neural network process one vector x;, at a time.

The first phase is similar to an encoder network (Rumelhart et al. 1986), where
a network learns the identity function y = F(x, w,), where x is the input vector, y
is the approximated output vector, and w is the weight vector in the network. Our
goal is to learn w such that x =y.

Note that in these experiments we have F : B* > x — y € B¥, where B = {0, 1},
and k£ = 9 is the dimensionality of the data vectors. In a three-layer network, with one
input, one output layer, and one hidden layer, if the network is able to approximate
the identity function, the distributed representations for the graphs are given as
activation values of the hidden layer units. Figure 15 shows a three layered fully
connected 9-4-9 neural network, where, given an input vector x = (z1,z9, ..., Z9),
approximates the identity function F, where y is the approximated network output
of the desired output x. If the error signal, that is, the differences between the
network output y and the input pattern x, approaches zero, the activation values
of the hidden layer units, given as vector z = (z1, 22, 23, 24), are the distributed
representation for vector x. The neural network shown in Figure 15 uses four units
to represent the distributed representation of each input vector. Note that z € R™,
where m = 4 is the dimensionality of the vector.

?

Y Y2 Y3 Ya e Yo

output layer

hidden layer

input layer

Figure 15: A fully connected three-layered 9—4—9 neural network for learning the
identity function F'.

22



Given matrix X as input, the neural network was trained by backpropagation.
The network terminated after 4169 iterations, whereupon the total mean square
error was less that 0.003. Two learning rates were used in the network, one, denoted
n, for the weights connecting the input to the hidden layer units, and one, denoted
k, for the weights connecting the hidden to the output units. The learning rates
were set to low values, i.e., n = 0.05 and x = 0.15, in order for the network to learn
the identity function properly.

Finaly, the distributed representations for all input patterns is given by the
matrix Z = [z, 24,,- - -, Zs,)" , where dim(z;,) = 4. Note that Z is extracted from
the activation values of hidden layer units in the very last repetition of the input
data.

Phase two: mapping

In the second phase the distributed representations of the graphs, given as matrix
Z = (z4,%,,...,%,), are provided as input to the network, one vector z; at a
time. Given that each correspondence matrix C in the previous defined data set is
represented as a vector d, the desired output from the network, given input vector
z4;, is the vector dy). Thus, the entire data matrix for the desirede output is
defined as matrix D = [ds4,), ds,ts)s - - - » A(btar)]» Where dim(dpz,)) = 9.

The second phase can be defined as the mapping function y = M(z, w), where z
is the input vector, y is the approximated output vector, and w is the weight vector
in the network. Our goal is to learn w,, such that d = y. Thus, the function does
a mapping in the domain M : R™ > z — y € B¥, where B = {0,1}, m = 4 is the
dimensionality of the input vector, and k£ = 9 is the dimensionality of the output
vector.

Given the input matrix Z and the desired output matrix D, two mutually disjoint
data matrices are defined, one for learning and another for testing. The learning data
matrices are defined as Z; = (24, 24y, - . . , Ztyo)" and Dy = [do.t), Ap.ts)s - - - > Dortan)] 5
and the test data matrices are defined as Z; = [z, Ziyy, - - -, Zes,). and Dy =
[d(b;tﬂ)’ d(b,tzz)’ R d(b,t37)]T‘

The aim of this phase is not primarily to compute distributed representations,
but to find an analogical mapping between a target and a base graph. To obtain
this, a vector z, representing the target graph, is provided as input to the network,
and the objective is to compute an output vector y, representing the appropriate
analogical mapping between the target graph and a base graph. Figure 16 shows
fully connected 4-6-9 neural network for approximating the mapping function M,
where vector z = (z1, 2, 23, 24) is the input and vector y = (y1,¥2,.-..,¥s) is the
approximated output.

Given the data matrix Z; and the desired output matrix D; as input, the network
terminated after 7036 iterations. The total mean square error was then less than
0.02. As with the network in phase one, two learning rates were used and set equally
n = 0.04 and xk = 0.04.

Given the constraints on the correspondence matrix as discussed in Section 4.2,
we obtain only 50 % correct mapping of the test data. In each output vector there
are three individual mappings, one for each vertex from target to base. Hence, for
all 17 test samples in D; there are totally 51 mappings. The test results are reported
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Figure 16: A fully connected three-layered 4-6-9 neural network for learning the
mapping function M.

in Table 2, where the rows summarize the number of incorrect mapping of vertices
over the entire test data. The 0 errors row denotes a correct mapping for all vertices
between the target and base graphs, and the 3 errors row denotes that all the three
vertices in the target graph is incorrect mapped to the base. The rightmost column
shows the distribution of incorrect mappings in percent.

| errors | graphs | % |

0 1 6
1 4 24
2 9 93
3 3 17

Table 2: Test results of the mapping experiments.

