
Predicate Dispatching: A Uni�ed Theory of Dispatch

Michael Ernst Craig Kaplan Craig Chambers

Technical report UW-CSE-98-01-02

Department of Computer Science and Engineering

University of Washington

Seattle, WA, USA 98195-2350
fmernst;csk;chambersg@cs.washington.edu

http://www.cs.washington.edu/research/projects/cecil/

12 January 1998

Abstract

Predicate dispatching generalizes previous method dispatch mechanisms by permitting arbitrary predicates
to control method applicability and by using logical implication between predicates as the overriding relation-
ship. The method selected to handle a message send can depend not just on the classes of the arguments, as
in ordinary object-oriented dispatch, but also on the classes of subcomponents, on an argument's state, and
on relationships between objects. This simple mechanism subsumes and extends object-oriented single and
multiple dispatch, ML-style pattern matching, predicate classes, and classi�ers, which can all be regarded
as syntactic sugar for predicate dispatching. This paper introduces predicate dispatching, gives motivating
examples adapted from a prototype implementation, and presents its static and dynamic semantics.

1 Introduction

Many programming languages support some mechanism for dividing the body of a (generic) function into
a set of cases, with a declarative mechanism for selecting the right case for each dynamic invocation of the
generic function. Case selection can be broken down into tests for applicability (a case is a candidate for
invocation if its guard is satis�ed) and overriding (which selects one of the applicable cases for invocation).

Object-oriented languages use overloaded methods as the cases. A method is applicable if the run-time
class of the receiver argument is the same as or a subclass of the class on which the receiver is specialized.
Multiple dispatching [BKK+86, Cha92] enables testing the classes of all of the arguments. One method over-
rides another if its specializer classes are subclasses of the other's, using either lexicographic (CLOS [Ste90])
or pointwise (Cecil [Cha93a]) ordering.

Predicate classes [Cha93b] automatically classify an object of class A as an instance of virtual subclass
B (a subclass of A) whenever B's predicate (an arbitrary expression typically testing the runtime state of an
object) is true. This creation of virtual class hierarchies makes method dispatching applicable even in cases
where the e�ective class of an object may change over time. Classi�ers [HHM90b] and modes [Tai93] are
similar mechanisms for reclassifying an object into one of a number of subclasses based on a case-statement-
like test of arbitrary boolean conditions.

Pattern matching (as in ML [MTH90]) bases applicability tests on the run-time datatype constructor
tags of the arguments and their subcomponents. As with classi�ers and modes, textual ordering determines
overriding. Some languages, such as Haskell [HJW+92], allow arbitrary boolean guards to accompany pat-
terns, restricting applicability. Views [Wad87] extend pattern matching to abstract data types by enabling
them to o�er various concrete datatype-like interfaces.

Predicate dispatching integrates, generalizes, and provides a uniform interface to these similar but previ-
ously incomparable mechanisms. A method declaration speci�es its applicability via a predicate expression,

1

E 2 expr The set of expressions in the underlying programming language
T 2 type The set of types in the underlying programming language
c 2 class-id The namespace of classes
m; f 2method-id The namespace of methods and �elds
p 2 pred-id The namespace of predicate abstractions
v; w 2 var-id The namespace of variables

Figure 1: Syntactic domains and variables

which is a logical formula over class tests (i.e., tests that an object is of a particular class or one of its sub-
classes) and arbitrary boolean-valued expressions from the underlying programming language. A method is
applicable when its predicate expression evaluates to true. Method m1 overrides methodm2 when m1's pred-
icate logically implies that of m2; this relationship is computed at compile time. Static typechecking veri�es
that, for all possible combinations of arguments to a generic function, there is always a single most-speci�c ap-
plicable method. This ensures that there are no message-not-understood errors (called match-not-exhaustive
in ML) or message-ambiguous errors at run-time.

Predicate expressions capture the basic primitive mechanisms underlying a wide range of declarative
dispatching mechanisms. Combining these primitives in an orthogonal and general manner enables new sorts
of dispatching that are not expressible by previous dispatch mechanisms. Predicate dispatching preserves
several desirable properties from its object-oriented heritage, including that methods can be declared in
any order and that new methods can be added to existing generic functions without modifying the existing
methods or clients; these properties are not shared by pattern-matching-based mechanisms.

Section 2 introduces the syntax, semantics, and use of predicate dispatching through a series of examples.
Section 3 de�nes its dynamic and static semantics formally. Section 4 discusses predicate tautology testing,
which is the key mechanism required by the dynamic and static semantics. Section 5 surveys related work,
and Section 6 concludes with a discussion of future directions for research.

2 Overview

This section demonstrates some of the capabilities of predicate dispatching by way of a series of examples. We
incrementally present a high-level syntax which appears in full in Figure 5; Figure 1 lists supporting syntactic
domains. Predicate dispatching is parameterized by the syntax and semantics of the host programming
language in which predicate dispatching is embedded.

2.1 Dynamic dispatch

Each method implementation has an attached predicate expression which speci�es when the method is ap-
plicable. Predicate expressions include class tests and negations, conjunctions, and disjunctions of predicate
expressions. An omitted predicate expression indicates that its method handles all type-correct arguments.

method-sig ::= signature m (h T i) : T
method-decl ::= method m (h formal-pattern i) [when pred-expr] method-body

pred-expr ::= expr @ c succeeds if expr evaluates to an instance or
subclass of class c

j notpred-expr negation
j pred-expr and pred-expr conjunction (short-circuited)
j pred-expr or pred-expr disjunction (short-circuited)

Method signature declarations give the type signature shared by a family of method implementations.
A message send expression need examine only the corresponding method signature declaration to determine
its type-correctness, while a set of overloaded method implementations must completely and unambiguously
implement the corresponding signature in order to be type-correct.

2

Predicate dispatching can simulate both singly- and multiply-dispatched methods by specializing formal
parameters on a class (via the \@class" syntax). Specialization limits the applicability of a method to objects
that are instances of the given class or one of its subclasses. ML-style pattern matching is modeled by
considering each constructor of a datatype to be a class and specializing methods on the constructor classes.
More generally, predicate dispatching supports the construction of arbitrary conjunctions, disjunctions, and
negations of class tests. The following example uses predicate dispatching to implement the Zip function
which converts a pair of lists into a list of pairs:1

type List;

class Cons subtypes List { head:Any, tail:List };

class Nil subtypes List;

signature Zip(List, List):List;

method Zip(l1, l2) when l1@Cons and l2@Cons {

return Cons(Pair(l1.head, l2.head), Zip(l1.tail, l2.tail)); }

method Zip(l1, l2) when l1@Nil or l2@Nil { return Nil; }

The �rst Zip method tests the classes of both arguments, and it only applies when both are instances
of Cons (or some subclass); this is an implicit conjunction of two class tests. The second Zip method uses
explicit disjunction to test whether either argument is an instance of Nil (or some subclass). The type
checker can verify statically that the two implementations of Zip are mutually exclusive and exhaustive over
all possible arguments that match the signature, ensuring that there will be no \message not understood"
or \message ambiguous" errors at run-time, without requiring the cases to be put in any particular order.