As seen from the results in Table 2, only one target graph has correctly all three
vertices correctly mapped to the base graph. A majority of the target graphs have
two out of three vertices incorrectly mapped, and three target graphs have all three
vertices incorrectly mapped.

5.3 Discussion

The modest results from this experiment may originate from an insufficient repre-
sentation of the graphs in terms of relation matrices. The graphs contemplated here
are subject for the variances discussed in Section 4.2. A situation may occur that
two isomorphic graphs obtain different relation matrices simply because of different
labeling. Further, two identical correspondence matrices does not necessarily define
a mapping of identical pair of graphs. This makes the mapping task very difficult.
A hierarchical cluster analysis of the distributed representations in matrix Z
computed in phase one is shown in Figure 17, and report similarities between the
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representations according to the Euclidean distances. The cluster diagram is ob-
tained from the square root of the squared Euclidean distances, based on the cen-
troid method for clustering. Note that the diagram displays the clustering sequence
and not the Euclidean distances among the clusters.

0 3 10 15 20 25 30

L

&N
o o
L1

Z16
Z7 ]

Figure 17: Hierachical clustering of all the distributed representations computed in
phase one.

For example, the graphs G},, and Gy,,, shown in Figure 18, have isomorphic
structures and identical relation matrices. Therefore, their distributed representa-
tions are close to each other in the Euclidean space, denoted as z9; and zsg in the
cluster diagram. The graphs G;, and Gy,,, also shown in Figure 18, do not have
isomorphic structures or identical relations matrices. Hence, the distributed repre-
sentations, denoted z, and zy4 in the cluster diagram, are not clustered close to each
other.

The neural network in phase two of the mapping process accepted the distributed
representations of the target graphs as input only. Although not discussed here, an
experiment was defined where the relation matrices for both the base and the target
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Figure 18: Graphs from the input data, where Gy,, and Gy, are isomorphic, whereas
Gy, and Gy, are not.

graphs were provided as input to the neural network. The results for the network
with two input matrices showed an even lower performance. Also, a one-phase
mapping process was tested, where the relation matrices were provided directly as
input to the neural network. This means that no distributed representations were
explicit extracted for further processing, but computed by the very same network as
learning the analogical mapping function. The results from these experiments did
not report any promising results either.

A conclusion after analyzing the cluster diagram is that the network in phase
one seeks to find distributed representations for the graphs based on similar rela-
tion matrices. The distributed representations can be regarded as features of the
relations matrices, and the network seem able to extract common features for sim-
ilar relation matrices. This is both good and bad news. First, this means that we
cannot hope to represent the graphs directly as relation matrices simply because of
they do not capture variances in the graphs. Second, if we can find an invariant
representation of the graphs, we may assume that a neural network can extract the
features for a subsequent mapping process. Given a technique for coding the graphs
in an invariant way, the assumption is that similar graphs obtain similar distrib-
uted representations. Therefore, as discussed in Section 2.3, we can use a neural
network to do similarity-based generalization and categorization due to formation of
rich internal representations. However, an alternative coding scheme to the current
relation matrices of the graphs is necessary in order to obtain better results.

6 Comparison with related work

An intrinsic feature of a distributed connectionist network is its ability to learn
from a set of training samples and to generalize from these samples to produce
an appropriate output. Likewise, in the ROSA project we want to learn a neural
network from a set of graphs (representing the role models) and have the network
to generalize from these graphs to produce an appropriate mapping. The difference
between the proposed approach and ACME (Holyoak and Thagard 1989) and SME
(Falkenhainer et al. 1989) is apparent by comparing the representation and mapping
scheme.
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6.1 Representation

The graphs of the role models represent input patterns to the neural network. From
these patterns, the network can build generalized and reduced internal representa-
tions, which comprise the knowledge of the network. As the distributed represen-
tations capture common features of the patterns, we obtain a generalization capa-
bility where patterns are spread as activity patterns over the network’s many units.
The net effect is a similarity-based association where similar patterns obtain similar
internal representations.

Compared to localist connectionist network, the roles and ports in the OOram
role models correspond to units in the network, where inhibitory and excitatory
links represent the strengths between the units. In ACME, the role models are
presented to the network as sentences in predicate calculus. For example, given the
two, yet simple, analogue and isomorphic role models shown in Figure 19, they can
be represented to the ACME network as the enumerated propositions in predicate-
calculus listed below the role models.

target structure base structure
[ store _ [ stack__
T1: role(product) B1: role(book)
T2: srolg(inventory) B2: srole(bookshelf)
T3: port(inventory, store) B3: port(bookshelf, stack)
T4: store(inventory, product) B4: stack(bookshelf, book)

Figure 19: Two simple analogue role models, one target and one base, including
propositions for input to ACME. The proposition are sequentially enumerated.