ML-style pattern matching requires all cases to be written in one place and put in a particular total
order, resolving ambiguities in favor of the �rst successfully matching pattern. In a traditional (singly- or
multiply-dispatched) object-oriented language without the ability to order cases, either the base case of Zip
must be written as the default case for all pairs of List objects (unnaturally, and unsafely in the face of
future additions of new subclasses of the default type), or three separate but identical base methods must be
written (one for Nil�Any, one for Any�Nil, and a third for Nil�Nil to resolve the ambiguity between the
�rst two). In our experience with object-oriented languages (using a pointwise, not lexicographic, ordering),
these triplicate base methods for binary messages occur frequently.

As a syntactic convenience, class tests can be written in the formal argument list:

formal-pattern ::= [v] [@ c] like v@ c in pred-expr

The �rst Zip method above would then be rewritten as

method Zip(l1@Cons, l2@Cons) {

return Cons(Pair(l1.head, l2.head), Zip(l1.tail, l2.tail)); }

2.2 Pattern matching

Predicates can test the run-time classes of components of an argument, just as pattern matching can query
substructures, by su�xing the @class test with a record-like list of �eld names and corresponding class tests;
names can be bound to �eld contents at the same time. The ability in pattern matching to test for particular
constants of built-in types is a simple extension of class tests.

pred-expr ::= . . .
expr @ specializer

specializer ::= c [f h �eld-pat i g]
�eld-pat ::= m [= v] [@ specializer]

As with pattern matching, testing the representation of components of an object makes sense when the
object and the tested components together implement a single abstraction. We do not advocate using pattern
matching to test components of objects in a way that crosses natural abstraction boundaries.

1Any is the top class, subclassed by all other classes, and Pair returns an object containing its two arguments.

3

Our syntax for pattern matching on records is analogous to that for creating a record: { x := 7, y :=

22 } creates a two-component record, binding the x �eld to 7 and the y �eld to 22, while { x = xval }

pattern-matches against a record containing an x �eld, binding the new variable xval to the contents of that
�eld and ignoring any other �elds that might be present. The similarity between the record construction and
matching syntaxes follows ML. Our presentation syntax also uses braces for record type speci�ers (as in the
declaration of the Cons class, above) and to delimit code blocks (as in the de�nitions of the Zip methods,
above).

The following example, adapted from our implementation of an optimizing compiler, shows how a
ConstantFold method can dispatch for binary operators whose arguments are constants and whose op-
erator is integer addition:

type Expr;

signature ConstantFold(Expr):Expr;

-- default constant-fold optimization: do nothing
method ConstantFold(e) { return e; }

type AtomicExpr subtypes Expr;

class VarRef subtypes AtomicExpr { ... };

class IntConst subtypes AtomicExpr { value:int };

... -- other atomic expressions here

type Binop;

class IntPlus subtypes Binop { ... };

class IntMul subtypes Binop { ... };

... -- other binary operators here

class BinopExpr subtypes Expr { op:Binop, arg1:AtomicExpr, arg2:AtomicExpr, ... };

-- override default to constant-fold binops with constant arguments
method ConstantFold(e@BinopExpr{ op@IntPlus, arg1@IntConst, arg2@IntConst }) {

return new IntConst { value := arg1 + arg2 }; }

... -- many more similarly expressed cases for other operators here

class UnopExpr subtypes Expr { op:Unop, arg:AtomicExpr, ... };

...

2.3 Boolean expressions

To increase the expressiveness of predicate dispatching, predicates may include arbitrary boolean expressions
from the underlying programming language. Additionally, names may be bound to values, for use later in
the predicate expressions and in the method body. Expressions from the underlying programming language
that appear in predicate expressions should have no externally observable side e�ects.

pred-expr ::= . . .
j test expr succeeds if expr evaluates to true
j let v :=E bind v to E; always succeeds

The following extension to the ConstantFold example illustrates these features.

-- Handle case of adding zero to anything (but don't be ambiguous
-- with existing method for zero plus a constant).
method ConstantFold(e@BinopExpr{ op@IntPlus, arg1@IntConst{ value=v }, arg2=a2 })

when test(v == 0) and not(a2@IntConst) {

return a2; }

method ConstantFold(e@BinopExpr{ op@IntPlus, arg1=a1, arg2@IntConst{ value=v } })

when test(v == 0) and not(a1@IntConst) {

4

return a1; }

... -- other special cases for operations on 0,1 here

2.4 Predicate abstractions

Named predicate abstractions can factor out recurring tests and give names to semantically meaningful
concepts in the application domain. To allow abstraction over both tests and variable bindings, predicate
abstractions can return a record-like list of bindings. These bindings resemble the �elds of a record or
class, and similar support is given to pattern matching against a subset of the results of a named predicate
invocation. Predicate abstractions thus can act like views or virtual subclasses of some object (or tuple of
objects), with the results of predicate abstractions acting like the virtual �elds of the virtual class. If the
properties of an object tested by a collection of predicates are mutable, the object may be given di�erent
virtual subclass bindings at di�erent times in its life, providing the bene�ts of using classes to organize code
even in situations where an object's \class" is not �xed.

Because object identity is not a�ected by these di�erent views on an object, named predicate abstractions
are more
exible than coercions in environments with side-e�ects. A single object can be classi�ed in
multiple independent ways by di�erent predicate abstractions without being forced to de�ne all the possible
conjunctions of independent predicates as explicit classes, relieving some of the problems associated with a
mix-in style of class organization [HHM90b, HHM90a].

pred-sig ::= predsignature p (h T i) return f h f : T i g
pred-decl ::= predicate p (h formal-pattern i)

[when pred-expr] [return f h f := expr i g]
pred-expr ::= . . .

j p (h expr i) [=> f h �eld-pat i g] test predicate abstraction p

specializer ::= pred-spec [f h �eld-pat i g]
pred-spec ::= c expr@ c is a class test

j p expr@ pf : : :g is alternate syntax
for p(expr)=> f : : :g

A predicate abstraction takes a list of arguments and succeeds or fails as determined by its own predicate
expression. A succeeding predicate abstraction invocation can return any value computed in its predicate
expression, and the caller can retrieve any subset of the predicate abstraction's result bindings. Predicate
signatures specify the type interface used in typechecking predicate abstraction callers and implementations.
In this presentation, we prohibit recursive predicates.