From these propositions, ACME builds a network of units linked by inhibitory and
excitatory connections. The ACME network has one unit for each possible pairing
(mapping) of the elements in the role models. There are also semantic units that
connect elements with similar meaning, and pragmatic units that connect elements
correlated with high-level plans and goals. An example of an ACME network?® for
the two role models in Figure 19 is shown in Figure 20.

The important thing is that ACME does not build an explicit internal represen-
tation of the role models. It builds, however, an explicit representation of possible
mappings between elements of the target and base role models. Note that units
for pragmatic centrality are not shown in the network in Figure 20. Symmetrical
links are implemented to constrain the mapping, where solid lines denote excitatory
connections and dotted lines denote inhibitory connections. An excitatory link be-
tween two elements strengthen a mapping, whereas an inhibitory link between two
elements weaken a mapping. Since mapping between a target and a base role model

3The ACME network is adapted from Holyoak and Thagard (1989).
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Figure 20: ACME localist network for representing the role models in Figure 19.

is explicitly representations in ACME, its ability to generalize over common features
is rather poor. This is also the case for other symbolic-based analogical reasoning
models, such as SME.

The distributed representations in the neural network are quite different from
ACME and SME. A neural network does not clearly separate structural and semantic
information as in the discrete models. A noticeable difference between a neural
network and ACME/SME is to what degree the analogs and the mapping-constraints
can be represented explicitly. ACME relies on a localist network where the units
represent propositions and the connections represent constraints, whereas SME relies
on matching rules. A neural network model has no similar explicit representation,
where the analogs and mapping-constraints are spread over the many units in the
network.

Thus, taking the relation matrices of the two role models as input to the neural
network generates internal representations in a multi-dimensional real vector space.
Since no particular unit in the neural network’s internal representation denotes any
aparticular element in the original structure, it is not obvious how a mapping is
derived. A propitious strength of neural networks is their ability to extract features
and do similarity-based generalization. This strength enable the neural network
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to establish correspondences between similar internal representations representing
similar elements in the original structures. However, a condition for a similarity-
based mapping is the ability to discriminate among the elements in the structure.
As demonstrated in the experiments in Section 5, treating the OOram role models
as holistic patterns in terms of relation matrices have significant limitations.

Representation of analogs to the SME is similar to ACME, by sentences of pred-
icate logic. Although there are some similarities between the two, such as mapping
of higher-order relations in favor of isolated object descriptions, there are, never-
theless, fundamental differences. For example, SME does not build a network of
units representing the potential mappings between the elements, but relies on rules
to derive a global best mapping from a set of constituent hypotheses about element
correspondences.

Both ACME and SME can handle semantic information represented as discrete
and atomic elements. Rules for matching semantic similarities are provided in SME,
e.g., literal similarity and mere-appearance, for comparing object descriptions. How-
ever, object descriptions are ignored unless they are part of some higher-order struc-
ture. ACME, on the other hand, exploits semantic information to a larger de-
gree than SME by representing specific semantic units in the network with excita-
tory/inhibitory links for strengthening/weakening the potential mapping between
the elements.

6.2 Mapping

The ACME builds, when presented with predicate logic propositions, a network of
units that defines all possible pairings between the base and target elements. Essen-
tially, compatible concepts are initiated by excitatory links, whereas incompatible
concepts are initiated by inhibitory links. The initial network defines mapping-
hypotheses that restrict the number of possible pairings. To arrive at a solution,
the activation levels of the units in the network are updated repeatedly according
to the activation value of the neighboring units and the connected links. The links
between the units can be interpreted as constraints on the mapping, where ACME
aims at satisfying as many of these as possible to arrive at a global best solution.

The SME also tries to derive at a best global mapping from a set of constituent
hypotheses about element correspondences. SME begins the mapping process by
computing local match hypotheses (conceptually similar to mapping units in ACME)
guided by a set of rules. The match hypotheses are ordered according to their score.
Subsequently, the local mathes are combined into maximal consistent collections of
correspondences, called gmaps. ACME, on the other hand, seeks to find a single
global best mapping, where all the constraints are treated in parallel. Moreover,
SME prefers structural consistency, whereas ACME emphasize semantic similarity
between elements as important for the mapping.

Comparing the mapping process of ACME and SME with the proposed neural
network mapping model reveals some differences and similarities. First, ACME
and the neural network-based mapping have some common feature in that both are
based on a connectionist architecture. As such, both models have units and weighted
connections that work in parallel, aiming at satisfying some constraints. However,
neither the units nor the connections in the neural network have the same level of
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abstraction as in ACME. This is due to the distributed representation in the neural
network versus the localist representation in ACME.

Furthermore, the objective for the iterative learning of the ACME network is to
find a best global mapping solution by satisfying as many constraints as possible.
To find a best global solution is also the case for the neural network. However, the
neural network aims at finding generalized internal representations of the inputs by
grouping similar patterns into clusters. After a learning phase, a neural network can
approximate an output for a novel input due to its ability to generalize. This is not
the case in ACME, where every new pattern results in setting up a new network of
the possible pairings between target and base elements. Both SME and ACME can
dynamically build temporary structures in order to map analogs of different size and
complexity. As discussed in Section 4.1, this is not easily obtain in neural networks
(Barnden 1994b).

6.3 Why neural networks in the mapping of role models?

As thoroughly discussed in the previous sections, analogical mapping is acknowledged
to be a structural problem. Therefore, a model of AR that emphasizes systematic
relational structures, such as the SME, should be favored. However, there is a
compelling reason for not using SME or ACME. The main argument is the limited
ability for ACME and SME to generalize over a set of similar features. Essentially,
we want the AR model to find similar representations for similar elements in the two
analogs for a potential mapping. Thus, a mapping can be provided by establishing
correspondences between elements with similar representations. This is a micro-
feature-based mapping process that is not easily obtained in the symbolic-based
AR where the number of possible mappings is scaled exponentially according to the
increased complexity of the analogs. In a neural network the input patterns are
distributed among the units, and where a learning algorithm finds the fine-grained
internal representations in a self-organized manner. Thus, the representation of the
structures (graphs) is “flattened” in the network, which imply that there is no need
for complex search algorithms along the structures.

6.4 Alternative coding schemes

In the current coding scheme the graphs are represented holistically to the neural
network as relation matrices. However, as acknowledged in Section 4.1, the graphs
have compositional structures that are sensitive to variances in the representations.
It might be more appropriate to use a representational scheme that conveys the
structure-sensitivity of the graphs. Fodor and Pylyshyn (1988) argues that neural
networks are essentially inadequate for supporting representations that are sensitive
to compositional structures. This means that for a system to be structural sensitive,
the representations must be decomposed into their constituent parts by using some
destructing operation, yet preserving the integrity of the original structure. Typical
examples of this are natural language processing and grammar parsing, often rep-
resented symbolically as structured lists and trees. However, Fodor and Pylyshyn’s
critique has been demonstrated to be insufficient, and their conclusion is refuted by
Chalmers (1990). Several authors have shown that distributed connectionist net-
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works can represent and process compositional information. For example Pollack
(1990) demonstrates how the RAAM (Recursive Auto-Associative Memory) model
can be used to discover compact distributed representations of symbolic composi-
tional structures, such as lists and trees. The RAAM builds fixed-sized reduced rep-
resentations of variable-sized symbolic sequences and trees. An extension of RAAM,
called Labeling RAAM (LRAAM), is proposed by Sperduti (1993) for encoding of
arbitrary labeled structures, such as directed garphs. Similar ideas for representing
complex compositional structures are tensor products (Smolensky 1990) and HRRs
(Holographic Reduced Representations) (Plate 1994).

7 Conclusions

The aim of this paper was to provide a representational scheme for a connectionist
based analogical mapping of role models. A major goal has been to provide a formal
representation of the role models used in the mapping process of the ROSA project,
which conforms to the distributed paradigm of connectionist data processing. The
role models were represented as directed graphs and placed in relation matrices. Both
semantic and structural information can be extracted from the initial retrieval phase
of ROSA, and by combining the two types of information, we believe a more effective
analogical mapping can be obtained. The output of the network is a mapping scheme
that establishes correspondences between roles and their relations from a target to
a base model.

A two-phased mapping process was proposed and tested on randomly generated
graphs. In the first phase the graphs representing the role models were given a
distributed representation by a auto-associative backpropagation network. In the
second phase the distributed representation were provided as input to another back-
propagation network, whose objective was to compute an output that represents the
appropriate analogical mapping from a target graph to base graph. Results from the
experiments indicate that the proposed approach is limited because the graphs are
presented as “holistic” patterns. A consequence of this is that the network cannot
discriminate among the constituents of the structures.

Comparison with related work shows that distributed connectionist networks are
not much explored in analogical reasoning. Although there is reported some work on
connectionist-based AR, most models are nevertheless based on localist and marker-
passing connectionist networks. Previous study also indicates that neural networks
are difficult to use in analogical reasoning due to its reliance on a distributed repre-
sentation of the knowledge. In most problem domains in analogical reasoning, and
artificial intelligence in general, the knowledge is symbolic and has a compositional
structure.

In order to obtain better results a coding of the graphs that facilitate discrimi-
nation of the constituents of the structures seems required. Further work includes
investigation and experimentation with different types of distributed connectionist
networks, particular with a more powerful representation in mind. Also, methods
for combining structural and semantic information are important in that respect.
Alternative representational schemes of the role models, such as RAAM (Pollack
1990) and LRAAM (Sperduti 1993) seems promising in that respect.
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