Simple predicate abstractions are used just like ordinary classes:

predicate on_x_axis(p@point)

when (p@cartesianPoint and test(p.y == 0))

or (p@polarPoint and (test(p.theta == 0) or test(p.theta == pi)));

method draw(p@point) { ... } -- draw the point
method draw(p@on_x_axis) { ... } -- use a contrasting color so point is visible

In the following example, CFG_2succ is a CFG node with two successors. Each successor is marked
with whether it is a loop exit (information which, in our implementation, is dynamically maintained when
the CFG is modi�ed) and the greatest loop it does not exit. It is advantageous for an iterative data
ow
algorithm to propagate values along the loop exit only after reaching a �xed point within the loop; such an
algorithm would dispatch on the LoopExit predicate. Similarly, the algorithm could switch from iterative
to non-iterative mode when exiting the outermost loop, as indicated by TopLevelLoopExit.

predsignature LoopExit(CFGnode)

return { loop:CFGloop };

predicate LoopExit(n@CFG_2succ{ next_true: t, next_false: f })

when test(t.is_loop_exit) or (test_f.is_loop_exit)

5

return { loop := outermost(t.containing_loop, f.containing_loop) };

predicate TopLevelLoopExit(n@LoopExit{ loop@TopLevelScope });

2.5 Classi�ers

Classi�ers are a convenient syntax for imposing a linear ordering on a collection of predicates, ensuring
mutual exclusion. They combine the state testing of predicate classes and the total ordering of pattern
matching. An optional otherwise case, which executes if none of the predicates in the classi�er evaluates to
true, adds the guarantee of exhaustion. Multiple independent classi�cations of a particular class or object
do not interfere with one another.

classi�er-decl ::= classify (h formal-pattern i)
h as p when pred-expr [return f h f := expr i g] i
[as p otherwise [return f h f := expr i g]]

Here is an example of the use of classi�ers:

class Window { ... }

classify(w@Window)

as Iconified when test(w.iconified)

as FullScreen when test(w.area() == RootWindow.area())

as Big when test(w.area() > RootWindow.area()/2)

as Small otherwise;

method move(w@FullScreen, x@int, y@int) { } -- nothing to do
method move(w@Big, x@int, y@int) { ... } -- move a wireframe outline
method move(w@Small, x@int, y@int) { ... } -- move an opaque window
method move(w@Iconified, x@int, y@int) { ... } -- modify icon, not window, coordinates

-- resize, maximize, iconify similarly test these predicates

To force the classi�cation to be mutually exclusive, each case is transformed into a predicate which
includes the negation of the disjunction of all previous predicates. Therefore, an object is classi�ed by some
case only when it cannot be classi�ed by any earlier case.

3 Dynamic and static semantics

The rest of this paper formalizes the dynamic and static semantics of a core predicate dispatching sublan-
guage. Figure 2 presents the abstract syntax of the core sublanguage. Appendix A de�nes desugaring rules
that translate the high-level syntax of Figure 5 into the core syntax.

In the sequel, we assume that all variables are distinct so that the semantic rules can ignore the details
of avoiding variable capture.

3.1 Dynamic semantics

This section explains how to select the most-speci�c applicable method at each message send. This selection
relies on two key tests on predicated methods: whether a method is applicable to a call, and whether one
method overrides another.

A method is applicable if its predicate evaluates to true; predicate evaluation also provides an extended
environment in which the method's body is executed. Figure 3 de�nes the execution model of predicate
evaluation in terms of the elaboration operator) and several helper functions. We say hP;Ki) hb;K0i
when the predicate P evaluates in the environmentK to the boolean result b, producing the new environment
K0. If the result b is false, then the resulting environment K 0 is ignored.

6

method-sig ::= signature m (h T i) : T
method-decl ::=method m (h v i) when pred-expr method-body

pred-expr ::= true always applies
j test v applies if v is true
j v isa c applies if v is an instance of c or a subclass
j let v := E bind v to E; always applies
j p (h v i) => f h f = v i g test predicate abstraction p

j notpred-expr negation
j pred-expr and pred-expr conjunction (short-circuited)
j pred-expr or pred-expr disjunction (short-circuited)

pred-sig ::= predsignature p (h T i) return f h f : T i g
pred-decl ::= predicate p (h v i) when P return f h f := v i g

Figure 2: Abstract syntax of the core language. Words and symbols in boldface represent terminals. Angle
brackets denote zero or more comma-separated repetitions of an item. Square brackets contain optional ex-
pressions. We freely use parentheses around pred-exprs to indicate order of operations. Recursive predicates
are forbidden.

Predicate dispatching considers one method m1 to override another method m2 exactly when m1's pred-
icate implies m2's predicate and not vice versa. Section 4 describes how to compute the overriding relation,
which can be performed at compile time.

Given the evaluation model for predicate expressions and the ability to compare predicate expressions for
overriding, the execution of generic function invocations is straightforward. Suppose that generic function
m is de�ned with the following cases:

methodm(v1, : : : , vn) whenP1 fB1g
methodm(v1, : : : , vn) whenP2 fB2g
...
methodm(v1, : : : , vn) whenPk fBkg

To evaluate the invocation m(E1, : : : ,En) in the environment K, we �rst obtain �i = eval(Ei;K) for all
i = 1; : : : ; n. Then, for j = 1; : : : ; k, we obtain a truth value bj and a new environment Kj through
hPj;K[v1 := �1; : : : ; vn := �n]i) hbj;Kji.2

Now let I be the set of integers i such that bi = true, and �nd i0 2 I such that Pi0 overrides all others
in fPigi2I . The result of evaluating m(E1; : : : ; En) is then the result of evaluating Bi0 in the environment
Ki0 , so that variables bound in the predicate can be referred to in the body. If no such i0 exists, then an
exception is raised (a \message not understood" error if I is empty, or a \message ambiguous" error if there
is no unique minimal element of I).

A clever implementation can make a number of improvements to this base algorithm. Here we brie
y
mention just a few such optimizations. First, common subexpression elimination over predicate expressions
can limit the computation done in evaluating guards. Second, precomputed implication relationships can
prevent the necessity for evaluating every predicate expression. If a more speci�c one is true, then the less
speci�c one is certain to be satis�ed; however, such satisfaction is irrelevant since the more speci�c predicate
will be chosen. Third, clauses and methods can be reordered to succeed or fail more quickly.

3.2 Static semantics and typechecking

The operational model of predicate dispatch described in Section 3.1 can raise a run-time exception at a
message send if no method is applicable or if no applicable method overrides all the others. We extend the
typechecking rules of the underlying language to guarantee that no such exception occurs.

Figure 4 presents the static semantic domains, helper functions, and typechecking rules for the core
predicate dispatching sublanguage.

2Since we assume that all variables are distinct, we can safely use the dynamic environment at the call site instead of

preserving the static environment at the predicate abstraction's de�nition point.

7

�; � 2 value Values in the underlying programming language
b 2 ftrue; falseg Mathematical booleans
K 2 (var-id! value) [(pred-id ! pred-decl) Environments mapping variables to values

and predicate names to predicate declarations

lookup(v;K)! � Look up the value of variable v in the environment K, returning the value �.
K[v := �]! K 0 Bind the name v to the value � in the environment K, resulting in the new envi-

ronment K0. If v is already bound, the existing binding is overridden.
eval(E;K)! � Evaluate the expression E in the environment K, returning the value �.
instanceof(�; c)! b Determine whether the value � is an instance of c or any subclass of c.
accept(�)! b Coerce arbitrary program values to true or false.

htrue;Ki) htrue;Ki

lookup(v;K) = � accept(�) = b

hv;Ki) hb;Ki

lookup(v;K) = � instanceof(�; c) = b

hv isa c;Ki) hb;Ki

eval(E;K) = � K[v := �] = K0

hlet v := E;Ki) htrue;K0i

8i 2 f1; : : : ; ng eval(v0i;K) = �i

lookup(p;K) = predicate p(v1; : : : ; vn)when P return ff1 :=E1, : : : , fm := Em, : : :g
hP;K[v1 := �1; : : : ; vn := �n]i) hfalse;K0i

hp(v01, : : : , v
0

n) => ff1 = w1, : : : , fm =wmg;Ki) hfalse;Ki

8i 2 f1; : : : ; ng eval(v0i;K) = �i

lookup(p;K) = predicate p(v1; : : : ; vn)when P return ff1 :=E1, : : : , fm := Em, : : :g
hP;K[v1 := �1; : : : ; vn := �n] i) htrue;K0i

8i 2 f1; : : : ;mg eval(Ei;K
0) = �i

K[w1 := �1; : : : ; wm := �m] = K00

hp(v01, : : : , v
0

n) => ff1 = w1, : : : , fm =wmg;Ki) htrue;K00i

hP;Ki) hb;K0i

hnotP;Ki) h:b;Ki

hP;Ki) hfalse;K0i

hP andQ;Ki) hfalse;Ki

hP;Ki) htrue;K0i hQ;K0i) hfalse;K00i

hP andQ;Ki) hfalse;Ki

hP;Ki) htrue;K0i hQ;K0i) htrue;K00i

hP andQ;Ki) htrue;K 00i

hP;Ki) htrue;K0i

hP orQ;Ki) htrue;Ki

hP;Ki) hfalse;K0i hQ;Ki) htrue;K00i

hP orQ;Ki) htrue;Ki

hP;Ki) hfalse;K 0i hQ;Ki) hfalse;K00i

hP orQ;Ki) hfalse;Ki

Figure 3: Dynamic semantic domains, helper functions, and evaluation rules

8

T � T 0 Type T is a subtype of T 0.
conformant-type(T; c) Return the most-speci�c type T 0 such that every subclass c0 of c that conforms to T

also conforms to T 0. This helper function is supplied by the underlying programming
language.

� + �0 = �00 Overriding extension of typing environments. For each v 2 dom(�0), if �0 j= v : T 0,
then �00 j= v : T 0; for each v 2 dom(�) n dom(Gamma0), if � j= v : T , then
�00 j= v : T .

� ` signature m(T1, : : : ,Tn) : Tr) � + fm : (T1; : : : ; Tn)! Trg

� j= m : (T1; : : : ; Tn)! Tr
� + fv1 : T1; : : : ; vn : Tng ` P) �0 �0 j= method-body : Tb Tb � Tr

� `method m(v1, : : : , vn) when P method-body) �

� ` predsignature p(T1, : : : ,Tn) returnff1 : T
r
1 , : : : , fm : T r

mg) � + fp : (T1; : : : ; Tn)! ff1 : T
r
1 ; : : : ; fm : T r

mg g

� j= p : (T1; : : : ; Tn)! ff1 : T r
1 ; : : : ; fm : T r

m; : : :g
� + fv1 : T1; : : : ; vn : Tng ` P) �0

8i 2 f1; : : : ;mg �0 j= v0i : T
0
i ^ T 0i � T r

i

� ` predicate p(v1, : : : , vn) when P returnff1 := v01, : : : , fm := v0mg) �

� ` true) �

� j= v : Bool

� ` v) �

� j= v : T conformant-type(c; T) = T 0

� ` v isa c) � + fv : T 0g

� j= expr : T

� ` let v := expr) � + fv : Tg

� j= p : (T1; : : : ; Tn)! ff1 : T
r
1 ; : : : ; fm : T r

m; : : :g
� j= v1 : T

0
1 : : : � j= vn : T 0n T 01 � T1 : : : T 0n � Tn

� ` p(v1, : : : , vn) => ff1 = v01, : : : , fm = v0mg) � + fv01 : T
r
1 ; : : : ; v

0

m : T r
mg

� ` P) �0

� ` notP) �

� ` P1) �0 �0 ` P2) �00

� ` P1 and P2) �00

� ` P1) �0 � ` P2) �00

� ` P1 or P2) �

Figure 4: Typechecking rules. The hypothesis � j= expr : T indicates that typechecking in typing environ-
ment � assigns type T to expr. The judgment � ` P) �0 represents extension of typechecking environments:
given type environment �, P typechecks and produces new typechecking environment �0. The return type
for a predicate invocation is an unordered record.

9

We can separate typechecking into two parts: client-side, which handles all checking of expressions in the
underlying language and uses method signatures to typecheck message sends, and implementation-side, which
checks method and predicate implementations against their corresponding signatures. Only implementation-
side checking is a�ected by predicate dispatching.

Implementation-side typechecking must guarantee completeness and uniqueness. Completeness guaran-
tees that no \message not understood" error is raised: for every possible set of arguments at each call site,
some method is applicable. Let Pm be the disjunction of the predicates of all of m's implementations, and let
Ps be a predicate expressing the set of argument classes that conform to the types in the method signature.
(See below for the details of predicate Ps; a class c conforms to a type T if every object which is an instance
of that class has type T or a subtype of T .) If Ps implies Pm, then some method is always applicable.
Uniqueness guarantees that no \message ambiguous" error is raised: for no possible set of arguments at any
call site are there multiple most-speci�c methods. Uniqueness is guaranteed if, for each pair of predicates P
and Q attached to two di�erent implementations, either P and Q are disjoint (so their associated methods
can never be simultaneously applicable) or one of the predicates implies the other (so one of the methods
overrides the other). Section 4 presents implication and disjointness tests over predicate expressions.

Completeness checking requires a predicate Ps that expresses the set of tuples of values v1; : : : ; vn con-
forming to some signature's argument types T1; : : : ; Tn; this predicate depends on the host language's model
of classes and typing. If classes and types are the same, and all classes are concrete, then the corresponding
predicate is simply v1 isa T1 and : : : and vn isa Tn. If abstract classes are allowed, then each vi isa Ti is
replaced with vi isaTi1 or : : :or vi isaTim, where the Tij are the top concrete subclasses of Ti. If inheritance
and subtyping are separate notions, then the predicates become more complex.

Our typechecking need not test that methods conform to signatures, unlike previous work on typechecking
multimethods [CL95]. In predicate dispatching, a method's formal argument has two distinct types: the
\external" type derived from the signature declaration, and the possibly �ner \internal" type guaranteed by
successful evaluation of the method's predicate. The individual isa tests narrow the type of the tested value
to the most-speci�c type to which all classes passing the test conform, in a host-language-speci�c manner,
using conformant-type. The conformant-type function replaces the more complicated conformance test of
earlier work.

4 Comparing predicate expressions

The static and dynamic semantics of predicate dispatching require compile-time tests of implication between
predicates to determine the method overriding relationship. The static semantics also requires tests of
completeness and uniqueness to ensure the absence of message-not-understood errors and message-ambiguous
errors, respectively. All of these tests reduce to tautology tests over predicates. Method m1 overrides method
m2 i� m1's predicate implies that of m2|that is, if (notm1) orm2 is true. A set of methods is complete
if the disjunction of their predicates is true. Uniqueness for a set of methods requires that for any pair
of methods, either one overrides the other, or the two are logically exclusive. Two formulas are mutually
exclusive exactly if one implies the negation of the other.

Section 4.1 presents a simple, sound, complete tautology test over predicate expressions. Because deter-
mining logical tautology is NP-complete, in the worst case an algorithm takes exponential time in the size
of the predicate expressions. For object-oriented dispatch, this is the number of arguments to a method (a
small constant). Simple optimizations (Section 4.2) make the tests fast in many practical situations. This
cost is incurred only at compile time; at run time, precomputed overriding relations among methods are
simply looked up.

We treat expressions from the underlying programming language as black boxes (but do identify those
which perform the same computation). Tests involving the run-time values of arbitrary host language
expressions are undecidable. The algorithm presented here also does not address recursive predicates. While
we have a set of heuristics that succeed in many common, practical cases, we do not yet have a complete,
sound, e�cient algorithm.

10

4.1 The base algorithm

The base algorithm for testing predicate tautology has three components. First, the predicate expression is
canonicalized to macro-expand predicate abstractions, eliminate variable bindings, and use canonical names
for formal arguments. This transformation prevents di�erent names for the same value from being considered
distinct. Second, implication relations are computed among the atomic predicates (for instance, x isa int

implies x isa num). Finally, the canonicalized predicate is tested for every assignment of atomic predicates
to truth values which is consistent with the atomic predicate implications. The predicate is a tautology i�
evaluating it in every consistent truth assignment yields true.

4.1.1 Canonicalization

Canonicalization performs the following transformations:

� Expand predicate calls inline, replacing the => clause by a series of let bindings.
� Replace let-bound variables by the expressions to which they are bound, and replace let expressions
by true.

� Canonically rename formal parameters according to their position in the formal list.

After canonicalization, each predicate expression is a logical formula over the following atoms with con-
nectives and, or, and not.

pred-atom ::= true
j test E
j E isa c

Canonicalized predicates are a compile-time construct used only for predicate comparison; they are never
executed. Canonicalized predicates bind no variables, and they use only global variables and formal param-
eters.

In the worst case, canonicalization exponentially blows up expression sizes. For instance, in

letx1 = x+ x and letx2 = x1 + x1 and letx3 = x2 + x2 and : : : and test xn = y ;

the �nal xn is replaced by an expression containing 2n instances of x. Inline expansion of predicate abstrac-
tions similarly contributes to this blowup. As with ML typechecking [KM89], which is exponential in the
worst case but linear in practice, we anticipate that predicates leading to exponential behavior will be rare.

In the sequel we will consider two expressions identical if, after canonicalization, they have the same
abstract syntax tree.

Omitting this step prevents some equivalent expressions from being recognized as such, but does not
prevent the remainder of the algorithm from succeeding when results are named and reused rather than the
computation repeated.

4.1.2 Truth assignment checking

This section presents a simple exponential-time algorithm to check logical tautology; because the problem
is NP-complete, any algorithm takes exponential time in the worst case. Let there be n distinct predicate
atoms in the predicate; there are 2n di�erent truth assignments for those atoms. Not all of those truth
assignments are consistent with the implications over predicate atoms: for instance, it is not sensible to set
a isa int to true but a isa num to false, because a isa int implies a isa num. If every consistent truth
assignment satis�es the predicate, then the predicate is a tautology. Each check of a single truth assignment
takes time linear in the size of the predicate expressions, for a total time of O(n2n).

The following rules specify implication over (possibly negated) canonical predicate atoms.

� E1 isa c1) E2 isa c2 i� (E1 � E2) and (c1 is a subclass of c2)
� E1 isa c1) not(E2 isa c2) i� (E1 � E2) and (c1 is disjoint from c2)
� a1) a2 i� nota2) nota1
� a1) nota2 i� a2) nota1

Two classes are disjoint if they have no common descendant. As is usual, notnota = a.

11

4.2 Optimizations

The worst-case exponential-time cost to check predicate tautology need not prevent its use in practice.
Satis�ability is checked only at compile time. When computing overriding relationships, the predicates tend
to be small (linear in the number of arguments to a method). We present heuristics that reduce the costs
even further.

Logical simpli�cation|such as eliminating uses of true, notnota, and aandnota|can be performed
as part of canonicalization to reduce the size of predicate expressions.

Unrelated atomic predicates can be treated separately. To determine whethermethodm1(f1@c1; f2@c2)f:::g
overridesmethod m1(f1@c3; f2@c4)f:::g it is su�cient to independently determine the relationship between
c1 and c3 and that between c2 and c4. Two tests with a smaller exponent replace one with a larger one,
substantially reducing the overall cost. This technique always solves ordinary single and multiple dispatching
overriding in time constant and linear in the number of formals, respectively, by examining each formal po-
sition independently. The technique also applies to more complicated cases, by examining subsets of formal
parameters which appear together in tests from the underlying programming language.

It is not always necessary to completely expand predicate abstraction calls as part of canonicalization. If
relations between predicate abstractions or other predicate expressions are known, then the tautology test
can use them directly. As one example, no complicated test is required in order to determine that di�erent
cases of a classi�er are mutually exclusive, as that property is satis�ed by de�nition.

The side conditions on atomic predicate values (their implication relationships) usually prevent the need
to check all 2n di�erent truth assignments for a predicate containing n atomic predicates. When a isa int

is set to true, then all truth assignments which set a isa num to false can be skipped without further
consideration.

Finally, it may be possible to achieve faster results in some cases by recasting the tautology test. Rather
than attempting to prove that every truth assignment satis�es a predicate expression, it may be advantageous
to search for a single truth assignment that satis�es its negation.

5 Related work

5.1 Object-oriented approaches

In the model of predicate dispatching, traditional object-oriented dispatching translates to either a single
class test on the receiver argument or, for multiple dispatching, a conjunction of class tests over several
arguments. Full predicate dispatching additionally enables testing arbitrary boolean expressions from the
underlying language; accessing and naming subcomponents of the arguments; performing tests over multiple
arguments; and arbitrarily combining tests via conjunction, disjunction, and negation. Also, named predicate
abstractions e�ectively introduce new virtual classes and corresponding subclassing links into the program
inheritance hierarchy. Predicate dispatching preserves the ability in object-oriented languages to statically
determine when one method overrides another and when no message lookup errors can occur. Singly-
dispatched object-oriented languages have e�cient method lookup algorithms and separate typechecking,
which depend crucially on the absence of any separate modules that dispatch on other argument positions.
Multiply-dispatched object-oriented languages have more challenging problems in implementation [KR89,
CTK94, AGS94] and typechecking [CL95], and predicate dispatching in its unrestricted form shares these
challenges.

Predicate classes [Cha93b] are an earlier extension of object-oriented dispatching to include arbitrary
boolean predicates. A predicate class which inherits from some class A and has an associated predicate
expression guard would be modeled as a named predicate abstraction that tests @A and guard. Predicate
dispatching is more general, for example by being able to de�ne predicates over multiple arguments. Predicate
dispatching exploits the structure of and, or, and not to automatically determine when no message lookup
errors can occur, while predicate classes rely on uncheckable user assertions about the relations between the
predicate classes' guard expressions in order to do typechecking.

Classi�ers in Kea [HHM90b, HHM90a, MHH91] let an instance of a class be dynamically reclassi�ed as
being of a subclass. A classi�er for a class is composed of a sequence of arbitrary-predicate/subclass pairs,
with an object of the input class automatically classi�ed as being of the subclass with the �rst successful

12

predicate. Because the sequence of predicates is totally ordered and the �rst successful predicate takes
precedence over all later predicates, a classi�er provides a concise syntax for a set of mutually exclusive,
exhaustive predicate abstractions. Predicate abstractions are more general than classi�ers in many of the
ways discussed above, but they also provide syntactic support for this important idiom. Kea is a purely func-
tional language, so classi�ers do not need to consider the semantics of reclassifying objects when the values
of predicates change; predicate dispatching addresses this issue by (conceptually) performing reclassi�cation
as needed as part of message dispatching.

Modes [Tai93] are another mechanism for adding dynamic reclassi�cation of a class into a subclass.
Unlike predicate classes and classi�ers, the modes of a class are not �rst-class subclasses but rather internal
components of a class that cannot be extended externally and that cannot exploit inheritance to factor
shared code. Mode reselection can be done either explicitly at the end of each method or implicitly after
each assignment using a declaratively speci�ed classi�cation.

5.2 Pattern matching approaches

Predicate dispatching supports many of the facilities found in pattern matching as in ML [MTH90] and
Haskell [HJW+92], including tests over arbitrary nested structure, binding of names to subcomponents, and
arbitrary boolean guard expressions. Predicate dispatching additionally supports inheritance (its class tests
are more general than datatype constructor patterns), disjunctions and negations of tests and conjunctions
of tests on the same object, and named predicate abstractions to factor out common patterns of tests and to
o�er conditional views of objects extended with virtual �elds. The patterns in a function are totally ordered,
while predicate dispatching computes a partial order over predicates and warns when two patterns might be
ambiguous. Finally, new methods can be added to existing generic functions without changing any existing
code, while new patterns can be added to a function only by modifying it.

Views [Wad87] extend pattern matching to abstract data types by allowing an abstract data type to
o�er a number of views of itself as a concrete datatype, over which pattern matching is de�ned. Predicate
dispatching supports \pattern matching" over the results of methods (by let-binding their results to names
and then testing those names, just as �eld contents are bound and tested), and those methods can serve as
accessor functions to a virtual view of the object, for instance rho and theta methods presenting a polar
view of a cartesian point. Views must be isomorphisms, which enables equational reasoning over them; by
contrast, named predicate abstractions provide conditional views of an object without requiring the presence
of both in and out views.

Pizza [OW97] supports both algebraic datatypes (and associated pattern matching) and object-oriented
dispatching, but the two mechanisms are largely distinct. The authors argue that datatypes are good for �xed
numbers of representations with extensible operations, while classes are good for a �xed set of operations
with extensible representations. By integrating pattern matching and dispatching, including multimethods,
predicate dispatching achieves extensibility in both dimensions along with the syntactic convenience of
pattern matching. Predicate dispatching faces more di�cult implementation and separate typechecking
challenges with the shift to multimethod-like dispatching.

6 Conclusions

Many language features express the concept of selecting a most-speci�c applicable method from a collection
of candidates, including object-oriented dispatch, pattern matching, views, predicate classes, and classi�ers.
Predicate dispatching integrates and generalizes these mechanisms in a single framework, based on a core
language of boolean expressions over class tests and arbitrary expressions, explicit binding forms to generalize
features of pattern matching, and named predicate abstractions with result bindings. By providing a single
integrated mechanism, programs can then take advantage of various styles of dispatch and even combine
them to create applicability conditions that were previously impossible or inconvenient to express.

We have implemented predicate dispatching in the context of Dubious, a simple core multiply-dispatched
object-oriented programming language. The implementation supports all the examples presented in this
paper, though for clarity this paper uses a slightly di�erent presentation syntax. The implementation
includes the complete, sound satis�ability test of Section 4 and some of the optimizations of Section 3.1,
but few optimizations from Section 4.2. This implementation was helpful in verifying our base design. We

13

expect that it will also provide insight into the advantages and disadvantages of programming with predicate
dispatching, as well as help us to evaluate optimization strategies.

So far, we have focused on developing the static and dynamic semantics for predicate dispatching. Two
unresolved practical issues that we will address in the future are e�cient implementation techniques and
separate typechecking support for predicate dispatching. We anticipate that e�cient implementations of un-
restricted predicate dispatching will build upon work on e�cient implementation of multimethod dispatching
and on predicate classes. In addition, static analyses that factor a collection of predicates to avoid redundant
tests and side-e�ect analyses that determine when predicates need not be re-evaluated appear to be promis-
ing lines for future research. Similarly, separate typechecking of collections of predicated methods will build
upon current work to develop modular and incremental methods for typechecking multimethods [CL95].

Acknowledgments

We thank Todd Millstein, Vassily Litvinov, and Wilson Hsieh for their comments on a draft of this paper.
This research is supported in part by an NSF grant (number CCR-9503741), an NSF Young Investigator
Award (number CCR-9457767), a grant from the O�ce of Naval Research (contract number N00014-94-1-
1136), and gifts from Sun Microsystems, IBM, Xerox PARC, Pure Software, and Edison Design Group.

References

[AGS94] Eric Amiel, Olivier Gruber, and Eric Simon. Optimizing multi-method dispatch using compressed dispatch
tables. In Proceedings OOPSLA '94, pages 244{258, Portland, OR, October 1994.

[BKK+86] Daniel G. Bobrow, Ken Kahn, Gregor Kiczales, Larry Masinter, Mark Ste�k, and Frank Zdybel. Com-
monloops: Merging lisp and object-oriented programming. In Proceedings OOPSLA '86, pages 17{29,
November 1986. Published as ACM SIGPLAN Notices, volume 21, number 11.

[Cha92] Craig Chambers. Object-oriented multi-methods in Cecil. In O. Lehrmann Madsen, editor, Proceedings
ECOOP '92, LNCS 615, pages 33{56, Utrecht, The Netherlands, June 1992. Springer-Verlag.

[Cha93a] Craig Chambers. The Cecil language: Speci�cation and rationale. Technical Report TR-93-03-05, De-
partment of Computer Science and Engineering. University of Washington, March 1993.

[Cha93b] Craig Chambers. Predicate classes. In O. Nierstrasz, editor, Proceedings ECOOP '93, LNCS 707, pages
268{296, Kaiserslautern, Germany, July 1993. Springer-Verlag.

[CL95] Craig Chambers and Gary T. Leavens. Typechecking and modules for multi-methods. ACM Transactions
on Programming Languages and Systems, 17(6):805{843, November 1995.

[CTK94] Weimin Chen, Volker Turau, and Wolfgang Klas. E�cient dynamic look-up strategy for multi-methods.
In M. Tokoro and R. Pareschi, editors, Proceedings ECOOP '94, LNCS 821, pages 408{431, Bologna,
Italy, July 1994. Springer-Verlag.

[HHM90a] J. Hamer, J.G. Hosking, and W.B. Mugridge. A method for integrating classi�cation within an object-
oriented environment. Technical Report Auckland Computer Science Report No. 48, Department of
Computer Science, University of Auckland, October 1990.

[HHM90b] J.G. Hosking, J. Hamer, and W.B. Mugridge. Integrating functional and object-oriented programming.
In Technology of Object-Oriented Languages and Systems TOOLS 3, pages 345{355, Sydney, 1990.

[HJW+92] Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn, Joseph Fasel, Maria
Guzman, Kevin Hammond, John Hughes, Thomas Johnsson, Dick Kieburtz, Rishiyur Nikhil, Will Partain,
and John Peterson. Report on the programming language Haskell, version 1.2. SIGPLAN Notices, 27(5),
May 1992.

[KM89] Paris C. Kanellakis and John C. Mitchell. Polymorphic uni�cation and ML typing. In ACM-SIGPLAN
ACM-SIGACT, editor, Conference Record of the 16th Annual ACM Symposium on Principles of Pro-
gramming Languages (POPL '89), pages 105{115, Austin, TX, USA, January 1989. ACM Press.

[KR89] Gregor Kiczales and Luis Rodriguez. E�cient method dispatch in PCL. Technical Report SSL 89-95,
Xerox PARC Systems Sciences Laboratory, 1989.

[MHH91] Warwick B. Mugridge, John Hamer, and John G. Hosking. Multi-methods in a statically-typed pro-
gramming language. In P. America, editor, Proceedings ECOOP '91, LNCS 512, pages 307{324, Geneva,
Switzerland, July 15-19 1991. Springer-Verlag.

14

method-sig ::= signature m (h T i) : T
method-decl ::= method m (h formal-pattern i) [when pred-expr] method-body

pred-sig ::= predsignature p (h T i) return f h f : T i g
pred-decl ::= predicate p (h formal-pattern i)

[when pred-expr] [return f h f := expr i g]
classi�er-decl ::= classify (h formal-pattern i)

h as p when pred-expr [return f h f := expr i g] i
[as p otherwise [return f h f := expr i g]]

pred-expr ::= true always succeeds
j false never succeeds
j expr @ specializer succeeds if expr evaluates to an instance or

subclass of the speci�ed class or predicate
j test expr succeeds if expr evaluates to true
j let v :=E bind v to E; always succeeds
j p (h expr i) [=> f h �eld-pat i g] test predicate abstraction p

j notpred-expr negation
j pred-expr and pred-expr conjunction (short-circuited)
j pred-expr or pred-expr disjunction (short-circuited)

formal-pattern ::= [v] [@ specializer] like v isa specializer in pred-expr

�eld-pat ::= m [= v] [@ specializer]
specializer ::= pred-spec [f h �eld-pat i g]
pred-spec ::= c expr@ c is a class test

j p expr@ pf : : :g is alternate syntax
for p(expr)=> f : : :g

j not pred-spec succeeds if pred-expr does not
j pred-spec & pred-spec succeeds if both pred-exprs do
j pred-spec j pred-spec succeeds if either pred-expr does

Figure 5: Full extended syntax for predicate dispatching. The notation is as for Figure 2. The syntax is as
presented incrementally in Section 2, with a few additions (such as boolean operators in pred-specs).

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Standard ML. MIT Press, 1990.

[OW97] Martin Odersky and Philip Wadler. Pizza into Java: Translating theory into practice. In Conference
Record of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
146{159, January 1997.

[Ste90] Guy L. Steele Jr. Common Lisp: The Language. Digital Press, Bedford, MA, 1990. Second edition.

[Tai93] Antero Taivalsaari. Object-oriented programming with modes. Journal of Object-Oriented Programming,
pages 25{32, June 1993.

[Wad87] Philip Wadler. Views: A way for pattern matching to cohabit with data abstraction. In Proceedings of the
Fourteenth Annual ACM Symposium on Principles of Programming Languages, pages 307{313, Munich,
Germany, January 1987.

A Desugaring rules

The following rewrite rules desugar the high-level syntax of Figure 5 into the core abstract syntax of Figure 2.
For brevity, we use

Vn

i=1 fPig to stand for the conjunction of the terms: P1 and : : :andPn. Variables v
0 and

v0i are new variables which do not appear elsewhere in the program. Ceiling braces d�e surround (potentially)
sugared expressions; application of the rewrite rules eliminates those braces.

For brevity, we omit the rewrite rules which introduce defaults for omitted optional program fragments:
dummy variables for pattern variables, \@any" specializers, empty �eld pattern sets in specializers, and
\when true" and \return f g" clauses. Additional rules may be introduced to simplify the resulting
formula, such as converting \v isa any" to \true" and performing logical simpli�cation.

15

Declarations: move specializers into when clause

dmethod m(v1 @ S1, : : : , vn @ Sn) when P method-bodye

=) method m(v1, : : : , vn) when
Vn

i=1 fdvi isa Sieg and dP e method-body

dpredicate p(v1 @ S1, : : : , vn@ Sn) when P return ff1 := E1, : : : , fm := Emge

=) predicate p(v1, : : : , vn) when
Vn

i=1 fdvi isa Sieg and dP e and dreturn ff1 := E1, : : : , fm := Emge

Logic

dP1 andP2e =) dP1e and dP2e

dP1 orP2e =) dP1e or dP2e

dnotP e =) not dP e

dfalsee =) nottrue

Name non-variable expressions

dEe =) let v0 :=E and v0

dE isa Se =) let v0 :=E and dv0 isa Se

dp(E1, : : : ,En) => fFdpat1, : : : ,Fdpatmge =)
Vn

i=1 flet v0i :=Eig

and dp(v01, : : : , v
0

n) => fFdpat1, : : : ,Fdpatmge

dreturn ff1 := E1, : : : , fm :=Emge =) and
Vm

i=1 flet v0i :=Eig returnff1 := v01, : : : , fm := v0mg

Field bindings: A �eld name is generated by Pname if Pname is a class containing the �eld, if Pname is
a predicate name whose result contains the �eld, if Pname is a disjunction both of whose disjuncts generate
the �eld, if Pname is a conjunction either of whose conjuncts generates the �eld, or if the �eld name is
actually a single-argument method name.

dv isa c ff1 = v1 @ S1, : : : , fn = vn @ Snge

=) v isa c and
Vn

i=1 fdv:fi isa Sieg

dv isa P fFdpat1, : : : ,Fdpatm, : : : ,Fdpatnge Fdpati is generated by P 6= c for 1 � i � m < n

=) dv isa P fFdpat1, : : : ,Fdpatmge and
�
v isa any fFdpatm+1, : : : ,Fdpatng

�
dv isa p => ff1 = v1 @ S1, : : : , fn = vn @ Snge

=) v isa p => ff1 = v01, : : : , fn = v0ng and
Vn

i=1 fdv:fi isa Sieg

dv isa p ff1 = v1, : : : , fn = vnge

=) p(v) => ff1 = v1, : : : , fn = vng

Compound predicate abstractions

dv isa notPnamefFdpat1, : : : ,Fdpatmge

=) not dv isa PnamefFdpat1, : : : ,Fdpatmge

dv isa Pname1 j Pname2fFdpat1, : : : ,Fdpatmge

=) dv isa Pname1fFdpat1, : : : ,Fdpatmge or dv isa Pname2fFdpat1, : : : ,Fdpatmge

dv isa Pname1& Pname2fFdpat1, : : : ,Fdpatm, : : : ,Fdpatnge Fdpati, 1 � i � m, is generated by Pname1

=) dv isa Pname1fFdpat1, : : : ,Fdpatmge and
�
v isa Pname2fFdpatm+1, : : : ,Fdpatng

�

16

Classi�ers2
66666666

classify(v1 @ S1, : : : , vm @ Sm)
as c1 when P1 return ff1;1 :=w1;1, : : : , f1;m1

:= w1;m1
g

...
as cn when Pn return ffn;1 :=wn;1, : : : , fn;mn

:= wn;mn
g

as cn+1 otherwise return ffn+1;1 := wn+1;1, : : : , fn+1;mn+1
:= wn+1mn+1

g

3
77777777

=)

�
predicate c1(v1 @ S1, : : : , vm @ Sm) when P1

return ff1;1 :=w1;1, : : : , f1;m1
:= w1;m1

g;

�

dpredicate d1(v1 @ S1, : : : , vm @ Sm) when P1;e�
predicate c2(v1 @ S1, : : : , vm @ Sm) when P2 and notd1(v1, : : : , vm)

return ff2;1 :=w2;1, : : : , f2;m2
:= w2;m2

g;

�

dpredicate d2(v1 @ S1, : : : , vm @ Sm) when d1(v1, : : : , vm) orP2;e

: : :�
predicate cn(v1 @ S1, : : : , vm @ Sm) when Pn and notdn�1(v1, : : : , vm)

return ffn;1 :=wn;1, : : : , fn;mn
:= wn;mn

g;

�

dpredicate dn(v1 @ S1, : : : , vm @ Sm) when dn�1(v1, : : : , vm) or Pn;e�
predicate cn+1(v1 @ S1, : : : , vm @ Sm) when notdn(v1, : : : , vm)

return ffn+1;1 :=wn+1;1, : : : , fn+1;mn+1
:= wn+1;mn+1

g;

�

B Bindings escaping \or"

In the static and dynamic semantics presented in Section 3, bindings never escape from or predicate ex-
pressions. Relaxing this constraint provides extra convenience to the programmer and permits more values
to be reused rather than recomputed. It is also equivalent to permitting overloaded predicates or multiple
predicate de�nitions|so far we have permitted only a single de�nition of each predicate.

For example, the two ConstantFold methods of Section 2.3 can be combined into a single method.
Eliminating code duplication is a prime goal of object-oriented programming, but the previous version
repeated the body twice.

-- handle case of adding zero to anything (but don't be ambiguous
-- with existing method for zero plus a constant)
method ConstantFold(e@BinopExpr{ op@IntPlus, arg1=a1, arg2=a2 })

when (a1@IntConst{ value=v } and test(v==0) and not(a2@IntConst) and let res := a2)

or (a2@IntConst{ value=v } and test(v==0) and not(a1@IntConst) and let res := a1) {

... -- increment counter, or do other common work here
return res; }

As another example, the LoopExit example of Section 2.4 can be extended to present a view which
indicates which branch of the CFG_2succ is the loop exit and which the backward branch. When performing
iterative data
ow, this is the only information of interest, and in our current implementation (which uses
predicate classes [Cha93b] we generally recompute this information after discovering that an object is a
LoopExit. Presenting a view which includes this information improves the code's readability and e�ciency.

predsignature LoopExit(CFGnode)

return { loop:CFGloop, next_looping:CFGedge, next_exiting:CFGedge };

predicate LoopExit(n@CFG_2succ{ next_true: t, next_false: f })

when (test(t.is_loop_exit) and let nl := t and let ne := f)

or (test(f.is_loop_exit) and let nl := f and let ne := t)

return { loop := nl.containing_loop, next_looping := nl, next_exiting := ne };

Permitting bindings which appear on both sides of or to escape requires the following changes to the
dynamic semantics of Figure 3:

17

hP;Ki) htrue;K0i

hP orQ;Ki) htrue;K0i

hP;Ki) hfalse;K0i hQ;Ki) htrue;K00i

hP orQ;Ki) htrue;K00i

hP;Ki) hfalse;K 0i hQ;Ki) hfalse;K00i

hP orQ;Ki) hfalse;Ki

The static semantics of Figure 4 must be modi�ed to add a helper function and to replace a typechecking
rule:

tenv(�;�
0) = �00 Pointwise lub over typing environments. For each v 2 dom(�00) = dom(�)\dom(�0),

if � j= v : T and �0 j= v : T 0, then �00 j= v : T t T 0.

� ` P1) �0 � ` P2) �00 tenv (�
0;�00) = �000

� ` P1 or P2) �000

Finally, canonicalization must account for the new semantics of or. In order to permit replacement of
variables by their values, we introduce a new compile-time-only ternary conditional operator ?: for each
variable bound on each side of the predicate. The �rst argument is the predicate expression on the left-hand
side of the or expression; the second and third arguments are the values on each side of the or.

Canonicalizing this new ?: expression requires ordering the tests canonically; any ordering will do. This
may necessitate duplication of some expressions, such as transforming b?e1:a?e2:e3 into a?(b?e1:e2):(b?e1:e3)
so that those two expressions are not considered distinct. With these two modi�cations, the tautology test
is once again sound and complete.

18

